|  | /* | 
|  | * QEMU e1000 emulation | 
|  | * | 
|  | * Software developer's manual: | 
|  | * http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf | 
|  | * | 
|  | * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. | 
|  | * Copyright (c) 2008 Qumranet | 
|  | * Based on work done by: | 
|  | * Copyright (c) 2007 Dan Aloni | 
|  | * Copyright (c) 2004 Antony T Curtis | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  |  | 
|  |  | 
|  | #include "hw.h" | 
|  | #include "pci.h" | 
|  | #include "net.h" | 
|  | #include "net/checksum.h" | 
|  | #include "loader.h" | 
|  | #include "sysemu.h" | 
|  |  | 
|  | #include "e1000_hw.h" | 
|  |  | 
|  | #define E1000_DEBUG | 
|  |  | 
|  | #ifdef E1000_DEBUG | 
|  | enum { | 
|  | DEBUG_GENERAL,	DEBUG_IO,	DEBUG_MMIO,	DEBUG_INTERRUPT, | 
|  | DEBUG_RX,		DEBUG_TX,	DEBUG_MDIC,	DEBUG_EEPROM, | 
|  | DEBUG_UNKNOWN,	DEBUG_TXSUM,	DEBUG_TXERR,	DEBUG_RXERR, | 
|  | DEBUG_RXFILTER,	DEBUG_NOTYET, | 
|  | }; | 
|  | #define DBGBIT(x)	(1<<DEBUG_##x) | 
|  | static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL); | 
|  |  | 
|  | #define	DBGOUT(what, fmt, ...) do { \ | 
|  | if (debugflags & DBGBIT(what)) \ | 
|  | fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \ | 
|  | } while (0) | 
|  | #else | 
|  | #define	DBGOUT(what, fmt, ...) do {} while (0) | 
|  | #endif | 
|  |  | 
|  | #define IOPORT_SIZE       0x40 | 
|  | #define PNPMMIO_SIZE      0x20000 | 
|  | #define MIN_BUF_SIZE      60 /* Min. octets in an ethernet frame sans FCS */ | 
|  |  | 
|  | /* | 
|  | * HW models: | 
|  | *  E1000_DEV_ID_82540EM works with Windows and Linux | 
|  | *  E1000_DEV_ID_82573L OK with windoze and Linux 2.6.22, | 
|  | *	appears to perform better than 82540EM, but breaks with Linux 2.6.18 | 
|  | *  E1000_DEV_ID_82544GC_COPPER appears to work; not well tested | 
|  | *  Others never tested | 
|  | */ | 
|  | enum { E1000_DEVID = E1000_DEV_ID_82540EM }; | 
|  |  | 
|  | /* | 
|  | * May need to specify additional MAC-to-PHY entries -- | 
|  | * Intel's Windows driver refuses to initialize unless they match | 
|  | */ | 
|  | enum { | 
|  | PHY_ID2_INIT = E1000_DEVID == E1000_DEV_ID_82573L ?		0xcc2 : | 
|  | E1000_DEVID == E1000_DEV_ID_82544GC_COPPER ?	0xc30 : | 
|  | /* default to E1000_DEV_ID_82540EM */	0xc20 | 
|  | }; | 
|  |  | 
|  | typedef struct E1000State_st { | 
|  | PCIDevice dev; | 
|  | NICState *nic; | 
|  | NICConf conf; | 
|  | MemoryRegion mmio; | 
|  | MemoryRegion io; | 
|  |  | 
|  | uint32_t mac_reg[0x8000]; | 
|  | uint16_t phy_reg[0x20]; | 
|  | uint16_t eeprom_data[64]; | 
|  |  | 
|  | uint32_t rxbuf_size; | 
|  | uint32_t rxbuf_min_shift; | 
|  | int check_rxov; | 
|  | struct e1000_tx { | 
|  | unsigned char header[256]; | 
|  | unsigned char vlan_header[4]; | 
|  | /* Fields vlan and data must not be reordered or separated. */ | 
|  | unsigned char vlan[4]; | 
|  | unsigned char data[0x10000]; | 
|  | uint16_t size; | 
|  | unsigned char sum_needed; | 
|  | unsigned char vlan_needed; | 
|  | uint8_t ipcss; | 
|  | uint8_t ipcso; | 
|  | uint16_t ipcse; | 
|  | uint8_t tucss; | 
|  | uint8_t tucso; | 
|  | uint16_t tucse; | 
|  | uint8_t hdr_len; | 
|  | uint16_t mss; | 
|  | uint32_t paylen; | 
|  | uint16_t tso_frames; | 
|  | char tse; | 
|  | int8_t ip; | 
|  | int8_t tcp; | 
|  | char cptse;     // current packet tse bit | 
|  | } tx; | 
|  |  | 
|  | struct { | 
|  | uint32_t val_in;	// shifted in from guest driver | 
|  | uint16_t bitnum_in; | 
|  | uint16_t bitnum_out; | 
|  | uint16_t reading; | 
|  | uint32_t old_eecd; | 
|  | } eecd_state; | 
|  | } E1000State; | 
|  |  | 
|  | #define	defreg(x)	x = (E1000_##x>>2) | 
|  | enum { | 
|  | defreg(CTRL),	defreg(EECD),	defreg(EERD),	defreg(GPRC), | 
|  | defreg(GPTC),	defreg(ICR),	defreg(ICS),	defreg(IMC), | 
|  | defreg(IMS),	defreg(LEDCTL),	defreg(MANC),	defreg(MDIC), | 
|  | defreg(MPC),	defreg(PBA),	defreg(RCTL),	defreg(RDBAH), | 
|  | defreg(RDBAL),	defreg(RDH),	defreg(RDLEN),	defreg(RDT), | 
|  | defreg(STATUS),	defreg(SWSM),	defreg(TCTL),	defreg(TDBAH), | 
|  | defreg(TDBAL),	defreg(TDH),	defreg(TDLEN),	defreg(TDT), | 
|  | defreg(TORH),	defreg(TORL),	defreg(TOTH),	defreg(TOTL), | 
|  | defreg(TPR),	defreg(TPT),	defreg(TXDCTL),	defreg(WUFC), | 
|  | defreg(RA),		defreg(MTA),	defreg(CRCERRS),defreg(VFTA), | 
|  | defreg(VET), | 
|  | }; | 
|  |  | 
|  | enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W }; | 
|  | static const char phy_regcap[0x20] = { | 
|  | [PHY_STATUS] = PHY_R,	[M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW, | 
|  | [PHY_ID1] = PHY_R,		[M88E1000_PHY_SPEC_CTRL] = PHY_RW, | 
|  | [PHY_CTRL] = PHY_RW,	[PHY_1000T_CTRL] = PHY_RW, | 
|  | [PHY_LP_ABILITY] = PHY_R,	[PHY_1000T_STATUS] = PHY_R, | 
|  | [PHY_AUTONEG_ADV] = PHY_RW,	[M88E1000_RX_ERR_CNTR] = PHY_R, | 
|  | [PHY_ID2] = PHY_R,		[M88E1000_PHY_SPEC_STATUS] = PHY_R | 
|  | }; | 
|  |  | 
|  | static void | 
|  | set_interrupt_cause(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | if (val) | 
|  | val |= E1000_ICR_INT_ASSERTED; | 
|  | s->mac_reg[ICR] = val; | 
|  | s->mac_reg[ICS] = val; | 
|  | qemu_set_irq(s->dev.irq[0], (s->mac_reg[IMS] & s->mac_reg[ICR]) != 0); | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_ics(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR], | 
|  | s->mac_reg[IMS]); | 
|  | set_interrupt_cause(s, 0, val | s->mac_reg[ICR]); | 
|  | } | 
|  |  | 
|  | static int | 
