| /* |
| * QEMU USB emulation |
| * |
| * Copyright (c) 2005 Fabrice Bellard |
| * |
| * 2008 Generic packet handler rewrite by Max Krasnyansky |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include "qemu-common.h" |
| #include "hw/usb.h" |
| #include "qemu/iov.h" |
| #include "trace.h" |
| |
| void usb_attach(USBPort *port) |
| { |
| USBDevice *dev = port->dev; |
| |
| assert(dev != NULL); |
| assert(dev->attached); |
| assert(dev->state == USB_STATE_NOTATTACHED); |
| port->ops->attach(port); |
| dev->state = USB_STATE_ATTACHED; |
| usb_device_handle_attach(dev); |
| } |
| |
| void usb_detach(USBPort *port) |
| { |
| USBDevice *dev = port->dev; |
| |
| assert(dev != NULL); |
| assert(dev->state != USB_STATE_NOTATTACHED); |
| port->ops->detach(port); |
| dev->state = USB_STATE_NOTATTACHED; |
| } |
| |
| void usb_port_reset(USBPort *port) |
| { |
| USBDevice *dev = port->dev; |
| |
| assert(dev != NULL); |
| usb_detach(port); |
| usb_attach(port); |
| usb_device_reset(dev); |
| } |
| |
| void usb_device_reset(USBDevice *dev) |
| { |
| if (dev == NULL || !dev->attached) { |
| return; |
| } |
| dev->remote_wakeup = 0; |
| dev->addr = 0; |
| dev->state = USB_STATE_DEFAULT; |
| usb_device_handle_reset(dev); |
| } |
| |
| void usb_wakeup(USBEndpoint *ep, unsigned int stream) |
| { |
| USBDevice *dev = ep->dev; |
| USBBus *bus = usb_bus_from_device(dev); |
| |
| if (dev->remote_wakeup && dev->port && dev->port->ops->wakeup) { |
| dev->port->ops->wakeup(dev->port); |
| } |
| if (bus->ops->wakeup_endpoint) { |
| bus->ops->wakeup_endpoint(bus, ep, stream); |
| } |
| } |
| |
| /**********************/ |
| |
| /* generic USB device helpers (you are not forced to use them when |
| writing your USB device driver, but they help handling the |
| protocol) |
| */ |
| |
| #define SETUP_STATE_IDLE 0 |
| #define SETUP_STATE_SETUP 1 |
| #define SETUP_STATE_DATA 2 |
| #define SETUP_STATE_ACK 3 |
| #define SETUP_STATE_PARAM 4 |
| |
| static void do_token_setup(USBDevice *s, USBPacket *p) |
| { |
| int request, value, index; |
| |
| if (p->iov.size != 8) { |
| p->status = USB_RET_STALL; |
| return; |
| } |
| |
| usb_packet_copy(p, s->setup_buf, p->iov.size); |
| p->actual_length = 0; |
| s->setup_len = (s->setup_buf[7] << 8) | s->setup_buf[6]; |
| s->setup_index = 0; |
| |
| request = (s->setup_buf[0] << 8) | s->setup_buf[1]; |
| value = (s->setup_buf[3] << 8) | s->setup_buf[2]; |
| index = (s->setup_buf[5] << 8) | s->setup_buf[4]; |
| |
| if (s->setup_buf[0] & USB_DIR_IN) { |
| usb_device_handle_control(s, p, request, value, index, |
| s->setup_len, s->data_buf); |
| if (p->status == USB_RET_ASYNC) { |
| s->setup_state = SETUP_STATE_SETUP; |
| } |
| if (p->status != USB_RET_SUCCESS) { |
| return; |
| } |
| |
| if (p->actual_length < s->setup_len) { |
| s->setup_len = p->actual_length; |
| } |
| s->setup_state = SETUP_STATE_DATA; |
| } else { |
| if (s->setup_len > sizeof(s->data_buf)) { |
| fprintf(stderr, |
| "usb_generic_handle_packet: ctrl buffer too small (%d > %zu)\n", |
