|  | /* | 
|  | * Copyright (c) 1982, 1986, 1988, 1993 | 
|  | *	The Regents of the University of California.  All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. All advertising materials mentioning features or use of this software | 
|  | *    must display the following acknowledgement: | 
|  | *	This product includes software developed by the University of | 
|  | *	California, Berkeley and its contributors. | 
|  | * 4. Neither the name of the University nor the names of its contributors | 
|  | *    may be used to endorse or promote products derived from this software | 
|  | *    without specific prior written permission. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | * | 
|  | *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94 | 
|  | * ip_input.c,v 1.11 1994/11/16 10:17:08 jkh Exp | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Changes and additions relating to SLiRP are | 
|  | * Copyright (c) 1995 Danny Gasparovski. | 
|  | * | 
|  | * Please read the file COPYRIGHT for the | 
|  | * terms and conditions of the copyright. | 
|  | */ | 
|  |  | 
|  | #include <slirp.h> | 
|  | #include "ip_icmp.h" | 
|  |  | 
|  | int ip_defttl; | 
|  | struct ipstat ipstat; | 
|  | struct ipq ipq; | 
|  |  | 
|  | /* | 
|  | * IP initialization: fill in IP protocol switch table. | 
|  | * All protocols not implemented in kernel go to raw IP protocol handler. | 
|  | */ | 
|  | void | 
|  | ip_init() | 
|  | { | 
|  | ipq.next = ipq.prev = (ipqp_32)&ipq; | 
|  | ip_id = tt.tv_sec & 0xffff; | 
|  | udp_init(); | 
|  | tcp_init(); | 
|  | ip_defttl = IPDEFTTL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ip input routine.  Checksum and byte swap header.  If fragmented | 
|  | * try to reassemble.  Process options.  Pass to next level. | 
|  | */ | 
|  | void | 
|  | ip_input(m) | 
|  | struct mbuf *m; | 
|  | { | 
|  | register struct ip *ip; | 
|  | int hlen; | 
|  |  | 
|  | DEBUG_CALL("ip_input"); | 
|  | DEBUG_ARG("m = %lx", (long)m); | 
|  | DEBUG_ARG("m_len = %d", m->m_len); | 
|  |  | 
|  | ipstat.ips_total++; | 
|  |  | 
|  | if (m->m_len < sizeof (struct ip)) { | 
|  | ipstat.ips_toosmall++; | 
|  | return; | 
|  | } | 
|  |  | 
|  | ip = mtod(m, struct ip *); | 
|  |  | 
|  | if (ip->ip_v != IPVERSION) { | 
|  | ipstat.ips_badvers++; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | hlen = ip->ip_hl << 2; | 
|  | if (hlen<sizeof(struct ip ) || hlen>m->m_len) {/* min header length */ | 
|  | ipstat.ips_badhlen++;                     /* or packet too short */ | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | /* keep ip header intact for ICMP reply | 
|  | * ip->ip_sum = cksum(m, hlen); | 
|  | * if (ip->ip_sum) { | 
|  | */ | 
|  | if(cksum(m,hlen)) { | 
|  | ipstat.ips_badsum++; | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert fields to host representation. | 
|  | */ | 
|  | NTOHS(ip->ip_len); | 
|  | if (ip->ip_len < hlen) { | 
|  | ipstat.ips_badlen++; | 
|  | goto bad; | 
|  | } | 
|  | NTOHS(ip->ip_id); | 
|  | NTOHS(ip->ip_off); | 
|  |  | 
|  | /* | 
|  | * Check that the amount of data in the buffers | 
|  | * is as at least much as the IP header would have us expect. | 
|  | * Trim mbufs if longer than we expect. | 
|  | * Drop packet if shorter than we expect. | 
|  | */ | 
|  | if (m->m_len < ip->ip_len) { | 
|  | ipstat.ips_tooshort++; | 
|  | goto bad; | 
|  | } | 
|  | /* Should drop packet if mbuf too long? hmmm... */ | 