|  | rxbufsize(uint32_t v) | 
|  | { | 
|  | v &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 | | 
|  | E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 | | 
|  | E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256; | 
|  | switch (v) { | 
|  | case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384: | 
|  | return 16384; | 
|  | case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192: | 
|  | return 8192; | 
|  | case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096: | 
|  | return 4096; | 
|  | case E1000_RCTL_SZ_1024: | 
|  | return 1024; | 
|  | case E1000_RCTL_SZ_512: | 
|  | return 512; | 
|  | case E1000_RCTL_SZ_256: | 
|  | return 256; | 
|  | } | 
|  | return 2048; | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_ctrl(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | /* RST is self clearing */ | 
|  | s->mac_reg[CTRL] = val & ~E1000_CTRL_RST; | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_rx_control(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | s->mac_reg[RCTL] = val; | 
|  | s->rxbuf_size = rxbufsize(val); | 
|  | s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1; | 
|  | DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT], | 
|  | s->mac_reg[RCTL]); | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_mdic(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | uint32_t data = val & E1000_MDIC_DATA_MASK; | 
|  | uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); | 
|  |  | 
|  | if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy # | 
|  | val = s->mac_reg[MDIC] | E1000_MDIC_ERROR; | 
|  | else if (val & E1000_MDIC_OP_READ) { | 
|  | DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr); | 
|  | if (!(phy_regcap[addr] & PHY_R)) { | 
|  | DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr); | 
|  | val |= E1000_MDIC_ERROR; | 
|  | } else | 
|  | val = (val ^ data) | s->phy_reg[addr]; | 
|  | } else if (val & E1000_MDIC_OP_WRITE) { | 
|  | DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data); | 
|  | if (!(phy_regcap[addr] & PHY_W)) { | 
|  | DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr); | 
|  | val |= E1000_MDIC_ERROR; | 
|  | } else | 
|  | s->phy_reg[addr] = data; | 
|  | } | 
|  | s->mac_reg[MDIC] = val | E1000_MDIC_READY; | 
|  | set_ics(s, 0, E1000_ICR_MDAC); | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | get_eecd(E1000State *s, int index) | 
|  | { | 
|  | uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd; | 
|  |  | 
|  | DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n", | 
|  | s->eecd_state.bitnum_out, s->eecd_state.reading); | 
|  | if (!s->eecd_state.reading || | 
|  | ((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >> | 
|  | ((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1) | 
|  | ret |= E1000_EECD_DO; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_eecd(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | uint32_t oldval = s->eecd_state.old_eecd; | 
|  |  | 
|  | s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS | | 
|  | E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ); | 
|  | if (!(E1000_EECD_CS & val))			// CS inactive; nothing to do | 
|  | return; | 
|  | if (E1000_EECD_CS & (val ^ oldval)) {	// CS rise edge; reset state | 
|  | s->eecd_state.val_in = 0; | 
|  | s->eecd_state.bitnum_in = 0; | 
|  | s->eecd_state.bitnum_out = 0; | 
|  | s->eecd_state.reading = 0; | 
|  | } | 
|  | if (!(E1000_EECD_SK & (val ^ oldval)))	// no clock edge | 
|  | return; | 
|  | if (!(E1000_EECD_SK & val)) {		// falling edge | 
|  | s->eecd_state.bitnum_out++; | 
|  | return; | 
|  | } | 
|  | s->eecd_state.val_in <<= 1; | 
|  | if (val & E1000_EECD_DI) | 
|  | s->eecd_state.val_in |= 1; | 
|  | if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) { | 
|  | s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1; | 
|  | s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) == | 
|  | EEPROM_READ_OPCODE_MICROWIRE); | 
|  | } | 
|  | DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n", | 
|  | s->eecd_state.bitnum_in, s->eecd_state.bitnum_out, | 
|  | s->eecd_state.reading); | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | flash_eerd_read(E1000State *s, int x) | 
|  | { | 
|  | unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START; | 
|  |  | 
|  | if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0) | 
|  | return (s->mac_reg[EERD]); | 
|  |  | 
|  | if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG) | 
|  | return (E1000_EEPROM_RW_REG_DONE | r); | 
|  |  | 
|  | return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) | | 
|  | E1000_EEPROM_RW_REG_DONE | r); | 
|  | } | 
|  |  | 
|  | static void | 
|  | putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse) | 
|  | { | 
|  | uint32_t sum; | 
|  |  | 
|  | if (cse && cse < n) | 
|  | n = cse + 1; | 
|  | if (sloc < n-1) { | 
|  | sum = net_checksum_add(n-css, data+css); | 
|  | cpu_to_be16wu((uint16_t *)(data + sloc), | 
|  | net_checksum_finish(sum)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | vlan_enabled(E1000State *s) | 
|  | { | 
|  | return ((s->mac_reg[CTRL] & E1000_CTRL_VME) != 0); | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | vlan_rx_filter_enabled(E1000State *s) | 
|  | { | 
|  | return ((s->mac_reg[RCTL] & E1000_RCTL_VFE) != 0); | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | is_vlan_packet(E1000State *s, const uint8_t *buf) | 
