|  | /* | 
|  | *  Copyright (c) 2012-2014 Bastian Koppelmann C-Lab/University Paderborn | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  | #include "qemu/osdep.h" | 
|  | #include "cpu.h" | 
|  | #include "qemu/host-utils.h" | 
|  | #include "exec/helper-proto.h" | 
|  | #include "exec/cpu_ldst.h" | 
|  | #include <zlib.h> /* for crc32 */ | 
|  |  | 
|  |  | 
|  | /* Exception helpers */ | 
|  |  | 
|  | static void QEMU_NORETURN | 
|  | raise_exception_sync_internal(CPUTriCoreState *env, uint32_t class, int tin, | 
|  | uintptr_t pc, uint32_t fcd_pc) | 
|  | { | 
|  | CPUState *cs = CPU(tricore_env_get_cpu(env)); | 
|  | /* in case we come from a helper-call we need to restore the PC */ | 
|  | if (pc) { | 
|  | cpu_restore_state(cs, pc); | 
|  | } | 
|  |  | 
|  | /* Tin is loaded into d[15] */ | 
|  | env->gpr_d[15] = tin; | 
|  |  | 
|  | if (class == TRAPC_CTX_MNG && tin == TIN3_FCU) { | 
|  | /* upper context cannot be saved, if the context list is empty */ | 
|  | } else { | 
|  | helper_svucx(env); | 
|  | } | 
|  |  | 
|  | /* The return address in a[11] is updated */ | 
|  | if (class == TRAPC_CTX_MNG && tin == TIN3_FCD) { | 
|  | env->SYSCON |= MASK_SYSCON_FCD_SF; | 
|  | /* when we run out of CSAs after saving a context a FCD trap is taken | 
|  | and the return address is the start of the trap handler which used | 
|  | the last CSA */ | 
|  | env->gpr_a[11] = fcd_pc; | 
|  | } else if (class == TRAPC_SYSCALL) { | 
|  | env->gpr_a[11] = env->PC + 4; | 
|  | } else { | 
|  | env->gpr_a[11] = env->PC; | 
|  | } | 
|  | /* The stack pointer in A[10] is set to the Interrupt Stack Pointer (ISP) | 
|  | when the processor was not previously using the interrupt stack | 
|  | (in case of PSW.IS = 0). The stack pointer bit is set for using the | 
|  | interrupt stack: PSW.IS = 1. */ | 
|  | if ((env->PSW & MASK_PSW_IS) == 0) { | 
|  | env->gpr_a[10] = env->ISP; | 
|  | } | 
|  | env->PSW |= MASK_PSW_IS; | 
|  | /* The I/O mode is set to Supervisor mode, which means all permissions | 
|  | are enabled: PSW.IO = 10 B .*/ | 
|  | env->PSW |= (2 << 10); | 
|  |  | 
|  | /*The current Protection Register Set is set to 0: PSW.PRS = 00 B .*/ | 
|  | env->PSW &= ~MASK_PSW_PRS; | 
|  |  | 
|  | /* The Call Depth Counter (CDC) is cleared, and the call depth limit is | 
|  | set for 64: PSW.CDC = 0000000 B .*/ | 
|  | env->PSW &= ~MASK_PSW_CDC; | 
|  |  | 
|  | /* Call Depth Counter is enabled, PSW.CDE = 1. */ | 
|  | env->PSW |= MASK_PSW_CDE; | 
|  |  | 
|  | /* Write permission to global registers A[0], A[1], A[8], A[9] is | 
|  | disabled: PSW.GW = 0. */ | 
|  | env->PSW &= ~MASK_PSW_GW; | 
|  |  | 
|  | /*The interrupt system is globally disabled: ICR.IE = 0. The ‘old’ | 
|  | ICR.IE and ICR.CCPN are saved */ | 
|  |  | 
|  | /* PCXI.PIE = ICR.IE */ | 
|  | env->PCXI = ((env->PCXI & ~MASK_PCXI_PIE) + | 
|  | ((env->ICR & MASK_ICR_IE) << 15)); | 
|  | /* PCXI.PCPN = ICR.CCPN */ | 
|  | env->PCXI = (env->PCXI & 0xffffff) + | 
|  | ((env->ICR & MASK_ICR_CCPN) << 24); | 
|  | /* Update PC using the trap vector table */ | 
|  | env->PC = env->BTV | (class << 5); | 
|  |  | 
|  | cpu_loop_exit(cs); | 
|  | } | 
|  |  | 
|  | void helper_raise_exception_sync(CPUTriCoreState *env, uint32_t class, | 
|  | uint32_t tin) | 
|  | { | 
|  | raise_exception_sync_internal(env, class, tin, 0, 0); | 
|  | } | 
|  |  | 
|  | static void raise_exception_sync_helper(CPUTriCoreState *env, uint32_t class, | 
|  | uint32_t tin, uintptr_t pc) | 
|  | { | 
|  | raise_exception_sync_internal(env, class, tin, pc, 0); | 
|  | } | 
|  |  | 
|  | /* Addressing mode helper */ | 
|  |  | 
|  | static uint16_t reverse16(uint16_t val) | 
|  | { | 
|  | uint8_t high = (uint8_t)(val >> 8); | 
|  | uint8_t low  = (uint8_t)(val & 0xff); | 
|  |  | 
|  | uint16_t rh, rl; | 
|  |  | 
|  | rl = (uint16_t)((high * 0x0202020202ULL & 0x010884422010ULL) % 1023); | 
|  | rh = (uint16_t)((low * 0x0202020202ULL & 0x010884422010ULL) % 1023); | 
|  |  | 
|  | return (rh << 8) | rl; | 
|  | } | 
|  |  | 
|  | uint32_t helper_br_update(uint32_t reg) | 
|  | { | 
|  | uint32_t index = reg & 0xffff; | 
|  | uint32_t incr  = reg >> 16; | 
|  | uint32_t new_index = reverse16(reverse16(index) + reverse16(incr)); | 