|  | if (m->m_len > ip->ip_len) | 
|  | m_adj(m, ip->ip_len - m->m_len); | 
|  |  | 
|  | /* check ip_ttl for a correct ICMP reply */ | 
|  | if(ip->ip_ttl==0 || ip->ip_ttl==1) { | 
|  | icmp_error(m, ICMP_TIMXCEED,ICMP_TIMXCEED_INTRANS, 0,"ttl"); | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process options and, if not destined for us, | 
|  | * ship it on.  ip_dooptions returns 1 when an | 
|  | * error was detected (causing an icmp message | 
|  | * to be sent and the original packet to be freed). | 
|  | */ | 
|  | /* We do no IP options */ | 
|  | /*	if (hlen > sizeof (struct ip) && ip_dooptions(m)) | 
|  | *		goto next; | 
|  | */ | 
|  | /* | 
|  | * If offset or IP_MF are set, must reassemble. | 
|  | * Otherwise, nothing need be done. | 
|  | * (We could look in the reassembly queue to see | 
|  | * if the packet was previously fragmented, | 
|  | * but it's not worth the time; just let them time out.) | 
|  | * | 
|  | * XXX This should fail, don't fragment yet | 
|  | */ | 
|  | if (ip->ip_off &~ IP_DF) { | 
|  | register struct ipq *fp; | 
|  | /* | 
|  | * Look for queue of fragments | 
|  | * of this datagram. | 
|  | */ | 
|  | for (fp = (struct ipq *) ipq.next; fp != &ipq; | 
|  | fp = (struct ipq *) fp->next) | 
|  | if (ip->ip_id == fp->ipq_id && | 
|  | ip->ip_src.s_addr == fp->ipq_src.s_addr && | 
|  | ip->ip_dst.s_addr == fp->ipq_dst.s_addr && | 
|  | ip->ip_p == fp->ipq_p) | 
|  | goto found; | 
|  | fp = 0; | 
|  | found: | 
|  |  | 
|  | /* | 
|  | * Adjust ip_len to not reflect header, | 
|  | * set ip_mff if more fragments are expected, | 
|  | * convert offset of this to bytes. | 
|  | */ | 
|  | ip->ip_len -= hlen; | 
|  | if (ip->ip_off & IP_MF) | 
|  | ((struct ipasfrag *)ip)->ipf_mff |= 1; | 
|  | else | 
|  | ((struct ipasfrag *)ip)->ipf_mff &= ~1; | 
|  |  | 
|  | ip->ip_off <<= 3; | 
|  |  | 
|  | /* | 
|  | * If datagram marked as having more fragments | 
|  | * or if this is not the first fragment, | 
|  | * attempt reassembly; if it succeeds, proceed. | 
|  | */ | 
|  | if (((struct ipasfrag *)ip)->ipf_mff & 1 || ip->ip_off) { | 
|  | ipstat.ips_fragments++; | 
|  | ip = ip_reass((struct ipasfrag *)ip, fp); | 
|  | if (ip == 0) | 
|  | return; | 
|  | ipstat.ips_reassembled++; | 
|  | m = dtom(ip); | 
|  | } else | 
|  | if (fp) | 
|  | ip_freef(fp); | 
|  |  | 
|  | } else | 
|  | ip->ip_len -= hlen; | 
|  |  | 
|  | /* | 
|  | * Switch out to protocol's input routine. | 
|  | */ | 
|  | ipstat.ips_delivered++; | 
|  | switch (ip->ip_p) { | 
|  | case IPPROTO_TCP: | 
|  | tcp_input(m, hlen, (struct socket *)NULL); | 
|  | break; | 
|  | case IPPROTO_UDP: | 
|  | udp_input(m, hlen); | 
|  | break; | 
|  | case IPPROTO_ICMP: | 
|  | icmp_input(m, hlen); | 
|  | break; | 
|  | default: | 
|  | ipstat.ips_noproto++; | 
|  | m_free(m); | 
|  | } | 
|  | return; | 
|  | bad: | 
|  | m_freem(m); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Take incoming datagram fragment and try to | 
|  | * reassemble it into whole datagram.  If a chain for | 
|  | * reassembly of this datagram already exists, then it | 
|  | * is given as fp; otherwise have to make a chain. | 
|  | */ | 
|  | struct ip * | 
|  | ip_reass(ip, fp) | 
|  | register struct ipasfrag *ip; | 
|  | register struct ipq *fp; | 
|  | { | 
|  | register struct mbuf *m = dtom(ip); | 
|  | register struct ipasfrag *q; | 