| s->setup_len, sizeof(s->data_buf)); |
| p->status = USB_RET_STALL; |
| return; |
| } |
| if (s->setup_len == 0) |
| s->setup_state = SETUP_STATE_ACK; |
| else |
| s->setup_state = SETUP_STATE_DATA; |
| } |
| |
| p->actual_length = 8; |
| } |
| |
| static void do_token_in(USBDevice *s, USBPacket *p) |
| { |
| int request, value, index; |
| |
| assert(p->ep->nr == 0); |
| |
| request = (s->setup_buf[0] << 8) | s->setup_buf[1]; |
| value = (s->setup_buf[3] << 8) | s->setup_buf[2]; |
| index = (s->setup_buf[5] << 8) | s->setup_buf[4]; |
| |
| switch(s->setup_state) { |
| case SETUP_STATE_ACK: |
| if (!(s->setup_buf[0] & USB_DIR_IN)) { |
| usb_device_handle_control(s, p, request, value, index, |
| s->setup_len, s->data_buf); |
| if (p->status == USB_RET_ASYNC) { |
| return; |
| } |
| s->setup_state = SETUP_STATE_IDLE; |
| p->actual_length = 0; |
| } |
| break; |
| |
| case SETUP_STATE_DATA: |
| if (s->setup_buf[0] & USB_DIR_IN) { |
| int len = s->setup_len - s->setup_index; |
| if (len > p->iov.size) { |
| len = p->iov.size; |
| } |
| usb_packet_copy(p, s->data_buf + s->setup_index, len); |
| s->setup_index += len; |
| if (s->setup_index >= s->setup_len) { |
| s->setup_state = SETUP_STATE_ACK; |
| } |
| return; |
| } |
| s->setup_state = SETUP_STATE_IDLE; |
| p->status = USB_RET_STALL; |
| break; |
| |
| default: |
| p->status = USB_RET_STALL; |
| } |
| } |
| |
| static void do_token_out(USBDevice *s, USBPacket *p) |
| { |
| assert(p->ep->nr == 0); |
| |
| switch(s->setup_state) { |
| case SETUP_STATE_ACK: |
| if (s->setup_buf[0] & USB_DIR_IN) { |
| s->setup_state = SETUP_STATE_IDLE; |
| /* transfer OK */ |
| } else { |
| /* ignore additional output */ |
| } |
| break; |
| |
| case SETUP_STATE_DATA: |
| if (!(s->setup_buf[0] & USB_DIR_IN)) { |
| int len = s->setup_len - s->setup_index; |
| if (len > p->iov.size) { |
| len = p->iov.size; |
| } |
| usb_packet_copy(p, s->data_buf + s->setup_index, len); |
| s->setup_index += len; |
| if (s->setup_index >= s->setup_len) { |
| s->setup_state = SETUP_STATE_ACK; |
| } |
| return; |
| } |
| s->setup_state = SETUP_STATE_IDLE; |
| p->status = USB_RET_STALL; |
| break; |
| |
| default: |
| p->status = USB_RET_STALL; |
| } |
| } |
| |
| static void do_parameter(USBDevice *s, USBPacket *p) |
| { |
| int i, request, value, index; |
| |
| for (i = 0; i < 8; i++) { |
| s->setup_buf[i] = p->parameter >> (i*8); |
| } |
| |
| s->setup_state = SETUP_STATE_PARAM; |
| s->setup_len = (s->setup_buf[7] << 8) | s->setup_buf[6]; |
| s->setup_index = 0; |
| |
| request = (s->setup_buf[0] << 8) | s->setup_buf[1]; |
| value = (s->setup_buf[3] << 8) | s->setup_buf[2]; |
| index = (s->setup_buf[5] << 8) | s->setup_buf[4]; |
| |
| if (s->setup_len > sizeof(s->data_buf)) { |
| fprintf(stderr, |
| "usb_generic_handle_packet: ctrl buffer too small (%d > %zu)\n", |
| s->setup_len, sizeof(s->data_buf)); |
| p->status = USB_RET_STALL; |
| return; |
| } |
| |
| if (p->pid == USB_TOKEN_OUT) { |
| usb_packet_copy(p, s->data_buf, s->setup_len); |
| } |
| |