|  | { | 
|  | return (be16_to_cpup((uint16_t *)(buf + 12)) == | 
|  | le16_to_cpup((uint16_t *)(s->mac_reg + VET))); | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | is_vlan_txd(uint32_t txd_lower) | 
|  | { | 
|  | return ((txd_lower & E1000_TXD_CMD_VLE) != 0); | 
|  | } | 
|  |  | 
|  | /* FCS aka Ethernet CRC-32. We don't get it from backends and can't | 
|  | * fill it in, just pad descriptor length by 4 bytes unless guest | 
|  | * told us to strip it off the packet. */ | 
|  | static inline int | 
|  | fcs_len(E1000State *s) | 
|  | { | 
|  | return (s->mac_reg[RCTL] & E1000_RCTL_SECRC) ? 0 : 4; | 
|  | } | 
|  |  | 
|  | static void | 
|  | xmit_seg(E1000State *s) | 
|  | { | 
|  | uint16_t len, *sp; | 
|  | unsigned int frames = s->tx.tso_frames, css, sofar, n; | 
|  | struct e1000_tx *tp = &s->tx; | 
|  |  | 
|  | if (tp->tse && tp->cptse) { | 
|  | css = tp->ipcss; | 
|  | DBGOUT(TXSUM, "frames %d size %d ipcss %d\n", | 
|  | frames, tp->size, css); | 
|  | if (tp->ip) {		// IPv4 | 
|  | cpu_to_be16wu((uint16_t *)(tp->data+css+2), | 
|  | tp->size - css); | 
|  | cpu_to_be16wu((uint16_t *)(tp->data+css+4), | 
|  | be16_to_cpup((uint16_t *)(tp->data+css+4))+frames); | 
|  | } else			// IPv6 | 
|  | cpu_to_be16wu((uint16_t *)(tp->data+css+4), | 
|  | tp->size - css); | 
|  | css = tp->tucss; | 
|  | len = tp->size - css; | 
|  | DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", tp->tcp, css, len); | 
|  | if (tp->tcp) { | 
|  | sofar = frames * tp->mss; | 
|  | cpu_to_be32wu((uint32_t *)(tp->data+css+4),	// seq | 
|  | be32_to_cpupu((uint32_t *)(tp->data+css+4))+sofar); | 
|  | if (tp->paylen - sofar > tp->mss) | 
|  | tp->data[css + 13] &= ~9;		// PSH, FIN | 
|  | } else	// UDP | 
|  | cpu_to_be16wu((uint16_t *)(tp->data+css+4), len); | 
|  | if (tp->sum_needed & E1000_TXD_POPTS_TXSM) { | 
|  | unsigned int phsum; | 
|  | // add pseudo-header length before checksum calculation | 
|  | sp = (uint16_t *)(tp->data + tp->tucso); | 
|  | phsum = be16_to_cpup(sp) + len; | 
|  | phsum = (phsum >> 16) + (phsum & 0xffff); | 
|  | cpu_to_be16wu(sp, phsum); | 
|  | } | 
|  | tp->tso_frames++; | 
|  | } | 
|  |  | 
|  | if (tp->sum_needed & E1000_TXD_POPTS_TXSM) | 
|  | putsum(tp->data, tp->size, tp->tucso, tp->tucss, tp->tucse); | 
|  | if (tp->sum_needed & E1000_TXD_POPTS_IXSM) | 
|  | putsum(tp->data, tp->size, tp->ipcso, tp->ipcss, tp->ipcse); | 
|  | if (tp->vlan_needed) { | 
|  | memmove(tp->vlan, tp->data, 4); | 
|  | memmove(tp->data, tp->data + 4, 8); | 
|  | memcpy(tp->data + 8, tp->vlan_header, 4); | 
|  | qemu_send_packet(&s->nic->nc, tp->vlan, tp->size + 4); | 
|  | } else | 
|  | qemu_send_packet(&s->nic->nc, tp->data, tp->size); | 
|  | s->mac_reg[TPT]++; | 
|  | s->mac_reg[GPTC]++; | 
|  | n = s->mac_reg[TOTL]; | 
|  | if ((s->mac_reg[TOTL] += s->tx.size) < n) | 
|  | s->mac_reg[TOTH]++; | 
|  | } | 
|  |  | 
|  | static void | 
|  | process_tx_desc(E1000State *s, struct e1000_tx_desc *dp) | 
|  | { | 
|  | uint32_t txd_lower = le32_to_cpu(dp->lower.data); | 
|  | uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D); | 
|  | unsigned int split_size = txd_lower & 0xffff, bytes, sz, op; | 
|  | unsigned int msh = 0xfffff, hdr = 0; | 
|  | uint64_t addr; | 
|  | struct e1000_context_desc *xp = (struct e1000_context_desc *)dp; | 
|  | struct e1000_tx *tp = &s->tx; | 
|  |  | 
|  | if (dtype == E1000_TXD_CMD_DEXT) {	// context descriptor | 
|  | op = le32_to_cpu(xp->cmd_and_length); | 
|  | tp->ipcss = xp->lower_setup.ip_fields.ipcss; | 
|  | tp->ipcso = xp->lower_setup.ip_fields.ipcso; | 
|  | tp->ipcse = le16_to_cpu(xp->lower_setup.ip_fields.ipcse); | 
|  | tp->tucss = xp->upper_setup.tcp_fields.tucss; | 
|  | tp->tucso = xp->upper_setup.tcp_fields.tucso; | 
|  | tp->tucse = le16_to_cpu(xp->upper_setup.tcp_fields.tucse); | 
|  | tp->paylen = op & 0xfffff; | 
|  | tp->hdr_len = xp->tcp_seg_setup.fields.hdr_len; | 
|  | tp->mss = le16_to_cpu(xp->tcp_seg_setup.fields.mss); | 
|  | tp->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0; | 
|  | tp->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0; | 
|  | tp->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0; | 
|  | tp->tso_frames = 0; | 
|  | if (tp->tucso == 0) {	// this is probably wrong | 
|  | DBGOUT(TXSUM, "TCP/UDP: cso 0!\n"); | 
|  | tp->tucso = tp->tucss + (tp->tcp ? 16 : 6); | 
|  | } | 
|  | return; | 
|  | } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) { | 
|  | // data descriptor | 
|  | if (tp->size == 0) { | 
|  | tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8; | 
|  | } | 
|  | tp->cptse = ( txd_lower & E1000_TXD_CMD_TSE ) ? 1 : 0; | 
|  | } else { | 
|  | // legacy descriptor | 
|  | tp->cptse = 0; | 
|  | } | 
|  |  | 
|  | if (vlan_enabled(s) && is_vlan_txd(txd_lower) && | 
|  | (tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) { | 
|  | tp->vlan_needed = 1; | 
|  | cpu_to_be16wu((uint16_t *)(tp->vlan_header), | 
|  | le16_to_cpup((uint16_t *)(s->mac_reg + VET))); | 
|  | cpu_to_be16wu((uint16_t *)(tp->vlan_header + 2), | 
|  | le16_to_cpu(dp->upper.fields.special)); | 
|  | } | 
|  |  | 
|  | addr = le64_to_cpu(dp->buffer_addr); | 
|  | if (tp->tse && tp->cptse) { | 
|  | hdr = tp->hdr_len; | 
|  | msh = hdr + tp->mss; | 
|  | do { | 
|  | bytes = split_size; | 
|  | if (tp->size + bytes > msh) | 
|  | bytes = msh - tp->size; | 
|  | cpu_physical_memory_read(addr, tp->data + tp->size, bytes); | 