|  | int hlen = ip->ip_hl << 2; | 
|  | int i, next; | 
|  |  | 
|  | DEBUG_CALL("ip_reass"); | 
|  | DEBUG_ARG("ip = %lx", (long)ip); | 
|  | DEBUG_ARG("fp = %lx", (long)fp); | 
|  | DEBUG_ARG("m = %lx", (long)m); | 
|  |  | 
|  | /* | 
|  | * Presence of header sizes in mbufs | 
|  | * would confuse code below. | 
|  | * Fragment m_data is concatenated. | 
|  | */ | 
|  | m->m_data += hlen; | 
|  | m->m_len -= hlen; | 
|  |  | 
|  | /* | 
|  | * If first fragment to arrive, create a reassembly queue. | 
|  | */ | 
|  | if (fp == 0) { | 
|  | struct mbuf *t; | 
|  | if ((t = m_get()) == NULL) goto dropfrag; | 
|  | fp = mtod(t, struct ipq *); | 
|  | insque_32(fp, &ipq); | 
|  | fp->ipq_ttl = IPFRAGTTL; | 
|  | fp->ipq_p = ip->ip_p; | 
|  | fp->ipq_id = ip->ip_id; | 
|  | fp->ipq_next = fp->ipq_prev = (ipasfragp_32)fp; | 
|  | fp->ipq_src = ((struct ip *)ip)->ip_src; | 
|  | fp->ipq_dst = ((struct ip *)ip)->ip_dst; | 
|  | q = (struct ipasfrag *)fp; | 
|  | goto insert; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find a segment which begins after this one does. | 
|  | */ | 
|  | for (q = (struct ipasfrag *)fp->ipq_next; q != (struct ipasfrag *)fp; | 
|  | q = (struct ipasfrag *)q->ipf_next) | 
|  | if (q->ip_off > ip->ip_off) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * If there is a preceding segment, it may provide some of | 
|  | * our data already.  If so, drop the data from the incoming | 
|  | * segment.  If it provides all of our data, drop us. | 
|  | */ | 
|  | if (q->ipf_prev != (ipasfragp_32)fp) { | 
|  | i = ((struct ipasfrag *)(q->ipf_prev))->ip_off + | 
|  | ((struct ipasfrag *)(q->ipf_prev))->ip_len - ip->ip_off; | 
|  | if (i > 0) { | 
|  | if (i >= ip->ip_len) | 
|  | goto dropfrag; | 
|  | m_adj(dtom(ip), i); | 
|  | ip->ip_off += i; | 
|  | ip->ip_len -= i; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * While we overlap succeeding segments trim them or, | 
|  | * if they are completely covered, dequeue them. | 
|  | */ | 
|  | while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) { | 
|  | i = (ip->ip_off + ip->ip_len) - q->ip_off; | 
|  | if (i < q->ip_len) { | 
|  | q->ip_len -= i; | 
|  | q->ip_off += i; | 
|  | m_adj(dtom(q), i); | 
|  | break; | 
|  | } | 
|  | q = (struct ipasfrag *) q->ipf_next; | 
|  | m_freem(dtom((struct ipasfrag *) q->ipf_prev)); | 
|  | ip_deq((struct ipasfrag *) q->ipf_prev); | 
|  | } | 
|  |  | 
|  | insert: | 
|  | /* | 
|  | * Stick new segment in its place; | 
|  | * check for complete reassembly. | 
|  | */ | 
|  | ip_enq(ip, (struct ipasfrag *) q->ipf_prev); | 
|  | next = 0; | 
|  | for (q = (struct ipasfrag *) fp->ipq_next; q != (struct ipasfrag *)fp; | 
|  | q = (struct ipasfrag *) q->ipf_next) { | 
|  | if (q->ip_off != next) | 
|  | return (0); | 
|  | next += q->ip_len; | 
|  | } | 
|  | if (((struct ipasfrag *)(q->ipf_prev))->ipf_mff & 1) | 
|  | return (0); | 
|  |  | 
|  | /* | 
|  | * Reassembly is complete; concatenate fragments. | 
|  | */ | 
|  | q = (struct ipasfrag *) fp->ipq_next; | 
|  | m = dtom(q); | 
|  |  | 
|  | q = (struct ipasfrag *) q->ipf_next; | 
|  | while (q != (struct ipasfrag *)fp) { | 
|  | struct mbuf *t; | 
|  | t = dtom(q); | 
|  | m_cat(m, t); | 
|  | q = (struct ipasfrag *) q->ipf_next; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create header for new ip packet by | 
|  | * modifying header of first packet; | 
|  | * dequeue and discard fragment reassembly header. | 