|  | return reg - index + new_index; | 
|  | } | 
|  |  | 
|  | uint32_t helper_circ_update(uint32_t reg, uint32_t off) | 
|  | { | 
|  | uint32_t index = reg & 0xffff; | 
|  | uint32_t length = reg >> 16; | 
|  | int32_t new_index = index + off; | 
|  | if (new_index < 0) { | 
|  | new_index += length; | 
|  | } else { | 
|  | new_index %= length; | 
|  | } | 
|  | return reg - index + new_index; | 
|  | } | 
|  |  | 
|  | static uint32_t ssov32(CPUTriCoreState *env, int64_t arg) | 
|  | { | 
|  | uint32_t ret; | 
|  | int64_t max_pos = INT32_MAX; | 
|  | int64_t max_neg = INT32_MIN; | 
|  | if (arg > max_pos) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV = (1 << 31); | 
|  | ret = (target_ulong)max_pos; | 
|  | } else { | 
|  | if (arg < max_neg) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV = (1 << 31); | 
|  | ret = (target_ulong)max_neg; | 
|  | } else { | 
|  | env->PSW_USB_V = 0; | 
|  | ret = (target_ulong)arg; | 
|  | } | 
|  | } | 
|  | env->PSW_USB_AV = arg ^ arg * 2u; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t suov32_pos(CPUTriCoreState *env, uint64_t arg) | 
|  | { | 
|  | uint32_t ret; | 
|  | uint64_t max_pos = UINT32_MAX; | 
|  | if (arg > max_pos) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV = (1 << 31); | 
|  | ret = (target_ulong)max_pos; | 
|  | } else { | 
|  | env->PSW_USB_V = 0; | 
|  | ret = (target_ulong)arg; | 
|  | } | 
|  | env->PSW_USB_AV = arg ^ arg * 2u; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t suov32_neg(CPUTriCoreState *env, int64_t arg) | 
|  | { | 
|  | uint32_t ret; | 
|  |  | 
|  | if (arg < 0) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV = (1 << 31); | 
|  | ret = 0; | 
|  | } else { | 
|  | env->PSW_USB_V = 0; | 
|  | ret = (target_ulong)arg; | 
|  | } | 
|  | env->PSW_USB_AV = arg ^ arg * 2u; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint32_t ssov16(CPUTriCoreState *env, int32_t hw0, int32_t hw1) | 
|  | { | 
|  | int32_t max_pos = INT16_MAX; | 
|  | int32_t max_neg = INT16_MIN; | 
|  | int32_t av0, av1; | 
|  |  | 
|  | env->PSW_USB_V = 0; | 
|  | av0 = hw0 ^ hw0 * 2u; | 
|  | if (hw0 > max_pos) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | hw0 = max_pos; | 
|  | } else if (hw0 < max_neg) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | hw0 = max_neg; | 
|  | } | 
|  |  | 
|  | av1 = hw1 ^ hw1 * 2u; | 
|  | if (hw1 > max_pos) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | hw1 = max_pos; | 
|  | } else if (hw1 < max_neg) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | hw1 = max_neg; | 
|  | } | 
|  |  | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  | env->PSW_USB_AV = (av0 | av1) << 16; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  | return (hw0 & 0xffff) | (hw1 << 16); | 
|  | } | 
|  |  | 
|  | static uint32_t suov16(CPUTriCoreState *env, int32_t hw0, int32_t hw1) | 
|  | { | 
|  | int32_t max_pos = UINT16_MAX; | 
|  | int32_t av0, av1; | 
|  |  | 
|  | env->PSW_USB_V = 0; | 
|  | av0 = hw0 ^ hw0 * 2u; | 
|  | if (hw0 > max_pos) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | hw0 = max_pos; | 
|  | } else if (hw0 < 0) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | hw0 = 0; | 
|  | } | 
|  |  | 
|  | av1 = hw1 ^ hw1 * 2u; | 
|  | if (hw1 > max_pos) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | hw1 = max_pos; | 
|  | } else if (hw1 < 0) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | hw1 = 0; | 
|  | } | 
|  |  | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  | env->PSW_USB_AV = (av0 | av1) << 16; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  | return (hw0 & 0xffff) | (hw1 << 16); | 
|  | } | 
|  |  | 
|  | target_ulong helper_add_ssov(CPUTriCoreState *env, target_ulong r1, | 
|  | target_ulong r2) | 
|  | { | 
|  | int64_t t1 = sextract64(r1, 0, 32); | 
|  | int64_t t2 = sextract64(r2, 0, 32); | 
|  | int64_t result = t1 + t2; | 
|  | return ssov32(env, result); | 
|  | } | 
|  |  | 
|  | uint64_t helper_add64_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2) | 
|  | { | 
|  | uint64_t result; | 
|  | int64_t ovf; | 
|  |  | 
|  | result = r1 + r2; | 
|  | ovf = (result ^ r1) & ~(r1 ^ r2); | 