|  | if ((sz = tp->size + bytes) >= hdr && tp->size < hdr) | 
|  | memmove(tp->header, tp->data, hdr); | 
|  | tp->size = sz; | 
|  | addr += bytes; | 
|  | if (sz == msh) { | 
|  | xmit_seg(s); | 
|  | memmove(tp->data, tp->header, hdr); | 
|  | tp->size = hdr; | 
|  | } | 
|  | } while (split_size -= bytes); | 
|  | } else if (!tp->tse && tp->cptse) { | 
|  | // context descriptor TSE is not set, while data descriptor TSE is set | 
|  | DBGOUT(TXERR, "TCP segmentaion Error\n"); | 
|  | } else { | 
|  | cpu_physical_memory_read(addr, tp->data + tp->size, split_size); | 
|  | tp->size += split_size; | 
|  | } | 
|  |  | 
|  | if (!(txd_lower & E1000_TXD_CMD_EOP)) | 
|  | return; | 
|  | if (!(tp->tse && tp->cptse && tp->size < hdr)) | 
|  | xmit_seg(s); | 
|  | tp->tso_frames = 0; | 
|  | tp->sum_needed = 0; | 
|  | tp->vlan_needed = 0; | 
|  | tp->size = 0; | 
|  | tp->cptse = 0; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | txdesc_writeback(target_phys_addr_t base, struct e1000_tx_desc *dp) | 
|  | { | 
|  | uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data); | 
|  |  | 
|  | if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS))) | 
|  | return 0; | 
|  | txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) & | 
|  | ~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU); | 
|  | dp->upper.data = cpu_to_le32(txd_upper); | 
|  | cpu_physical_memory_write(base + ((char *)&dp->upper - (char *)dp), | 
|  | (void *)&dp->upper, sizeof(dp->upper)); | 
|  | return E1000_ICR_TXDW; | 
|  | } | 
|  |  | 
|  | static uint64_t tx_desc_base(E1000State *s) | 
|  | { | 
|  | uint64_t bah = s->mac_reg[TDBAH]; | 
|  | uint64_t bal = s->mac_reg[TDBAL] & ~0xf; | 
|  |  | 
|  | return (bah << 32) + bal; | 
|  | } | 
|  |  | 
|  | static void | 
|  | start_xmit(E1000State *s) | 
|  | { | 
|  | target_phys_addr_t base; | 
|  | struct e1000_tx_desc desc; | 
|  | uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE; | 
|  |  | 
|  | if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) { | 
|  | DBGOUT(TX, "tx disabled\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | while (s->mac_reg[TDH] != s->mac_reg[TDT]) { | 
|  | base = tx_desc_base(s) + | 
|  | sizeof(struct e1000_tx_desc) * s->mac_reg[TDH]; | 
|  | cpu_physical_memory_read(base, (void *)&desc, sizeof(desc)); | 
|  |  | 
|  | DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH], | 
|  | (void *)(intptr_t)desc.buffer_addr, desc.lower.data, | 
|  | desc.upper.data); | 
|  |  | 
|  | process_tx_desc(s, &desc); | 
|  | cause |= txdesc_writeback(base, &desc); | 
|  |  | 
|  | if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN]) | 
|  | s->mac_reg[TDH] = 0; | 
|  | /* | 
|  | * the following could happen only if guest sw assigns | 
|  | * bogus values to TDT/TDLEN. | 
|  | * there's nothing too intelligent we could do about this. | 
|  | */ | 
|  | if (s->mac_reg[TDH] == tdh_start) { | 
|  | DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n", | 
|  | tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]); | 
|  | break; | 
|  | } | 
|  | } | 
|  | set_ics(s, 0, cause); | 
|  | } | 
|  |  | 
|  | static int | 
|  | receive_filter(E1000State *s, const uint8_t *buf, int size) | 
|  | { | 
|  | static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; | 
|  | static const int mta_shift[] = {4, 3, 2, 0}; | 
|  | uint32_t f, rctl = s->mac_reg[RCTL], ra[2], *rp; | 
|  |  | 
|  | if (is_vlan_packet(s, buf) && vlan_rx_filter_enabled(s)) { | 
|  | uint16_t vid = be16_to_cpup((uint16_t *)(buf + 14)); | 
|  | uint32_t vfta = le32_to_cpup((uint32_t *)(s->mac_reg + VFTA) + | 
|  | ((vid >> 5) & 0x7f)); | 
|  | if ((vfta & (1 << (vid & 0x1f))) == 0) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (rctl & E1000_RCTL_UPE)			// promiscuous | 
|  | return 1; | 
|  |  | 
|  | if ((buf[0] & 1) && (rctl & E1000_RCTL_MPE))	// promiscuous mcast | 
|  | return 1; | 
|  |  | 
|  | if ((rctl & E1000_RCTL_BAM) && !memcmp(buf, bcast, sizeof bcast)) | 
|  | return 1; | 
|  |  | 
|  | for (rp = s->mac_reg + RA; rp < s->mac_reg + RA + 32; rp += 2) { | 
|  | if (!(rp[1] & E1000_RAH_AV)) | 
|  | continue; | 
|  | ra[0] = cpu_to_le32(rp[0]); | 
|  | ra[1] = cpu_to_le32(rp[1]); | 
|  | if (!memcmp(buf, (uint8_t *)ra, 6)) { | 
|  | DBGOUT(RXFILTER, | 
|  | "unicast match[%d]: %02x:%02x:%02x:%02x:%02x:%02x\n", | 
|  | (int)(rp - s->mac_reg - RA)/2, | 
|  | buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | DBGOUT(RXFILTER, "unicast mismatch: %02x:%02x:%02x:%02x:%02x:%02x\n", | 
|  | buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]); | 
|  |  | 
|  | f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3]; | 
|  | f = (((buf[5] << 8) | buf[4]) >> f) & 0xfff; | 
|  | if (s->mac_reg[MTA + (f >> 5)] & (1 << (f & 0x1f))) | 
|  | return 1; | 
|  | DBGOUT(RXFILTER, | 
|  | "dropping, inexact filter mismatch: %02x:%02x:%02x:%02x:%02x:%02x MO %d MTA[%d] %x\n", | 
|  | buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], | 
|  | (rctl >> E1000_RCTL_MO_SHIFT) & 3, f >> 5, | 
|  | s->mac_reg[MTA + (f >> 5)]); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_set_link_status(VLANClientState *nc) | 
|  | { | 
|  | E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque; | 
|  | uint32_t old_status = s->mac_reg[STATUS]; | 
|  |  | 
|  | if (nc->link_down) { | 
|  | s->mac_reg[STATUS] &= ~E1000_STATUS_LU; | 
|  | s->phy_reg[PHY_STATUS] &= ~MII_SR_LINK_STATUS; | 
|  | } else { | 