| usb_device_handle_control(s, p, request, value, index, |
| s->setup_len, s->data_buf); |
| if (p->status == USB_RET_ASYNC) { |
| return; |
| } |
| |
| if (p->actual_length < s->setup_len) { |
| s->setup_len = p->actual_length; |
| } |
| if (p->pid == USB_TOKEN_IN) { |
| p->actual_length = 0; |
| usb_packet_copy(p, s->data_buf, s->setup_len); |
| } |
| } |
| |
| /* ctrl complete function for devices which use usb_generic_handle_packet and |
| may return USB_RET_ASYNC from their handle_control callback. Device code |
| which does this *must* call this function instead of the normal |
| usb_packet_complete to complete their async control packets. */ |
| void usb_generic_async_ctrl_complete(USBDevice *s, USBPacket *p) |
| { |
| if (p->status < 0) { |
| s->setup_state = SETUP_STATE_IDLE; |
| } |
| |
| switch (s->setup_state) { |
| case SETUP_STATE_SETUP: |
| if (p->actual_length < s->setup_len) { |
| s->setup_len = p->actual_length; |
| } |
| s->setup_state = SETUP_STATE_DATA; |
| p->actual_length = 8; |
| break; |
| |
| case SETUP_STATE_ACK: |
| s->setup_state = SETUP_STATE_IDLE; |
| p->actual_length = 0; |
| break; |
| |
| case SETUP_STATE_PARAM: |
| if (p->actual_length < s->setup_len) { |
| s->setup_len = p->actual_length; |
| } |
| if (p->pid == USB_TOKEN_IN) { |
| p->actual_length = 0; |
| usb_packet_copy(p, s->data_buf, s->setup_len); |
| } |
| break; |
| |
| default: |
| break; |
| } |
| usb_packet_complete(s, p); |
| } |
| |
| /* XXX: fix overflow */ |
| int set_usb_string(uint8_t *buf, const char *str) |
| { |
| int len, i; |
| uint8_t *q; |
| |
| q = buf; |
| len = strlen(str); |
| *q++ = 2 * len + 2; |
| *q++ = 3; |
| for(i = 0; i < len; i++) { |
| *q++ = str[i]; |
| *q++ = 0; |
| } |
| return q - buf; |
| } |
| |
| USBDevice *usb_find_device(USBPort *port, uint8_t addr) |
| { |
| USBDevice *dev = port->dev; |
| |
| if (dev == NULL || !dev->attached || dev->state != USB_STATE_DEFAULT) { |
| return NULL; |
| } |
| if (dev->addr == addr) { |
| return dev; |
| } |
| return usb_device_find_device(dev, addr); |
| } |
| |
| static void usb_process_one(USBPacket *p) |
| { |
| USBDevice *dev = p->ep->dev; |
| |
| /* |
| * Handlers expect status to be initialized to USB_RET_SUCCESS, but it |
| * can be USB_RET_NAK here from a previous usb_process_one() call, |
| * or USB_RET_ASYNC from going through usb_queue_one(). |
| */ |
| p->status = USB_RET_SUCCESS; |
| |
| if (p->ep->nr == 0) { |
| /* control pipe */ |
| if (p->parameter) { |
| do_parameter(dev, p); |
| return; |
| } |
| switch (p->pid) { |
| case USB_TOKEN_SETUP: |
| do_token_setup(dev, p); |
| break; |
| case USB_TOKEN_IN: |
| do_token_in(dev, p); |
| break; |
| case USB_TOKEN_OUT: |
| do_token_out(dev, p); |
| break; |
| default: |
| p->status = USB_RET_STALL; |
| } |
| } else { |
| /* data pipe */ |
| usb_device_handle_data(dev, p); |
| } |
| } |
| |
| static void usb_queue_one(USBPacket *p) |
| { |
| usb_packet_set_state(p, USB_PACKET_QUEUED); |
| QTAILQ_INSERT_TAIL(&p->ep->queue, p, queue); |
| p->status = USB_RET_ASYNC; |