|  | env->PSW_USB_AV = (result ^ result * 2u) >> 32; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  | if (ovf < 0) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV = (1 << 31); | 
|  | /* ext_ret > MAX_INT */ | 
|  | if ((int64_t)r1 >= 0) { | 
|  | result = INT64_MAX; | 
|  | /* ext_ret < MIN_INT */ | 
|  | } else { | 
|  | result = INT64_MIN; | 
|  | } | 
|  | } else { | 
|  | env->PSW_USB_V = 0; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | target_ulong helper_add_h_ssov(CPUTriCoreState *env, target_ulong r1, | 
|  | target_ulong r2) | 
|  | { | 
|  | int32_t ret_hw0, ret_hw1; | 
|  |  | 
|  | ret_hw0 = sextract32(r1, 0, 16) + sextract32(r2, 0, 16); | 
|  | ret_hw1 = sextract32(r1, 16, 16) + sextract32(r2, 16, 16); | 
|  | return ssov16(env, ret_hw0, ret_hw1); | 
|  | } | 
|  |  | 
|  | uint32_t helper_addr_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, | 
|  | uint32_t r2_h) | 
|  | { | 
|  | int64_t mul_res0 = sextract64(r1, 0, 32); | 
|  | int64_t mul_res1 = sextract64(r1, 32, 32); | 
|  | int64_t r2_low = sextract64(r2_l, 0, 32); | 
|  | int64_t r2_high = sextract64(r2_h, 0, 32); | 
|  | int64_t result0, result1; | 
|  | uint32_t ovf0, ovf1; | 
|  | uint32_t avf0, avf1; | 
|  |  | 
|  | ovf0 = ovf1 = 0; | 
|  |  | 
|  | result0 = r2_low + mul_res0 + 0x8000; | 
|  | result1 = r2_high + mul_res1 + 0x8000; | 
|  |  | 
|  | avf0 = result0 * 2u; | 
|  | avf0 = result0 ^ avf0; | 
|  | avf1 = result1 * 2u; | 
|  | avf1 = result1 ^ avf1; | 
|  |  | 
|  | if (result0 > INT32_MAX) { | 
|  | ovf0 = (1 << 31); | 
|  | result0 = INT32_MAX; | 
|  | } else if (result0 < INT32_MIN) { | 
|  | ovf0 = (1 << 31); | 
|  | result0 = INT32_MIN; | 
|  | } | 
|  |  | 
|  | if (result1 > INT32_MAX) { | 
|  | ovf1 = (1 << 31); | 
|  | result1 = INT32_MAX; | 
|  | } else if (result1 < INT32_MIN) { | 
|  | ovf1 = (1 << 31); | 
|  | result1 = INT32_MIN; | 
|  | } | 
|  |  | 
|  | env->PSW_USB_V = ovf0 | ovf1; | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  |  | 
|  | env->PSW_USB_AV = avf0 | avf1; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); | 
|  | } | 
|  |  | 
|  | uint32_t helper_addsur_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, | 
|  | uint32_t r2_h) | 
|  | { | 
|  | int64_t mul_res0 = sextract64(r1, 0, 32); | 
|  | int64_t mul_res1 = sextract64(r1, 32, 32); | 
|  | int64_t r2_low = sextract64(r2_l, 0, 32); | 
|  | int64_t r2_high = sextract64(r2_h, 0, 32); | 
|  | int64_t result0, result1; | 
|  | uint32_t ovf0, ovf1; | 
|  | uint32_t avf0, avf1; | 
|  |  | 
|  | ovf0 = ovf1 = 0; | 
|  |  | 
|  | result0 = r2_low - mul_res0 + 0x8000; | 
|  | result1 = r2_high + mul_res1 + 0x8000; | 
|  |  | 
|  | avf0 = result0 * 2u; | 
|  | avf0 = result0 ^ avf0; | 
|  | avf1 = result1 * 2u; | 
|  | avf1 = result1 ^ avf1; | 
|  |  | 
|  | if (result0 > INT32_MAX) { | 
|  | ovf0 = (1 << 31); | 
|  | result0 = INT32_MAX; | 
|  | } else if (result0 < INT32_MIN) { | 
|  | ovf0 = (1 << 31); | 
|  | result0 = INT32_MIN; | 
|  | } | 
|  |  | 
|  | if (result1 > INT32_MAX) { | 
|  | ovf1 = (1 << 31); | 
|  | result1 = INT32_MAX; | 
|  | } else if (result1 < INT32_MIN) { | 
|  | ovf1 = (1 << 31); | 
|  | result1 = INT32_MIN; | 
|  | } | 
|  |  | 
|  | env->PSW_USB_V = ovf0 | ovf1; | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  |  | 
|  | env->PSW_USB_AV = avf0 | avf1; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); | 
|  | } | 
|  |  | 
|  |  | 
|  | target_ulong helper_add_suov(CPUTriCoreState *env, target_ulong r1, | 
|  | target_ulong r2) | 
|  | { | 
|  | int64_t t1 = extract64(r1, 0, 32); | 
|  | int64_t t2 = extract64(r2, 0, 32); | 
|  | int64_t result = t1 + t2; | 
|  | return suov32_pos(env, result); | 
|  | } | 
|  |  | 
|  | target_ulong helper_add_h_suov(CPUTriCoreState *env, target_ulong r1, | 
|  | target_ulong r2) | 
|  | { | 
|  | int32_t ret_hw0, ret_hw1; | 
|  |  | 
|  | ret_hw0 = extract32(r1, 0, 16) + extract32(r2, 0, 16); | 
|  | ret_hw1 = extract32(r1, 16, 16) + extract32(r2, 16, 16); | 
|  | return suov16(env, ret_hw0, ret_hw1); | 
|  | } | 
|  |  | 
|  | target_ulong helper_sub_ssov(CPUTriCoreState *env, target_ulong r1, | 
|  | target_ulong r2) | 
|  | { | 
|  | int64_t t1 = sextract64(r1, 0, 32); | 