|  | s->mac_reg[STATUS] |= E1000_STATUS_LU; | 
|  | s->phy_reg[PHY_STATUS] |= MII_SR_LINK_STATUS; | 
|  | } | 
|  |  | 
|  | if (s->mac_reg[STATUS] != old_status) | 
|  | set_ics(s, 0, E1000_ICR_LSC); | 
|  | } | 
|  |  | 
|  | static bool e1000_has_rxbufs(E1000State *s, size_t total_size) | 
|  | { | 
|  | int bufs; | 
|  | /* Fast-path short packets */ | 
|  | if (total_size <= s->rxbuf_size) { | 
|  | return s->mac_reg[RDH] != s->mac_reg[RDT] || !s->check_rxov; | 
|  | } | 
|  | if (s->mac_reg[RDH] < s->mac_reg[RDT]) { | 
|  | bufs = s->mac_reg[RDT] - s->mac_reg[RDH]; | 
|  | } else if (s->mac_reg[RDH] > s->mac_reg[RDT] || !s->check_rxov) { | 
|  | bufs = s->mac_reg[RDLEN] /  sizeof(struct e1000_rx_desc) + | 
|  | s->mac_reg[RDT] - s->mac_reg[RDH]; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | return total_size <= bufs * s->rxbuf_size; | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_can_receive(VLANClientState *nc) | 
|  | { | 
|  | E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque; | 
|  |  | 
|  | return (s->mac_reg[RCTL] & E1000_RCTL_EN) && e1000_has_rxbufs(s, 1); | 
|  | } | 
|  |  | 
|  | static uint64_t rx_desc_base(E1000State *s) | 
|  | { | 
|  | uint64_t bah = s->mac_reg[RDBAH]; | 
|  | uint64_t bal = s->mac_reg[RDBAL] & ~0xf; | 
|  |  | 
|  | return (bah << 32) + bal; | 
|  | } | 
|  |  | 
|  | static ssize_t | 
|  | e1000_receive(VLANClientState *nc, const uint8_t *buf, size_t size) | 
|  | { | 
|  | E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque; | 
|  | struct e1000_rx_desc desc; | 
|  | target_phys_addr_t base; | 
|  | unsigned int n, rdt; | 
|  | uint32_t rdh_start; | 
|  | uint16_t vlan_special = 0; | 
|  | uint8_t vlan_status = 0, vlan_offset = 0; | 
|  | uint8_t min_buf[MIN_BUF_SIZE]; | 
|  | size_t desc_offset; | 
|  | size_t desc_size; | 
|  | size_t total_size; | 
|  |  | 
|  | if (!(s->mac_reg[RCTL] & E1000_RCTL_EN)) | 
|  | return -1; | 
|  |  | 
|  | /* Pad to minimum Ethernet frame length */ | 
|  | if (size < sizeof(min_buf)) { | 
|  | memcpy(min_buf, buf, size); | 
|  | memset(&min_buf[size], 0, sizeof(min_buf) - size); | 
|  | buf = min_buf; | 
|  | size = sizeof(min_buf); | 
|  | } | 
|  |  | 
|  | if (!receive_filter(s, buf, size)) | 
|  | return size; | 
|  |  | 
|  | if (vlan_enabled(s) && is_vlan_packet(s, buf)) { | 
|  | vlan_special = cpu_to_le16(be16_to_cpup((uint16_t *)(buf + 14))); | 
|  | memmove((uint8_t *)buf + 4, buf, 12); | 
|  | vlan_status = E1000_RXD_STAT_VP; | 
|  | vlan_offset = 4; | 
|  | size -= 4; | 
|  | } | 
|  |  | 
|  | rdh_start = s->mac_reg[RDH]; | 
|  | desc_offset = 0; | 
|  | total_size = size + fcs_len(s); | 
|  | if (!e1000_has_rxbufs(s, total_size)) { | 
|  | set_ics(s, 0, E1000_ICS_RXO); | 
|  | return -1; | 
|  | } | 
|  | do { | 
|  | desc_size = total_size - desc_offset; | 
|  | if (desc_size > s->rxbuf_size) { | 
|  | desc_size = s->rxbuf_size; | 
|  | } | 
|  | base = rx_desc_base(s) + sizeof(desc) * s->mac_reg[RDH]; | 
|  | cpu_physical_memory_read(base, (void *)&desc, sizeof(desc)); | 
|  | desc.special = vlan_special; | 
|  | desc.status |= (vlan_status | E1000_RXD_STAT_DD); | 
|  | if (desc.buffer_addr) { | 
|  | if (desc_offset < size) { | 
|  | size_t copy_size = size - desc_offset; | 
|  | if (copy_size > s->rxbuf_size) { | 
|  | copy_size = s->rxbuf_size; | 
|  | } | 
|  | cpu_physical_memory_write(le64_to_cpu(desc.buffer_addr), | 
|  | (void *)(buf + desc_offset + vlan_offset), | 
|  | copy_size); | 
|  | } | 
|  | desc_offset += desc_size; | 
|  | desc.length = cpu_to_le16(desc_size); | 
|  | if (desc_offset >= total_size) { | 
|  | desc.status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM; | 
|  | } else { | 
|  | /* Guest zeroing out status is not a hardware requirement. | 
|  | Clear EOP in case guest didn't do it. */ | 
|  | desc.status &= ~E1000_RXD_STAT_EOP; | 
|  | } | 
|  | } else { // as per intel docs; skip descriptors with null buf addr | 
|  | DBGOUT(RX, "Null RX descriptor!!\n"); | 
|  | } | 
|  | cpu_physical_memory_write(base, (void *)&desc, sizeof(desc)); | 
|  |  | 
|  | if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN]) | 
|  | s->mac_reg[RDH] = 0; | 
|  | s->check_rxov = 1; | 
|  | /* see comment in start_xmit; same here */ | 
|  | if (s->mac_reg[RDH] == rdh_start) { | 
|  | DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n", | 
|  | rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]); | 
|  | set_ics(s, 0, E1000_ICS_RXO); | 
|  | return -1; | 
|  | } | 
|  | } while (desc_offset < total_size); | 
|  |  | 
|  | s->mac_reg[GPRC]++; | 
|  | s->mac_reg[TPR]++; | 
|  | /* TOR - Total Octets Received: | 
|  | * This register includes bytes received in a packet from the <Destination | 
|  | * Address> field through the <CRC> field, inclusively. | 
|  | */ | 
|  | n = s->mac_reg[TORL] + size + /* Always include FCS length. */ 4; | 
|  | if (n < s->mac_reg[TORL]) | 
|  | s->mac_reg[TORH]++; | 
|  | s->mac_reg[TORL] = n; | 
|  |  | 
|  | n = E1000_ICS_RXT0; | 
|  | if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH]) | 
|  | rdt += s->mac_reg[RDLEN] / sizeof(desc); | 
|  | if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >> | 
|  | s->rxbuf_min_shift) | 
|  | n |= E1000_ICS_RXDMT0; | 
|  |  | 
|  | set_ics(s, 0, n); | 
|  |  | 
|  | return size; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | mac_readreg(E1000State *s, int index) | 
|  | { | 