|  | * Make header visible. | 
|  | */ | 
|  | ip = (struct ipasfrag *) fp->ipq_next; | 
|  |  | 
|  | /* | 
|  | * If the fragments concatenated to an mbuf that's | 
|  | * bigger than the total size of the fragment, then and | 
|  | * m_ext buffer was alloced. But fp->ipq_next points to | 
|  | * the old buffer (in the mbuf), so we must point ip | 
|  | * into the new buffer. | 
|  | */ | 
|  | if (m->m_flags & M_EXT) { | 
|  | int delta; | 
|  | delta = (char *)ip - m->m_dat; | 
|  | ip = (struct ipasfrag *)(m->m_ext + delta); | 
|  | } | 
|  |  | 
|  | /* DEBUG_ARG("ip = %lx", (long)ip); | 
|  | * ip=(struct ipasfrag *)m->m_data; */ | 
|  |  | 
|  | ip->ip_len = next; | 
|  | ip->ipf_mff &= ~1; | 
|  | ((struct ip *)ip)->ip_src = fp->ipq_src; | 
|  | ((struct ip *)ip)->ip_dst = fp->ipq_dst; | 
|  | remque_32(fp); | 
|  | (void) m_free(dtom(fp)); | 
|  | m = dtom(ip); | 
|  | m->m_len += (ip->ip_hl << 2); | 
|  | m->m_data -= (ip->ip_hl << 2); | 
|  |  | 
|  | return ((struct ip *)ip); | 
|  |  | 
|  | dropfrag: | 
|  | ipstat.ips_fragdropped++; | 
|  | m_freem(m); | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free a fragment reassembly header and all | 
|  | * associated datagrams. | 
|  | */ | 
|  | void | 
|  | ip_freef(fp) | 
|  | struct ipq *fp; | 
|  | { | 
|  | register struct ipasfrag *q, *p; | 
|  |  | 
|  | for (q = (struct ipasfrag *) fp->ipq_next; q != (struct ipasfrag *)fp; | 
|  | q = p) { | 
|  | p = (struct ipasfrag *) q->ipf_next; | 
|  | ip_deq(q); | 
|  | m_freem(dtom(q)); | 
|  | } | 
|  | remque_32(fp); | 
|  | (void) m_free(dtom(fp)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Put an ip fragment on a reassembly chain. | 
|  | * Like insque, but pointers in middle of structure. | 
|  | */ | 
|  | void | 
|  | ip_enq(p, prev) | 
|  | register struct ipasfrag *p, *prev; | 
|  | { | 
|  | DEBUG_CALL("ip_enq"); | 
|  | DEBUG_ARG("prev = %lx", (long)prev); | 
|  | p->ipf_prev = (ipasfragp_32) prev; | 
|  | p->ipf_next = prev->ipf_next; | 
|  | ((struct ipasfrag *)(prev->ipf_next))->ipf_prev = (ipasfragp_32) p; | 
|  | prev->ipf_next = (ipasfragp_32) p; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To ip_enq as remque is to insque. | 
|  | */ | 
|  | void | 
|  | ip_deq(p) | 
|  | register struct ipasfrag *p; | 
|  | { | 
|  | ((struct ipasfrag *)(p->ipf_prev))->ipf_next = p->ipf_next; | 
|  | ((struct ipasfrag *)(p->ipf_next))->ipf_prev = p->ipf_prev; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * IP timer processing; | 
|  | * if a timer expires on a reassembly | 
|  | * queue, discard it. | 
|  | */ | 
|  | void | 
|  | ip_slowtimo() | 
|  | { | 
|  | register struct ipq *fp; | 
|  |  | 
|  | DEBUG_CALL("ip_slowtimo"); | 
|  |  | 
|  | fp = (struct ipq *) ipq.next; | 
|  | if (fp == 0) | 
|  | return; | 
|  |  | 
|  | while (fp != &ipq) { | 
|  | --fp->ipq_ttl; | 
|  | fp = (struct ipq *) fp->next; | 
|  | if (((struct ipq *)(fp->prev))->ipq_ttl == 0) { | 
|  | ipstat.ips_fragtimeout++; | 
|  | ip_freef((struct ipq *) fp->prev); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do option processing on a datagram, | 
|  | * possibly discarding it if bad options are encountered, | 
|  | * or forwarding it if source-routed. | 
|  | * Returns 1 if packet has been forwarded/freed, | 
|  | * 0 if the packet should be processed further. | 
|  | */ | 
|  |  | 
|  | #ifdef notdef | 
|  |  | 