|  | int64_t t2 = sextract64(r2, 0, 32); | 
|  | int64_t result = t1 - t2; | 
|  | return ssov32(env, result); | 
|  | } | 
|  |  | 
|  | uint64_t helper_sub64_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2) | 
|  | { | 
|  | uint64_t result; | 
|  | int64_t ovf; | 
|  |  | 
|  | result = r1 - r2; | 
|  | ovf = (result ^ r1) & (r1 ^ r2); | 
|  | env->PSW_USB_AV = (result ^ result * 2u) >> 32; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  | if (ovf < 0) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV = (1 << 31); | 
|  | /* ext_ret > MAX_INT */ | 
|  | if ((int64_t)r1 >= 0) { | 
|  | result = INT64_MAX; | 
|  | /* ext_ret < MIN_INT */ | 
|  | } else { | 
|  | result = INT64_MIN; | 
|  | } | 
|  | } else { | 
|  | env->PSW_USB_V = 0; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | target_ulong helper_sub_h_ssov(CPUTriCoreState *env, target_ulong r1, | 
|  | target_ulong r2) | 
|  | { | 
|  | int32_t ret_hw0, ret_hw1; | 
|  |  | 
|  | ret_hw0 = sextract32(r1, 0, 16) - sextract32(r2, 0, 16); | 
|  | ret_hw1 = sextract32(r1, 16, 16) - sextract32(r2, 16, 16); | 
|  | return ssov16(env, ret_hw0, ret_hw1); | 
|  | } | 
|  |  | 
|  | uint32_t helper_subr_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, | 
|  | uint32_t r2_h) | 
|  | { | 
|  | int64_t mul_res0 = sextract64(r1, 0, 32); | 
|  | int64_t mul_res1 = sextract64(r1, 32, 32); | 
|  | int64_t r2_low = sextract64(r2_l, 0, 32); | 
|  | int64_t r2_high = sextract64(r2_h, 0, 32); | 
|  | int64_t result0, result1; | 
|  | uint32_t ovf0, ovf1; | 
|  | uint32_t avf0, avf1; | 
|  |  | 
|  | ovf0 = ovf1 = 0; | 
|  |  | 
|  | result0 = r2_low - mul_res0 + 0x8000; | 
|  | result1 = r2_high - mul_res1 + 0x8000; | 
|  |  | 
|  | avf0 = result0 * 2u; | 
|  | avf0 = result0 ^ avf0; | 
|  | avf1 = result1 * 2u; | 
|  | avf1 = result1 ^ avf1; | 
|  |  | 
|  | if (result0 > INT32_MAX) { | 
|  | ovf0 = (1 << 31); | 
|  | result0 = INT32_MAX; | 
|  | } else if (result0 < INT32_MIN) { | 
|  | ovf0 = (1 << 31); | 
|  | result0 = INT32_MIN; | 
|  | } | 
|  |  | 
|  | if (result1 > INT32_MAX) { | 
|  | ovf1 = (1 << 31); | 
|  | result1 = INT32_MAX; | 
|  | } else if (result1 < INT32_MIN) { | 
|  | ovf1 = (1 << 31); | 
|  | result1 = INT32_MIN; | 
|  | } | 
|  |  | 
|  | env->PSW_USB_V = ovf0 | ovf1; | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  |  | 
|  | env->PSW_USB_AV = avf0 | avf1; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); | 
|  | } | 
|  |  | 
|  | uint32_t helper_subadr_h_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, | 
|  | uint32_t r2_h) | 
|  | { | 
|  | int64_t mul_res0 = sextract64(r1, 0, 32); | 
|  | int64_t mul_res1 = sextract64(r1, 32, 32); | 
|  | int64_t r2_low = sextract64(r2_l, 0, 32); | 
|  | int64_t r2_high = sextract64(r2_h, 0, 32); | 
|  | int64_t result0, result1; | 
|  | uint32_t ovf0, ovf1; | 
|  | uint32_t avf0, avf1; | 
|  |  | 
|  | ovf0 = ovf1 = 0; | 
|  |  | 
|  | result0 = r2_low + mul_res0 + 0x8000; | 
|  | result1 = r2_high - mul_res1 + 0x8000; | 
|  |  | 
|  | avf0 = result0 * 2u; | 
|  | avf0 = result0 ^ avf0; | 
|  | avf1 = result1 * 2u; | 
|  | avf1 = result1 ^ avf1; | 
|  |  | 
|  | if (result0 > INT32_MAX) { | 
|  | ovf0 = (1 << 31); | 
|  | result0 = INT32_MAX; | 
|  | } else if (result0 < INT32_MIN) { | 
|  | ovf0 = (1 << 31); | 
|  | result0 = INT32_MIN; | 
|  | } | 
|  |  | 
|  | if (result1 > INT32_MAX) { | 
|  | ovf1 = (1 << 31); | 
|  | result1 = INT32_MAX; | 
|  | } else if (result1 < INT32_MIN) { | 
|  | ovf1 = (1 << 31); | 
|  | result1 = INT32_MIN; | 
|  | } | 
|  |  | 
|  | env->PSW_USB_V = ovf0 | ovf1; | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  |  | 
|  | env->PSW_USB_AV = avf0 | avf1; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); | 
|  | } | 
|  |  | 
|  | target_ulong helper_sub_suov(CPUTriCoreState *env, target_ulong r1, | 
|  | target_ulong r2) | 
|  | { | 
|  | int64_t t1 = extract64(r1, 0, 32); | 
|  | int64_t t2 = extract64(r2, 0, 32); | 
|  | int64_t result = t1 - t2; | 
|  | return suov32_neg(env, result); | 
|  | } | 
|  |  | 
|  | target_ulong helper_sub_h_suov(CPUTriCoreState *env, target_ulong r1, | 
|  | target_ulong r2) | 
|  | { | 
|  | int32_t ret_hw0, ret_hw1; | 