| } |
| |
| /* Hand over a packet to a device for processing. p->status == |
| USB_RET_ASYNC indicates the processing isn't finished yet, the |
| driver will call usb_packet_complete() when done processing it. */ |
| void usb_handle_packet(USBDevice *dev, USBPacket *p) |
| { |
| if (dev == NULL) { |
| p->status = USB_RET_NODEV; |
| return; |
| } |
| assert(dev == p->ep->dev); |
| assert(dev->state == USB_STATE_DEFAULT); |
| usb_packet_check_state(p, USB_PACKET_SETUP); |
| assert(p->ep != NULL); |
| |
| /* Submitting a new packet clears halt */ |
| if (p->ep->halted) { |
| assert(QTAILQ_EMPTY(&p->ep->queue)); |
| p->ep->halted = false; |
| } |
| |
| if (QTAILQ_EMPTY(&p->ep->queue) || p->ep->pipeline || p->stream) { |
| usb_process_one(p); |
| if (p->status == USB_RET_ASYNC) { |
| /* hcd drivers cannot handle async for isoc */ |
| assert(p->ep->type != USB_ENDPOINT_XFER_ISOC); |
| /* using async for interrupt packets breaks migration */ |
| assert(p->ep->type != USB_ENDPOINT_XFER_INT || |
| (dev->flags & (1 << USB_DEV_FLAG_IS_HOST))); |
| usb_packet_set_state(p, USB_PACKET_ASYNC); |
| QTAILQ_INSERT_TAIL(&p->ep->queue, p, queue); |
| } else if (p->status == USB_RET_ADD_TO_QUEUE) { |
| usb_queue_one(p); |
| } else { |
| /* |
| * When pipelining is enabled usb-devices must always return async, |
| * otherwise packets can complete out of order! |
| */ |
| assert(p->stream || !p->ep->pipeline || |
| QTAILQ_EMPTY(&p->ep->queue)); |
| if (p->status != USB_RET_NAK) { |
| usb_packet_set_state(p, USB_PACKET_COMPLETE); |
| } |
| } |
| } else { |
| usb_queue_one(p); |
| } |
| } |
| |
| void usb_packet_complete_one(USBDevice *dev, USBPacket *p) |
| { |
| USBEndpoint *ep = p->ep; |
| |
| assert(p->stream || QTAILQ_FIRST(&ep->queue) == p); |
| assert(p->status != USB_RET_ASYNC && p->status != USB_RET_NAK); |
| |
| if (p->status != USB_RET_SUCCESS || |
| (p->short_not_ok && (p->actual_length < p->iov.size))) { |
| ep->halted = true; |
| } |
| usb_packet_set_state(p, USB_PACKET_COMPLETE); |
| QTAILQ_REMOVE(&ep->queue, p, queue); |
| dev->port->ops->complete(dev->port, p); |
| } |
| |
| /* Notify the controller that an async packet is complete. This should only |
| be called for packets previously deferred by returning USB_RET_ASYNC from |
| handle_packet. */ |
| void usb_packet_complete(USBDevice *dev, USBPacket *p) |
| { |
| USBEndpoint *ep = p->ep; |
| |
| usb_packet_check_state(p, USB_PACKET_ASYNC); |
| usb_packet_complete_one(dev, p); |
| |
| while (!QTAILQ_EMPTY(&ep->queue)) { |
| p = QTAILQ_FIRST(&ep->queue); |
| if (ep->halted) { |
| /* Empty the queue on a halt */ |
| p->status = USB_RET_REMOVE_FROM_QUEUE; |
| dev->port->ops->complete(dev->port, p); |
| continue; |
| } |
| if (p->state == USB_PACKET_ASYNC) { |
| break; |
| } |
| usb_packet_check_state(p, USB_PACKET_QUEUED); |
| usb_process_one(p); |
| if (p->status == USB_RET_ASYNC) { |
| usb_packet_set_state(p, USB_PACKET_ASYNC); |
| break; |
| } |
| usb_packet_complete_one(ep->dev, p); |
| } |
| } |
| |