|  | return s->mac_reg[index]; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | mac_icr_read(E1000State *s, int index) | 
|  | { | 
|  | uint32_t ret = s->mac_reg[ICR]; | 
|  |  | 
|  | DBGOUT(INTERRUPT, "ICR read: %x\n", ret); | 
|  | set_interrupt_cause(s, 0, 0); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | mac_read_clr4(E1000State *s, int index) | 
|  | { | 
|  | uint32_t ret = s->mac_reg[index]; | 
|  |  | 
|  | s->mac_reg[index] = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | mac_read_clr8(E1000State *s, int index) | 
|  | { | 
|  | uint32_t ret = s->mac_reg[index]; | 
|  |  | 
|  | s->mac_reg[index] = 0; | 
|  | s->mac_reg[index-1] = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void | 
|  | mac_writereg(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | s->mac_reg[index] = val; | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_rdt(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | s->check_rxov = 0; | 
|  | s->mac_reg[index] = val & 0xffff; | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_16bit(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | s->mac_reg[index] = val & 0xffff; | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_dlen(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | s->mac_reg[index] = val & 0xfff80; | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_tctl(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | s->mac_reg[index] = val; | 
|  | s->mac_reg[TDT] &= 0xffff; | 
|  | start_xmit(s); | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_icr(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | DBGOUT(INTERRUPT, "set_icr %x\n", val); | 
|  | set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val); | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_imc(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | s->mac_reg[IMS] &= ~val; | 
|  | set_ics(s, 0, 0); | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_ims(E1000State *s, int index, uint32_t val) | 
|  | { | 
|  | s->mac_reg[IMS] |= val; | 
|  | set_ics(s, 0, 0); | 
|  | } | 
|  |  | 
|  | #define getreg(x)	[x] = mac_readreg | 
|  | static uint32_t (*macreg_readops[])(E1000State *, int) = { | 
|  | getreg(PBA),	getreg(RCTL),	getreg(TDH),	getreg(TXDCTL), | 
|  | getreg(WUFC),	getreg(TDT),	getreg(CTRL),	getreg(LEDCTL), | 
|  | getreg(MANC),	getreg(MDIC),	getreg(SWSM),	getreg(STATUS), | 
|  | getreg(TORL),	getreg(TOTL),	getreg(IMS),	getreg(TCTL), | 
|  | getreg(RDH),	getreg(RDT),	getreg(VET),	getreg(ICS), | 
|  | getreg(TDBAL),	getreg(TDBAH),	getreg(RDBAH),	getreg(RDBAL), | 
|  | getreg(TDLEN),	getreg(RDLEN), | 
|  |  | 
|  | [TOTH] = mac_read_clr8,	[TORH] = mac_read_clr8,	[GPRC] = mac_read_clr4, | 
|  | [GPTC] = mac_read_clr4,	[TPR] = mac_read_clr4,	[TPT] = mac_read_clr4, | 
|  | [ICR] = mac_icr_read,	[EECD] = get_eecd,	[EERD] = flash_eerd_read, | 
|  | [CRCERRS ... MPC] = &mac_readreg, | 
|  | [RA ... RA+31] = &mac_readreg, | 
|  | [MTA ... MTA+127] = &mac_readreg, | 
|  | [VFTA ... VFTA+127] = &mac_readreg, | 
|  | }; | 
|  | enum { NREADOPS = ARRAY_SIZE(macreg_readops) }; | 
|  |  | 
|  | #define putreg(x)	[x] = mac_writereg | 
|  | static void (*macreg_writeops[])(E1000State *, int, uint32_t) = { | 
|  | putreg(PBA),	putreg(EERD),	putreg(SWSM),	putreg(WUFC), | 
|  | putreg(TDBAL),	putreg(TDBAH),	putreg(TXDCTL),	putreg(RDBAH), | 
|  | putreg(RDBAL),	putreg(LEDCTL), putreg(VET), | 
|  | [TDLEN] = set_dlen,	[RDLEN] = set_dlen,	[TCTL] = set_tctl, | 
|  | [TDT] = set_tctl,	[MDIC] = set_mdic,	[ICS] = set_ics, | 
|  | [TDH] = set_16bit,	[RDH] = set_16bit,	[RDT] = set_rdt, | 
|  | [IMC] = set_imc,	[IMS] = set_ims,	[ICR] = set_icr, | 
|  | [EECD] = set_eecd,	[RCTL] = set_rx_control, [CTRL] = set_ctrl, | 
|  | [RA ... RA+31] = &mac_writereg, | 
|  | [MTA ... MTA+127] = &mac_writereg, | 
|  | [VFTA ... VFTA+127] = &mac_writereg, | 
|  | }; | 
|  | enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) }; | 
|  |  | 
|  | static void | 
|  | e1000_mmio_write(void *opaque, target_phys_addr_t addr, uint64_t val, | 
|  | unsigned size) | 
|  | { | 
|  | E1000State *s = opaque; | 
|  | unsigned int index = (addr & 0x1ffff) >> 2; | 
|  |  | 
|  | if (index < NWRITEOPS && macreg_writeops[index]) { | 
|  | macreg_writeops[index](s, index, val); | 
|  | } else if (index < NREADOPS && macreg_readops[index]) { | 
|  | DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04"PRIx64"\n", index<<2, val); | 
|  | } else { | 
|  | DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08"PRIx64"\n", | 
|  | index<<2, val); | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint64_t | 
|  | e1000_mmio_read(void *opaque, target_phys_addr_t addr, unsigned size) | 
|  | { | 
|  | E1000State *s = opaque; | 
|  | unsigned int index = (addr & 0x1ffff) >> 2; | 
|  |  | 
|  | if (index < NREADOPS && macreg_readops[index]) | 
|  | { | 
|  | return macreg_readops[index](s, index); | 
|  | } | 
|  | DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const MemoryRegionOps e1000_mmio_ops = { | 
|  | .read = e1000_mmio_read, | 
|  | .write = e1000_mmio_write, | 
|  | .endianness = DEVICE_LITTLE_ENDIAN, | 
|  | .impl = { | 
|  | .min_access_size = 4, | 
|  | .max_access_size = 4, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static uint64_t e1000_io_read(void *opaque, target_phys_addr_t addr, | 
|  | unsigned size) | 
|  | { | 
|  | E1000State *s = opaque; | 
|  |  | 
|  | (void)s; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void e1000_io_write(void *opaque, target_phys_addr_t addr, | 