|  |  | 
|  | ret_hw0 = extract32(r1, 0, 16) - extract32(r2, 0, 16); | 
|  | ret_hw1 = extract32(r1, 16, 16) - extract32(r2, 16, 16); | 
|  | return suov16(env, ret_hw0, ret_hw1); | 
|  | } | 
|  |  | 
|  | target_ulong helper_mul_ssov(CPUTriCoreState *env, target_ulong r1, | 
|  | target_ulong r2) | 
|  | { | 
|  | int64_t t1 = sextract64(r1, 0, 32); | 
|  | int64_t t2 = sextract64(r2, 0, 32); | 
|  | int64_t result = t1 * t2; | 
|  | return ssov32(env, result); | 
|  | } | 
|  |  | 
|  | target_ulong helper_mul_suov(CPUTriCoreState *env, target_ulong r1, | 
|  | target_ulong r2) | 
|  | { | 
|  | int64_t t1 = extract64(r1, 0, 32); | 
|  | int64_t t2 = extract64(r2, 0, 32); | 
|  | int64_t result = t1 * t2; | 
|  |  | 
|  | return suov32_pos(env, result); | 
|  | } | 
|  |  | 
|  | target_ulong helper_sha_ssov(CPUTriCoreState *env, target_ulong r1, | 
|  | target_ulong r2) | 
|  | { | 
|  | int64_t t1 = sextract64(r1, 0, 32); | 
|  | int32_t t2 = sextract64(r2, 0, 6); | 
|  | int64_t result; | 
|  | if (t2 == 0) { | 
|  | result = t1; | 
|  | } else if (t2 > 0) { | 
|  | result = t1 << t2; | 
|  | } else { | 
|  | result = t1 >> -t2; | 
|  | } | 
|  | return ssov32(env, result); | 
|  | } | 
|  |  | 
|  | uint32_t helper_abs_ssov(CPUTriCoreState *env, target_ulong r1) | 
|  | { | 
|  | target_ulong result; | 
|  | result = ((int32_t)r1 >= 0) ? r1 : (0 - r1); | 
|  | return ssov32(env, result); | 
|  | } | 
|  |  | 
|  | uint32_t helper_abs_h_ssov(CPUTriCoreState *env, target_ulong r1) | 
|  | { | 
|  | int32_t ret_h0, ret_h1; | 
|  |  | 
|  | ret_h0 = sextract32(r1, 0, 16); | 
|  | ret_h0 = (ret_h0 >= 0) ? ret_h0 : (0 - ret_h0); | 
|  |  | 
|  | ret_h1 = sextract32(r1, 16, 16); | 
|  | ret_h1 = (ret_h1 >= 0) ? ret_h1 : (0 - ret_h1); | 
|  |  | 
|  | return ssov16(env, ret_h0, ret_h1); | 
|  | } | 
|  |  | 
|  | target_ulong helper_absdif_ssov(CPUTriCoreState *env, target_ulong r1, | 
|  | target_ulong r2) | 
|  | { | 
|  | int64_t t1 = sextract64(r1, 0, 32); | 
|  | int64_t t2 = sextract64(r2, 0, 32); | 
|  | int64_t result; | 
|  |  | 
|  | if (t1 > t2) { | 
|  | result = t1 - t2; | 
|  | } else { | 
|  | result = t2 - t1; | 
|  | } | 
|  | return ssov32(env, result); | 
|  | } | 
|  |  | 
|  | uint32_t helper_absdif_h_ssov(CPUTriCoreState *env, target_ulong r1, | 
|  | target_ulong r2) | 
|  | { | 
|  | int32_t t1, t2; | 
|  | int32_t ret_h0, ret_h1; | 
|  |  | 
|  | t1 = sextract32(r1, 0, 16); | 
|  | t2 = sextract32(r2, 0, 16); | 
|  | if (t1 > t2) { | 
|  | ret_h0 = t1 - t2; | 
|  | } else { | 
|  | ret_h0 = t2 - t1; | 
|  | } | 
|  |  | 
|  | t1 = sextract32(r1, 16, 16); | 
|  | t2 = sextract32(r2, 16, 16); | 
|  | if (t1 > t2) { | 
|  | ret_h1 = t1 - t2; | 
|  | } else { | 
|  | ret_h1 = t2 - t1; | 
|  | } | 
|  |  | 
|  | return ssov16(env, ret_h0, ret_h1); | 
|  | } | 
|  |  | 
|  | target_ulong helper_madd32_ssov(CPUTriCoreState *env, target_ulong r1, | 
|  | target_ulong r2, target_ulong r3) | 
|  | { | 
|  | int64_t t1 = sextract64(r1, 0, 32); | 
|  | int64_t t2 = sextract64(r2, 0, 32); | 
|  | int64_t t3 = sextract64(r3, 0, 32); | 
|  | int64_t result; | 
|  |  | 
|  | result = t2 + (t1 * t3); | 
|  | return ssov32(env, result); | 
|  | } | 
|  |  | 
|  | target_ulong helper_madd32_suov(CPUTriCoreState *env, target_ulong r1, | 
|  | target_ulong r2, target_ulong r3) | 
|  | { | 
|  | uint64_t t1 = extract64(r1, 0, 32); | 
|  | uint64_t t2 = extract64(r2, 0, 32); | 
|  | uint64_t t3 = extract64(r3, 0, 32); | 
|  | int64_t result; | 
|  |  | 
|  | result = t2 + (t1 * t3); | 
|  | return suov32_pos(env, result); | 
|  | } | 
|  |  | 
|  | uint64_t helper_madd64_ssov(CPUTriCoreState *env, target_ulong r1, | 
|  | uint64_t r2, target_ulong r3) | 
|  | { | 
|  | uint64_t ret, ovf; | 
|  | int64_t t1 = sextract64(r1, 0, 32); | 
|  | int64_t t3 = sextract64(r3, 0, 32); | 
|  | int64_t mul; | 
|  |  | 
|  | mul = t1 * t3; | 
|  | ret = mul + r2; | 
|  | ovf = (ret ^ mul) & ~(mul ^ r2); | 
|  |  | 
|  | t1 = ret >> 32; | 
|  | env->PSW_USB_AV = t1 ^ t1 * 2u; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | if ((int64_t)ovf < 0) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV = (1 << 31); | 
|  | /* ext_ret > MAX_INT */ | 