| /* Cancel an active packet. The packed must have been deferred by |
| returning USB_RET_ASYNC from handle_packet, and not yet |
| completed. */ |
| void usb_cancel_packet(USBPacket * p) |
| { |
| bool callback = (p->state == USB_PACKET_ASYNC); |
| assert(usb_packet_is_inflight(p)); |
| usb_packet_set_state(p, USB_PACKET_CANCELED); |
| QTAILQ_REMOVE(&p->ep->queue, p, queue); |
| if (callback) { |
| usb_device_cancel_packet(p->ep->dev, p); |
| } |
| } |
| |
| |
| void usb_packet_init(USBPacket *p) |
| { |
| qemu_iovec_init(&p->iov, 1); |
| } |
| |
| static const char *usb_packet_state_name(USBPacketState state) |
| { |
| static const char *name[] = { |
| [USB_PACKET_UNDEFINED] = "undef", |
| [USB_PACKET_SETUP] = "setup", |
| [USB_PACKET_QUEUED] = "queued", |
| [USB_PACKET_ASYNC] = "async", |
| [USB_PACKET_COMPLETE] = "complete", |
| [USB_PACKET_CANCELED] = "canceled", |
| }; |
| if (state < ARRAY_SIZE(name)) { |
| return name[state]; |
| } |
| return "INVALID"; |
| } |
| |
| void usb_packet_check_state(USBPacket *p, USBPacketState expected) |
| { |
| USBDevice *dev; |
| USBBus *bus; |
| |
| if (p->state == expected) { |
| return; |
| } |
| dev = p->ep->dev; |
| bus = usb_bus_from_device(dev); |
| trace_usb_packet_state_fault(bus->busnr, dev->port->path, p->ep->nr, p, |
| usb_packet_state_name(p->state), |
| usb_packet_state_name(expected)); |
| assert(!"usb packet state check failed"); |
| } |
| |
| void usb_packet_set_state(USBPacket *p, USBPacketState state) |
| { |
| if (p->ep) { |
| USBDevice *dev = p->ep->dev; |
| USBBus *bus = usb_bus_from_device(dev); |
| trace_usb_packet_state_change(bus->busnr, dev->port->path, p->ep->nr, p, |
| usb_packet_state_name(p->state), |
| usb_packet_state_name(state)); |
| } else { |
| trace_usb_packet_state_change(-1, "", -1, p, |
| usb_packet_state_name(p->state), |
| usb_packet_state_name(state)); |
| } |
| p->state = state; |
| } |
| |
| void usb_packet_setup(USBPacket *p, int pid, |
| USBEndpoint *ep, unsigned int stream, |
| uint64_t id, bool short_not_ok, bool int_req) |
| { |
| assert(!usb_packet_is_inflight(p)); |
| assert(p->iov.iov != NULL); |
| p->id = id; |
| p->pid = pid; |
| p->ep = ep; |
| p->stream = stream; |
| p->status = USB_RET_SUCCESS; |
| p->actual_length = 0; |
| p->parameter = 0; |
| p->short_not_ok = short_not_ok; |
| p->int_req = int_req; |
| p->combined = NULL; |
| qemu_iovec_reset(&p->iov); |
| usb_packet_set_state(p, USB_PACKET_SETUP); |
| } |
| |
| void usb_packet_addbuf(USBPacket *p, void *ptr, size_t len) |
| { |
| qemu_iovec_add(&p->iov, ptr, len); |
| } |
| |
| void usb_packet_copy(USBPacket *p, void *ptr, size_t bytes) |
| { |
| QEMUIOVector *iov = p->combined ? &p->combined->iov : &p->iov; |
| |
| assert(p->actual_length >= 0); |
| assert(p->actual_length + bytes <= iov->size); |
| switch (p->pid) { |
| case USB_TOKEN_SETUP: |
| case USB_TOKEN_OUT: |
| iov_to_buf(iov->iov, iov->niov, p->actual_length, ptr, bytes); |
| break; |
| case USB_TOKEN_IN: |
| iov_from_buf(iov->iov, iov->niov, p->actual_length, ptr, bytes); |