|  | uint64_t val, unsigned size) | 
|  | { | 
|  | E1000State *s = opaque; | 
|  |  | 
|  | (void)s; | 
|  | } | 
|  |  | 
|  | static const MemoryRegionOps e1000_io_ops = { | 
|  | .read = e1000_io_read, | 
|  | .write = e1000_io_write, | 
|  | .endianness = DEVICE_LITTLE_ENDIAN, | 
|  | }; | 
|  |  | 
|  | static bool is_version_1(void *opaque, int version_id) | 
|  | { | 
|  | return version_id == 1; | 
|  | } | 
|  |  | 
|  | static const VMStateDescription vmstate_e1000 = { | 
|  | .name = "e1000", | 
|  | .version_id = 2, | 
|  | .minimum_version_id = 1, | 
|  | .minimum_version_id_old = 1, | 
|  | .fields      = (VMStateField []) { | 
|  | VMSTATE_PCI_DEVICE(dev, E1000State), | 
|  | VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */ | 
|  | VMSTATE_UNUSED(4), /* Was mmio_base.  */ | 
|  | VMSTATE_UINT32(rxbuf_size, E1000State), | 
|  | VMSTATE_UINT32(rxbuf_min_shift, E1000State), | 
|  | VMSTATE_UINT32(eecd_state.val_in, E1000State), | 
|  | VMSTATE_UINT16(eecd_state.bitnum_in, E1000State), | 
|  | VMSTATE_UINT16(eecd_state.bitnum_out, E1000State), | 
|  | VMSTATE_UINT16(eecd_state.reading, E1000State), | 
|  | VMSTATE_UINT32(eecd_state.old_eecd, E1000State), | 
|  | VMSTATE_UINT8(tx.ipcss, E1000State), | 
|  | VMSTATE_UINT8(tx.ipcso, E1000State), | 
|  | VMSTATE_UINT16(tx.ipcse, E1000State), | 
|  | VMSTATE_UINT8(tx.tucss, E1000State), | 
|  | VMSTATE_UINT8(tx.tucso, E1000State), | 
|  | VMSTATE_UINT16(tx.tucse, E1000State), | 
|  | VMSTATE_UINT32(tx.paylen, E1000State), | 
|  | VMSTATE_UINT8(tx.hdr_len, E1000State), | 
|  | VMSTATE_UINT16(tx.mss, E1000State), | 
|  | VMSTATE_UINT16(tx.size, E1000State), | 
|  | VMSTATE_UINT16(tx.tso_frames, E1000State), | 
|  | VMSTATE_UINT8(tx.sum_needed, E1000State), | 
|  | VMSTATE_INT8(tx.ip, E1000State), | 
|  | VMSTATE_INT8(tx.tcp, E1000State), | 
|  | VMSTATE_BUFFER(tx.header, E1000State), | 
|  | VMSTATE_BUFFER(tx.data, E1000State), | 
|  | VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64), | 
|  | VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20), | 
|  | VMSTATE_UINT32(mac_reg[CTRL], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[EECD], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[EERD], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[GPRC], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[GPTC], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[ICR], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[ICS], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[IMC], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[IMS], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[LEDCTL], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[MANC], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[MDIC], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[MPC], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[PBA], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[RCTL], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[RDBAH], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[RDBAL], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[RDH], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[RDLEN], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[RDT], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[STATUS], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[SWSM], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TCTL], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TDBAH], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TDBAL], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TDH], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TDLEN], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TDT], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TORH], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TORL], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TOTH], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TOTL], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TPR], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TPT], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[TXDCTL], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[WUFC], E1000State), | 
|  | VMSTATE_UINT32(mac_reg[VET], E1000State), | 
|  | VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32), | 
|  | VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, 128), | 
|  | VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA, 128), | 
|  | VMSTATE_END_OF_LIST() | 
|  | } | 
|  | }; | 
|  |  | 
|  | static const uint16_t e1000_eeprom_template[64] = { | 
|  | 0x0000, 0x0000, 0x0000, 0x0000,      0xffff, 0x0000,      0x0000, 0x0000, | 
|  | 0x3000, 0x1000, 0x6403, E1000_DEVID, 0x8086, E1000_DEVID, 0x8086, 0x3040, | 
|  | 0x0008, 0x2000, 0x7e14, 0x0048,      0x1000, 0x00d8,      0x0000, 0x2700, | 
|  | 0x6cc9, 0x3150, 0x0722, 0x040b,      0x0984, 0x0000,      0xc000, 0x0706, | 
|  | 0x1008, 0x0000, 0x0f04, 0x7fff,      0x4d01, 0xffff,      0xffff, 0xffff, | 
|  | 0xffff, 0xffff, 0xffff, 0xffff,      0xffff, 0xffff,      0xffff, 0xffff, | 
|  | 0x0100, 0x4000, 0x121c, 0xffff,      0xffff, 0xffff,      0xffff, 0xffff, | 
|  | 0xffff, 0xffff, 0xffff, 0xffff,      0xffff, 0xffff,      0xffff, 0x0000, | 
|  | }; | 
|  |  | 
|  | static const uint16_t phy_reg_init[] = { | 
|  | [PHY_CTRL] = 0x1140,			[PHY_STATUS] = 0x796d, // link initially up | 