|  | if (mul >= 0) { | 
|  | ret = INT64_MAX; | 
|  | /* ext_ret < MIN_INT */ | 
|  | } else { | 
|  | ret = INT64_MIN; | 
|  | } | 
|  | } else { | 
|  | env->PSW_USB_V = 0; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint32_t | 
|  | helper_madd32_q_add_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2) | 
|  | { | 
|  | int64_t result; | 
|  |  | 
|  | result = (r1 + r2); | 
|  |  | 
|  | env->PSW_USB_AV = (result ^ result * 2u); | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | /* we do the saturation by hand, since we produce an overflow on the host | 
|  | if the mul before was (0x80000000 * 0x80000000) << 1). If this is the | 
|  | case, we flip the saturated value. */ | 
|  | if (r2 == 0x8000000000000000LL) { | 
|  | if (result > 0x7fffffffLL) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV = (1 << 31); | 
|  | result = INT32_MIN; | 
|  | } else if (result < -0x80000000LL) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV = (1 << 31); | 
|  | result = INT32_MAX; | 
|  | } else { | 
|  | env->PSW_USB_V = 0; | 
|  | } | 
|  | } else { | 
|  | if (result > 0x7fffffffLL) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV = (1 << 31); | 
|  | result = INT32_MAX; | 
|  | } else if (result < -0x80000000LL) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV = (1 << 31); | 
|  | result = INT32_MIN; | 
|  | } else { | 
|  | env->PSW_USB_V = 0; | 
|  | } | 
|  | } | 
|  | return (uint32_t)result; | 
|  | } | 
|  |  | 
|  | uint64_t helper_madd64_q_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2, | 
|  | uint32_t r3, uint32_t n) | 
|  | { | 
|  | int64_t t1 = (int64_t)r1; | 
|  | int64_t t2 = sextract64(r2, 0, 32); | 
|  | int64_t t3 = sextract64(r3, 0, 32); | 
|  | int64_t result, mul; | 
|  | int64_t ovf; | 
|  |  | 
|  | mul = (t2 * t3) << n; | 
|  | result = mul + t1; | 
|  |  | 
|  | env->PSW_USB_AV = (result ^ result * 2u) >> 32; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | ovf = (result ^ mul) & ~(mul ^ t1); | 
|  | /* we do the saturation by hand, since we produce an overflow on the host | 
|  | if the mul was (0x80000000 * 0x80000000) << 1). If this is the | 
|  | case, we flip the saturated value. */ | 
|  | if ((r2 == 0x80000000) && (r3 == 0x80000000) && (n == 1)) { | 
|  | if (ovf >= 0) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV = (1 << 31); | 
|  | /* ext_ret > MAX_INT */ | 
|  | if (mul < 0) { | 
|  | result = INT64_MAX; | 
|  | /* ext_ret < MIN_INT */ | 
|  | } else { | 
|  | result = INT64_MIN; | 
|  | } | 
|  | } else { | 
|  | env->PSW_USB_V = 0; | 
|  | } | 
|  | } else { | 
|  | if (ovf < 0) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV = (1 << 31); | 
|  | /* ext_ret > MAX_INT */ | 
|  | if (mul >= 0) { | 
|  | result = INT64_MAX; | 
|  | /* ext_ret < MIN_INT */ | 
|  | } else { | 
|  | result = INT64_MIN; | 
|  | } | 
|  | } else { | 
|  | env->PSW_USB_V = 0; | 
|  | } | 
|  | } | 
|  | return (uint64_t)result; | 
|  | } | 
|  |  | 
|  | uint32_t helper_maddr_q_ssov(CPUTriCoreState *env, uint32_t r1, uint32_t r2, | 
|  | uint32_t r3, uint32_t n) | 
|  | { | 
|  | int64_t t1 = sextract64(r1, 0, 32); | 
|  | int64_t t2 = sextract64(r2, 0, 32); | 
|  | int64_t t3 = sextract64(r3, 0, 32); | 
|  | int64_t mul, ret; | 
|  |  | 
|  | if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) { | 
|  | mul = 0x7fffffff; | 
|  | } else { | 
|  | mul = (t2 * t3) << n; | 
|  | } | 
|  |  | 
|  | ret = t1 + mul + 0x8000; | 
|  |  | 
|  | env->PSW_USB_AV = ret ^ ret * 2u; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | if (ret > 0x7fffffffll) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  | ret = INT32_MAX; | 
|  | } else if (ret < -0x80000000ll) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  | ret = INT32_MIN; | 
|  | } else { | 
|  | env->PSW_USB_V = 0; | 
|  | } | 
|  | return ret & 0xffff0000ll; | 
|  | } | 
|  |  | 
|  | uint64_t helper_madd64_suov(CPUTriCoreState *env, target_ulong r1, | 
|  | uint64_t r2, target_ulong r3) | 
|  | { | 
|  | uint64_t ret, mul; | 
|  | uint64_t t1 = extract64(r1, 0, 32); | 
|  | uint64_t t3 = extract64(r3, 0, 32); | 
|  |  | 
|  | mul = t1 * t3; | 
|  | ret = mul + r2; | 
|  |  | 