|  | int | 
|  | ip_dooptions(m) | 
|  | struct mbuf *m; | 
|  | { | 
|  | register struct ip *ip = mtod(m, struct ip *); | 
|  | register u_char *cp; | 
|  | register struct ip_timestamp *ipt; | 
|  | register struct in_ifaddr *ia; | 
|  | /*	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0; */ | 
|  | int opt, optlen, cnt, off, code, type, forward = 0; | 
|  | struct in_addr *sin, dst; | 
|  | typedef u_int32_t n_time; | 
|  | n_time ntime; | 
|  |  | 
|  | dst = ip->ip_dst; | 
|  | cp = (u_char *)(ip + 1); | 
|  | cnt = (ip->ip_hl << 2) - sizeof (struct ip); | 
|  | for (; cnt > 0; cnt -= optlen, cp += optlen) { | 
|  | opt = cp[IPOPT_OPTVAL]; | 
|  | if (opt == IPOPT_EOL) | 
|  | break; | 
|  | if (opt == IPOPT_NOP) | 
|  | optlen = 1; | 
|  | else { | 
|  | optlen = cp[IPOPT_OLEN]; | 
|  | if (optlen <= 0 || optlen > cnt) { | 
|  | code = &cp[IPOPT_OLEN] - (u_char *)ip; | 
|  | goto bad; | 
|  | } | 
|  | } | 
|  | switch (opt) { | 
|  |  | 
|  | default: | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Source routing with record. | 
|  | * Find interface with current destination address. | 
|  | * If none on this machine then drop if strictly routed, | 
|  | * or do nothing if loosely routed. | 
|  | * Record interface address and bring up next address | 
|  | * component.  If strictly routed make sure next | 
|  | * address is on directly accessible net. | 
|  | */ | 
|  | case IPOPT_LSRR: | 
|  | case IPOPT_SSRR: | 
|  | if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { | 
|  | code = &cp[IPOPT_OFFSET] - (u_char *)ip; | 
|  | goto bad; | 
|  | } | 
|  | ipaddr.sin_addr = ip->ip_dst; | 
|  | ia = (struct in_ifaddr *) | 
|  | ifa_ifwithaddr((struct sockaddr *)&ipaddr); | 
|  | if (ia == 0) { | 
|  | if (opt == IPOPT_SSRR) { | 
|  | type = ICMP_UNREACH; | 
|  | code = ICMP_UNREACH_SRCFAIL; | 
|  | goto bad; | 
|  | } | 
|  | /* | 
|  | * Loose routing, and not at next destination | 
|  | * yet; nothing to do except forward. | 
|  | */ | 
|  | break; | 
|  | } | 
|  | off--;			/ * 0 origin *  / | 
|  | if (off > optlen - sizeof(struct in_addr)) { | 
|  | /* | 
|  | * End of source route.  Should be for us. | 
|  | */ | 
|  | save_rte(cp, ip->ip_src); | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * locate outgoing interface | 
|  | */ | 
|  | bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr, | 
|  | sizeof(ipaddr.sin_addr)); | 
|  | if (opt == IPOPT_SSRR) { | 
|  | #define	INA	struct in_ifaddr * | 
|  | #define	SA	struct sockaddr * | 
|  | if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0) | 
|  | ia = (INA)ifa_ifwithnet((SA)&ipaddr); | 
|  | } else | 
|  | ia = ip_rtaddr(ipaddr.sin_addr); | 
|  | if (ia == 0) { | 
|  | type = ICMP_UNREACH; | 
|  | code = ICMP_UNREACH_SRCFAIL; | 
|  | goto bad; | 
|  | } | 
|  | ip->ip_dst = ipaddr.sin_addr; | 
|  | bcopy((caddr_t)&(IA_SIN(ia)->sin_addr), | 
|  | (caddr_t)(cp + off), sizeof(struct in_addr)); | 
|  | cp[IPOPT_OFFSET] += sizeof(struct in_addr); | 
|  | /* | 
|  | * Let ip_intr's mcast routing check handle mcast pkts | 
|  | */ | 
|  | forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr)); | 
|  | break; | 
|  |  | 
|  | case IPOPT_RR: | 
|  | if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { | 
|  | code = &cp[IPOPT_OFFSET] - (u_char *)ip; | 
|  | goto bad; | 
|  | } | 
|  | /* | 
|  | * If no space remains, ignore. | 
|  | */ | 
|  | off--;			 * 0 origin * | 