|  | [PHY_ID1] = 0x141,				[PHY_ID2] = PHY_ID2_INIT, | 
|  | [PHY_1000T_CTRL] = 0x0e00,			[M88E1000_PHY_SPEC_CTRL] = 0x360, | 
|  | [M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60,	[PHY_AUTONEG_ADV] = 0xde1, | 
|  | [PHY_LP_ABILITY] = 0x1e0,			[PHY_1000T_STATUS] = 0x3c00, | 
|  | [M88E1000_PHY_SPEC_STATUS] = 0xac00, | 
|  | }; | 
|  |  | 
|  | static const uint32_t mac_reg_init[] = { | 
|  | [PBA] =     0x00100030, | 
|  | [LEDCTL] =  0x602, | 
|  | [CTRL] =    E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 | | 
|  | E1000_CTRL_SPD_1000 | E1000_CTRL_SLU, | 
|  | [STATUS] =  0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE | | 
|  | E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK | | 
|  | E1000_STATUS_SPEED_1000 | E1000_STATUS_FD | | 
|  | E1000_STATUS_LU, | 
|  | [MANC] =    E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN | | 
|  | E1000_MANC_ARP_EN | E1000_MANC_0298_EN | | 
|  | E1000_MANC_RMCP_EN, | 
|  | }; | 
|  |  | 
|  | /* PCI interface */ | 
|  |  | 
|  | static void | 
|  | e1000_mmio_setup(E1000State *d) | 
|  | { | 
|  | int i; | 
|  | const uint32_t excluded_regs[] = { | 
|  | E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS, | 
|  | E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE | 
|  | }; | 
|  |  | 
|  | memory_region_init_io(&d->mmio, &e1000_mmio_ops, d, "e1000-mmio", | 
|  | PNPMMIO_SIZE); | 
|  | memory_region_add_coalescing(&d->mmio, 0, excluded_regs[0]); | 
|  | for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++) | 
|  | memory_region_add_coalescing(&d->mmio, excluded_regs[i] + 4, | 
|  | excluded_regs[i+1] - excluded_regs[i] - 4); | 
|  | memory_region_init_io(&d->io, &e1000_io_ops, d, "e1000-io", IOPORT_SIZE); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_cleanup(VLANClientState *nc) | 
|  | { | 
|  | E1000State *s = DO_UPCAST(NICState, nc, nc)->opaque; | 
|  |  | 
|  | s->nic = NULL; | 
|  | } | 
|  |  | 
|  | static int | 
|  | pci_e1000_uninit(PCIDevice *dev) | 
|  | { | 
|  | E1000State *d = DO_UPCAST(E1000State, dev, dev); | 
|  |  | 
|  | memory_region_destroy(&d->mmio); | 
|  | memory_region_destroy(&d->io); | 
|  | qemu_del_vlan_client(&d->nic->nc); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void e1000_reset(void *opaque) | 
|  | { | 
|  | E1000State *d = opaque; | 
|  |  | 
|  | memset(d->phy_reg, 0, sizeof d->phy_reg); | 
|  | memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init); | 
|  | memset(d->mac_reg, 0, sizeof d->mac_reg); | 
|  | memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init); | 
|  | d->rxbuf_min_shift = 1; | 
|  | memset(&d->tx, 0, sizeof d->tx); | 
|  | } | 
|  |  | 
|  | static NetClientInfo net_e1000_info = { | 
|  | .type = NET_CLIENT_TYPE_NIC, | 
|  | .size = sizeof(NICState), | 
|  | .can_receive = e1000_can_receive, | 
|  | .receive = e1000_receive, | 
|  | .cleanup = e1000_cleanup, | 
|  | .link_status_changed = e1000_set_link_status, | 
|  | }; | 
|  |  | 
|  | static int pci_e1000_init(PCIDevice *pci_dev) | 
|  | { | 
|  | E1000State *d = DO_UPCAST(E1000State, dev, pci_dev); | 
|  | uint8_t *pci_conf; | 
|  | uint16_t checksum = 0; | 
|  | int i; | 
|  | uint8_t *macaddr; | 
|  |  | 
|  | pci_conf = d->dev.config; | 
|  |  | 
|  | /* TODO: RST# value should be 0, PCI spec 6.2.4 */ | 
|  | pci_conf[PCI_CACHE_LINE_SIZE] = 0x10; | 
|  |  | 
|  | pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */ | 
|  |  | 
|  | e1000_mmio_setup(d); | 
|  |  | 
|  | pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &d->mmio); | 
|  |  | 
|  | pci_register_bar(&d->dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->io); | 
|  |  | 
|  | memmove(d->eeprom_data, e1000_eeprom_template, | 
|  | sizeof e1000_eeprom_template); | 
|  | qemu_macaddr_default_if_unset(&d->conf.macaddr); | 
|  | macaddr = d->conf.macaddr.a; | 
|  | for (i = 0; i < 3; i++) | 
|  | d->eeprom_data[i] = (macaddr[2*i+1]<<8) | macaddr[2*i]; | 
|  | for (i = 0; i < EEPROM_CHECKSUM_REG; i++) | 
|  | checksum += d->eeprom_data[i]; | 
|  | checksum = (uint16_t) EEPROM_SUM - checksum; | 
|  | d->eeprom_data[EEPROM_CHECKSUM_REG] = checksum; | 
|  |  | 
|  | d->nic = qemu_new_nic(&net_e1000_info, &d->conf, | 
|  | d->dev.qdev.info->name, d->dev.qdev.id, d); | 
|  |  | 
|  | qemu_format_nic_info_str(&d->nic->nc, macaddr); | 
|  |  | 
|  | add_boot_device_path(d->conf.bootindex, &pci_dev->qdev, "/ethernet-phy@0"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void qdev_e1000_reset(DeviceState *dev) | 
|  | { | 
|  | E1000State *d = DO_UPCAST(E1000State, dev.qdev, dev); | 
|  | e1000_reset(d); | 
|  | } | 
|  |  | 
|  | static PCIDeviceInfo e1000_info = { | 
|  | .qdev.name  = "e1000", | 
|  | .qdev.desc  = "Intel Gigabit Ethernet", | 
|  | .qdev.size  = sizeof(E1000State), | 
|  | .qdev.reset = qdev_e1000_reset, | 
|  | .qdev.vmsd  = &vmstate_e1000, | 
|  | .init       = pci_e1000_init, | 
|  | .exit       = pci_e1000_uninit, | 
|  | .romfile    = "pxe-e1000.rom", | 
|  | .vendor_id  = PCI_VENDOR_ID_INTEL, | 
|  | .device_id  = E1000_DEVID, | 
|  | .revision   = 0x03, | 
|  | .class_id   = PCI_CLASS_NETWORK_ETHERNET, | 
|  | .qdev.props = (Property[]) { | 
|  | DEFINE_NIC_PROPERTIES(E1000State, conf), | 
|  | DEFINE_PROP_END_OF_LIST(), | 
|  | } | 
|  | }; | 
|  |  | 
|  | static void e1000_register_devices(void) | 
|  | { | 
|  | pci_qdev_register(&e1000_info); | 
|  | } | 
|  |  | 
|  | device_init(e1000_register_devices) |