|  | t1 = ret >> 32; | 
|  | env->PSW_USB_AV = t1 ^ t1 * 2u; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | if (ret < r2) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV = (1 << 31); | 
|  | /* saturate */ | 
|  | ret = UINT64_MAX; | 
|  | } else { | 
|  | env->PSW_USB_V = 0; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | target_ulong helper_msub32_ssov(CPUTriCoreState *env, target_ulong r1, | 
|  | target_ulong r2, target_ulong r3) | 
|  | { | 
|  | int64_t t1 = sextract64(r1, 0, 32); | 
|  | int64_t t2 = sextract64(r2, 0, 32); | 
|  | int64_t t3 = sextract64(r3, 0, 32); | 
|  | int64_t result; | 
|  |  | 
|  | result = t2 - (t1 * t3); | 
|  | return ssov32(env, result); | 
|  | } | 
|  |  | 
|  | target_ulong helper_msub32_suov(CPUTriCoreState *env, target_ulong r1, | 
|  | target_ulong r2, target_ulong r3) | 
|  | { | 
|  | uint64_t t1 = extract64(r1, 0, 32); | 
|  | uint64_t t2 = extract64(r2, 0, 32); | 
|  | uint64_t t3 = extract64(r3, 0, 32); | 
|  | uint64_t result; | 
|  | uint64_t mul; | 
|  |  | 
|  | mul = (t1 * t3); | 
|  | result = t2 - mul; | 
|  |  | 
|  | env->PSW_USB_AV = result ^ result * 2u; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  | /* we calculate ovf by hand here, because the multiplication can overflow on | 
|  | the host, which would give false results if we compare to less than | 
|  | zero */ | 
|  | if (mul > t2) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV = (1 << 31); | 
|  | result = 0; | 
|  | } else { | 
|  | env->PSW_USB_V = 0; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | uint64_t helper_msub64_ssov(CPUTriCoreState *env, target_ulong r1, | 
|  | uint64_t r2, target_ulong r3) | 
|  | { | 
|  | uint64_t ret, ovf; | 
|  | int64_t t1 = sextract64(r1, 0, 32); | 
|  | int64_t t3 = sextract64(r3, 0, 32); | 
|  | int64_t mul; | 
|  |  | 
|  | mul = t1 * t3; | 
|  | ret = r2 - mul; | 
|  | ovf = (ret ^ r2) & (mul ^ r2); | 
|  |  | 
|  | t1 = ret >> 32; | 
|  | env->PSW_USB_AV = t1 ^ t1 * 2u; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | if ((int64_t)ovf < 0) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV = (1 << 31); | 
|  | /* ext_ret > MAX_INT */ | 
|  | if (mul < 0) { | 
|  | ret = INT64_MAX; | 
|  | /* ext_ret < MIN_INT */ | 
|  | } else { | 
|  | ret = INT64_MIN; | 
|  | } | 
|  | } else { | 
|  | env->PSW_USB_V = 0; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint64_t helper_msub64_suov(CPUTriCoreState *env, target_ulong r1, | 
|  | uint64_t r2, target_ulong r3) | 
|  | { | 
|  | uint64_t ret, mul; | 
|  | uint64_t t1 = extract64(r1, 0, 32); | 
|  | uint64_t t3 = extract64(r3, 0, 32); | 
|  |  | 
|  | mul = t1 * t3; | 
|  | ret = r2 - mul; | 
|  |  | 
|  | t1 = ret >> 32; | 
|  | env->PSW_USB_AV = t1 ^ t1 * 2u; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | if (ret > r2) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV = (1 << 31); | 
|  | /* saturate */ | 
|  | ret = 0; | 
|  | } else { | 
|  | env->PSW_USB_V = 0; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint32_t | 
|  | helper_msub32_q_sub_ssov(CPUTriCoreState *env, uint64_t r1, uint64_t r2) | 
|  | { | 
|  | int64_t result; | 
|  | int64_t t1 = (int64_t)r1; | 
|  | int64_t t2 = (int64_t)r2; | 
|  |  | 
|  | result = t1 - t2; | 
|  |  | 
|  | env->PSW_USB_AV = (result ^ result * 2u); | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | /* we do the saturation by hand, since we produce an overflow on the host | 
|  | if the mul before was (0x80000000 * 0x80000000) << 1). If this is the | 
|  | case, we flip the saturated value. */ | 
|  | if (r2 == 0x8000000000000000LL) { | 
|  | if (result > 0x7fffffffLL) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV = (1 << 31); | 
|  | result = INT32_MIN; | 
|  | } else if (result < -0x80000000LL) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV = (1 << 31); | 
|  | result = INT32_MAX; | 
|  | } else { | 
|  | env->PSW_USB_V = 0; | 
|  | } | 
|  | } else { | 
|  | if (result > 0x7fffffffLL) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV = (1 << 31); | 
|  | result = INT32_MAX; | 
|  | } else if (result < -0x80000000LL) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV = (1 << 31); | 
|  | result = INT32_MIN; | 