|  | if (off > optlen - sizeof(struct in_addr)) | 
|  | break; | 
|  | bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr, | 
|  | sizeof(ipaddr.sin_addr)); | 
|  | /* | 
|  | * locate outgoing interface; if we're the destination, | 
|  | * use the incoming interface (should be same). | 
|  | */ | 
|  | if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 && | 
|  | (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) { | 
|  | type = ICMP_UNREACH; | 
|  | code = ICMP_UNREACH_HOST; | 
|  | goto bad; | 
|  | } | 
|  | bcopy((caddr_t)&(IA_SIN(ia)->sin_addr), | 
|  | (caddr_t)(cp + off), sizeof(struct in_addr)); | 
|  | cp[IPOPT_OFFSET] += sizeof(struct in_addr); | 
|  | break; | 
|  |  | 
|  | case IPOPT_TS: | 
|  | code = cp - (u_char *)ip; | 
|  | ipt = (struct ip_timestamp *)cp; | 
|  | if (ipt->ipt_len < 5) | 
|  | goto bad; | 
|  | if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) { | 
|  | if (++ipt->ipt_oflw == 0) | 
|  | goto bad; | 
|  | break; | 
|  | } | 
|  | sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1); | 
|  | switch (ipt->ipt_flg) { | 
|  |  | 
|  | case IPOPT_TS_TSONLY: | 
|  | break; | 
|  |  | 
|  | case IPOPT_TS_TSANDADDR: | 
|  | if (ipt->ipt_ptr + sizeof(n_time) + | 
|  | sizeof(struct in_addr) > ipt->ipt_len) | 
|  | goto bad; | 
|  | ipaddr.sin_addr = dst; | 
|  | ia = (INA)ifaof_ i f p foraddr((SA)&ipaddr, | 
|  | m->m_pkthdr.rcvif); | 
|  | if (ia == 0) | 
|  | continue; | 
|  | bcopy((caddr_t)&IA_SIN(ia)->sin_addr, | 
|  | (caddr_t)sin, sizeof(struct in_addr)); | 
|  | ipt->ipt_ptr += sizeof(struct in_addr); | 
|  | break; | 
|  |  | 
|  | case IPOPT_TS_PRESPEC: | 
|  | if (ipt->ipt_ptr + sizeof(n_time) + | 
|  | sizeof(struct in_addr) > ipt->ipt_len) | 
|  | goto bad; | 
|  | bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr, | 
|  | sizeof(struct in_addr)); | 
|  | if (ifa_ifwithaddr((SA)&ipaddr) == 0) | 
|  | continue; | 
|  | ipt->ipt_ptr += sizeof(struct in_addr); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | goto bad; | 
|  | } | 
|  | ntime = iptime(); | 
|  | bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1, | 
|  | sizeof(n_time)); | 
|  | ipt->ipt_ptr += sizeof(n_time); | 
|  | } | 
|  | } | 
|  | if (forward) { | 
|  | ip_forward(m, 1); | 
|  | return (1); | 
|  | } | 
|  | } | 
|  | } | 
|  | return (0); | 
|  | bad: | 
|  | /* ip->ip_len -= ip->ip_hl << 2;   XXX icmp_error adds in hdr length */ | 
|  |  | 
|  | /* Not yet */ | 
|  | icmp_error(m, type, code, 0, 0); | 
|  |  | 
|  | ipstat.ips_badoptions++; | 
|  | return (1); | 
|  | } | 
|  |  | 
|  | #endif /* notdef */ | 
|  |  | 
|  | /* | 
|  | * Strip out IP options, at higher | 
|  | * level protocol in the kernel. | 
|  | * Second argument is buffer to which options | 
|  | * will be moved, and return value is their length. | 
|  | * (XXX) should be deleted; last arg currently ignored. | 
|  | */ | 
|  | void | 
|  | ip_stripoptions(m, mopt) | 
|  | register struct mbuf *m; | 
|  | struct mbuf *mopt; | 
|  | { | 
|  | register int i; | 
|  | struct ip *ip = mtod(m, struct ip *); | 
|  | register caddr_t opts; | 
|  | int olen; | 
|  |  | 
|  | olen = (ip->ip_hl<<2) - sizeof (struct ip); | 
|  | opts = (caddr_t)(ip + 1); | 
|  | i = m->m_len - (sizeof (struct ip) + olen); | 
|  | memcpy(opts, opts  + olen, (unsigned)i); | 
|  | m->m_len -= olen; | 
|  |  | 
|  | ip->ip_hl = sizeof(struct ip) >> 2; | 
|  | } |