| break; |
| default: |
| fprintf(stderr, "%s: invalid pid: %x\n", __func__, p->pid); |
| abort(); |
| } |
| p->actual_length += bytes; |
| } |
| |
| void usb_packet_skip(USBPacket *p, size_t bytes) |
| { |
| QEMUIOVector *iov = p->combined ? &p->combined->iov : &p->iov; |
| |
| assert(p->actual_length >= 0); |
| assert(p->actual_length + bytes <= iov->size); |
| if (p->pid == USB_TOKEN_IN) { |
| iov_memset(iov->iov, iov->niov, p->actual_length, 0, bytes); |
| } |
| p->actual_length += bytes; |
| } |
| |
| size_t usb_packet_size(USBPacket *p) |
| { |
| return p->combined ? p->combined->iov.size : p->iov.size; |
| } |
| |
| void usb_packet_cleanup(USBPacket *p) |
| { |
| assert(!usb_packet_is_inflight(p)); |
| qemu_iovec_destroy(&p->iov); |
| } |
| |
| void usb_ep_reset(USBDevice *dev) |
| { |
| int ep; |
| |
| dev->ep_ctl.nr = 0; |
| dev->ep_ctl.type = USB_ENDPOINT_XFER_CONTROL; |
| dev->ep_ctl.ifnum = 0; |
| dev->ep_ctl.max_packet_size = 64; |
| dev->ep_ctl.max_streams = 0; |
| dev->ep_ctl.dev = dev; |
| dev->ep_ctl.pipeline = false; |
| for (ep = 0; ep < USB_MAX_ENDPOINTS; ep++) { |
| dev->ep_in[ep].nr = ep + 1; |
| dev->ep_out[ep].nr = ep + 1; |
| dev->ep_in[ep].pid = USB_TOKEN_IN; |
| dev->ep_out[ep].pid = USB_TOKEN_OUT; |
| dev->ep_in[ep].type = USB_ENDPOINT_XFER_INVALID; |
| dev->ep_out[ep].type = USB_ENDPOINT_XFER_INVALID; |
| dev->ep_in[ep].ifnum = USB_INTERFACE_INVALID; |
| dev->ep_out[ep].ifnum = USB_INTERFACE_INVALID; |
| dev->ep_in[ep].max_packet_size = 0; |
| dev->ep_out[ep].max_packet_size = 0; |
| dev->ep_in[ep].max_streams = 0; |
| dev->ep_out[ep].max_streams = 0; |
| dev->ep_in[ep].dev = dev; |
| dev->ep_out[ep].dev = dev; |
| dev->ep_in[ep].pipeline = false; |
| dev->ep_out[ep].pipeline = false; |
| } |
| } |
| |
| void usb_ep_init(USBDevice *dev) |
| { |
| int ep; |
| |
| usb_ep_reset(dev); |
| QTAILQ_INIT(&dev->ep_ctl.queue); |
| for (ep = 0; ep < USB_MAX_ENDPOINTS; ep++) { |
| QTAILQ_INIT(&dev->ep_in[ep].queue); |
| QTAILQ_INIT(&dev->ep_out[ep].queue); |
| } |
| } |
| |
| void usb_ep_dump(USBDevice *dev) |
| { |
| static const char *tname[] = { |
| [USB_ENDPOINT_XFER_CONTROL] = "control", |
| [USB_ENDPOINT_XFER_ISOC] = "isoc", |
| [USB_ENDPOINT_XFER_BULK] = "bulk", |
| [USB_ENDPOINT_XFER_INT] = "int", |
| }; |
| int ifnum, ep, first; |
| |
| fprintf(stderr, "Device \"%s\", config %d\n", |
| dev->product_desc, dev->configuration); |
| for (ifnum = 0; ifnum < 16; ifnum++) { |
| first = 1; |
| for (ep = 0; ep < USB_MAX_ENDPOINTS; ep++) { |
| if (dev->ep_in[ep].type != USB_ENDPOINT_XFER_INVALID && |
| dev->ep_in[ep].ifnum == ifnum) { |
| if (first) { |
| first = 0; |
| fprintf(stderr, " Interface %d, alternative %d\n", |
| ifnum, dev->altsetting[ifnum]); |
| } |
| fprintf(stderr, " Endpoint %d, IN, %s, %d max\n", ep, |
| tname[dev->ep_in[ep].type], |
| dev->ep_in[ep].max_packet_size); |
| } |
| if (dev->ep_out[ep].type != USB_ENDPOINT_XFER_INVALID && |
| dev->ep_out[ep].ifnum == ifnum) { |
| if (first) { |
| first = 0; |
| fprintf(stderr, " Interface %d, alternative %d\n", |
| ifnum, dev->altsetting[ifnum]); |
| } |
| fprintf(stderr, " Endpoint %d, OUT, %s, %d max\n", ep, |
| tname[dev->ep_out[ep].type], |
| dev->ep_out[ep].max_packet_size); |
| } |
| } |
| } |
| fprintf(stderr, "--\n"); |
| } |
| |
| struct USBEndpoint *usb_ep_get(USBDevice *dev, int pid, int ep) |
| { |
| struct USBEndpoint *eps; |
| |
| if (dev == NULL) { |
| return NULL; |
| } |
| eps = (pid == USB_TOKEN_IN) ? dev->ep_in : dev->ep_out; |
| if (ep == 0) { |
| return &dev->ep_ctl; |
| } |
| assert(pid == USB_TOKEN_IN || pid == USB_TOKEN_OUT); |
| assert(ep > 0 && ep <= USB_MAX_ENDPOINTS); |
| return eps + ep - 1; |
| } |
| |
| uint8_t usb_ep_get_type(USBDevice *dev, int pid, int ep) |
| { |
| struct USBEndpoint *uep = usb_ep_get(dev, pid, ep); |
| return uep->type; |
| } |
| |
| void usb_ep_set_type(USBDevice *dev, int pid, int ep, uint8_t type) |
| { |
| struct USBEndpoint *uep = usb_ep_get(dev, pid, ep); |
| uep->type = type; |
| } |
| |
| uint8_t usb_ep_get_ifnum(USBDevice *dev, int pid, int ep) |
| { |
| struct USBEndpoint *uep = usb_ep_get(dev, pid, ep); |
| return uep->ifnum; |
| } |
| |
| void usb_ep_set_ifnum(USBDevice *dev, int pid, int ep, uint8_t ifnum) |
| { |
| struct USBEndpoint *uep = usb_ep_get(dev, pid, ep); |
| uep->ifnum = ifnum; |
| } |
| |
| void usb_ep_set_max_packet_size(USBDevice *dev, int pid, int ep, |
| uint16_t raw) |
| { |
| struct USBEndpoint *uep = usb_ep_get(dev, pid, ep); |
| int size, microframes; |
| |
| size = raw & 0x7ff; |
| switch ((raw >> 11) & 3) { |
| case 1: |
| microframes = 2; |
| break; |
| case 2: |
| microframes = 3; |
| break; |
| default: |
| microframes = 1; |
| break; |
| } |
| uep->max_packet_size = size * microframes; |
| } |
| |
| int usb_ep_get_max_packet_size(USBDevice *dev, int pid, int ep) |
| { |
| struct USBEndpoint *uep = usb_ep_get(dev, pid, ep); |
| return uep->max_packet_size; |
| } |
| |
| void usb_ep_set_max_streams(USBDevice *dev, int pid, int ep, uint8_t raw) |
| { |
| struct USBEndpoint *uep = usb_ep_get(dev, pid, ep); |
| int MaxStreams; |
| |
| MaxStreams = raw & 0x1f; |
| if (MaxStreams) { |
| uep->max_streams = 1 << MaxStreams; |
| } else { |
| uep->max_streams = 0; |
| } |
| } |
| |
| int usb_ep_get_max_streams(USBDevice *dev, int pid, int ep) |
| { |
| struct USBEndpoint *uep = usb_ep_get(dev, pid, ep); |
| return uep->max_streams; |
| } |
| |
| void usb_ep_set_pipeline(USBDevice *dev, int pid, int ep, bool enabled) |
| { |
| struct USBEndpoint *uep = usb_ep_get(dev, pid, ep); |
| uep->pipeline = enabled; |
| } |
| |
| void usb_ep_set_halted(USBDevice *dev, int pid, int ep, bool halted) |
| { |
| struct USBEndpoint *uep = usb_ep_get(dev, pid, ep); |
| uep->halted = halted; |
| } |
| |
| USBPacket *usb_ep_find_packet_by_id(USBDevice *dev, int pid, int ep, |
| uint64_t id) |
| { |
| struct USBEndpoint *uep = usb_ep_get(dev, pid, ep); |
| USBPacket *p; |
| |
| QTAILQ_FOREACH(p, &uep->queue, queue) { |
| if (p->id == id) { |
| return p; |
| } |
| } |
| |
| return NULL; |
| } |