|  | } else { | 
|  | env->PSW_USB_V = 0; | 
|  | } | 
|  | } | 
|  | return (uint32_t)result; | 
|  | } | 
|  |  | 
|  | uint64_t helper_msub64_q_ssov(CPUTriCoreState *env, uint64_t r1, uint32_t r2, | 
|  | uint32_t r3, uint32_t n) | 
|  | { | 
|  | int64_t t1 = (int64_t)r1; | 
|  | int64_t t2 = sextract64(r2, 0, 32); | 
|  | int64_t t3 = sextract64(r3, 0, 32); | 
|  | int64_t result, mul; | 
|  | int64_t ovf; | 
|  |  | 
|  | mul = (t2 * t3) << n; | 
|  | result = t1 - mul; | 
|  |  | 
|  | env->PSW_USB_AV = (result ^ result * 2u) >> 32; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | ovf = (result ^ t1) & (t1 ^ mul); | 
|  | /* we do the saturation by hand, since we produce an overflow on the host | 
|  | if the mul before was (0x80000000 * 0x80000000) << 1). If this is the | 
|  | case, we flip the saturated value. */ | 
|  | if (mul == 0x8000000000000000LL) { | 
|  | if (ovf >= 0) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV = (1 << 31); | 
|  | /* ext_ret > MAX_INT */ | 
|  | if (mul >= 0) { | 
|  | result = INT64_MAX; | 
|  | /* ext_ret < MIN_INT */ | 
|  | } else { | 
|  | result = INT64_MIN; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (ovf < 0) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV = (1 << 31); | 
|  | /* ext_ret > MAX_INT */ | 
|  | if (mul < 0) { | 
|  | result = INT64_MAX; | 
|  | /* ext_ret < MIN_INT */ | 
|  | } else { | 
|  | result = INT64_MIN; | 
|  | } | 
|  | } else { | 
|  | env->PSW_USB_V = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return (uint64_t)result; | 
|  | } | 
|  |  | 
|  | uint32_t helper_msubr_q_ssov(CPUTriCoreState *env, uint32_t r1, uint32_t r2, | 
|  | uint32_t r3, uint32_t n) | 
|  | { | 
|  | int64_t t1 = sextract64(r1, 0, 32); | 
|  | int64_t t2 = sextract64(r2, 0, 32); | 
|  | int64_t t3 = sextract64(r3, 0, 32); | 
|  | int64_t mul, ret; | 
|  |  | 
|  | if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) { | 
|  | mul = 0x7fffffff; | 
|  | } else { | 
|  | mul = (t2 * t3) << n; | 
|  | } | 
|  |  | 
|  | ret = t1 - mul + 0x8000; | 
|  |  | 
|  | env->PSW_USB_AV = ret ^ ret * 2u; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | if (ret > 0x7fffffffll) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  | ret = INT32_MAX; | 
|  | } else if (ret < -0x80000000ll) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  | ret = INT32_MIN; | 
|  | } else { | 
|  | env->PSW_USB_V = 0; | 
|  | } | 
|  | return ret & 0xffff0000ll; | 
|  | } | 
|  |  | 
|  | uint32_t helper_abs_b(CPUTriCoreState *env, target_ulong arg) | 
|  | { | 
|  | int32_t b, i; | 
|  | int32_t ovf = 0; | 
|  | int32_t avf = 0; | 
|  | int32_t ret = 0; | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | b = sextract32(arg, i * 8, 8); | 
|  | b = (b >= 0) ? b : (0 - b); | 
|  | ovf |= (b > 0x7F) || (b < -0x80); | 
|  | avf |= b ^ b * 2u; | 
|  | ret |= (b & 0xff) << (i * 8); | 
|  | } | 
|  |  | 
|  | env->PSW_USB_V = ovf << 31; | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  | env->PSW_USB_AV = avf << 24; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint32_t helper_abs_h(CPUTriCoreState *env, target_ulong arg) | 
|  | { | 
|  | int32_t h, i; | 
|  | int32_t ovf = 0; | 
|  | int32_t avf = 0; | 
|  | int32_t ret = 0; | 
|  |  | 
|  | for (i = 0; i < 2; i++) { | 
|  | h = sextract32(arg, i * 16, 16); | 
|  | h = (h >= 0) ? h : (0 - h); | 
|  | ovf |= (h > 0x7FFF) || (h < -0x8000); | 
|  | avf |= h ^ h * 2u; | 
|  | ret |= (h & 0xffff) << (i * 16); | 
|  | } | 
|  |  | 
|  | env->PSW_USB_V = ovf << 31; | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  | env->PSW_USB_AV = avf << 16; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint32_t helper_absdif_b(CPUTriCoreState *env, target_ulong r1, target_ulong r2) | 
|  | { | 
|  | int32_t b, i; | 
|  | int32_t extr_r2; | 
|  | int32_t ovf = 0; | 
|  | int32_t avf = 0; | 
|  | int32_t ret = 0; | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | extr_r2 = sextract32(r2, i * 8, 8); | 
|  | b = sextract32(r1, i * 8, 8); | 
|  | b = (b > extr_r2) ? (b - extr_r2) : (extr_r2 - b); | 
|  | ovf |= (b > 0x7F) || (b < -0x80); | 
|  | avf |= b ^ b * 2u; | 
|  | ret |= (b & 0xff) << (i * 8); | 
|  | } | 
|  |  | 
|  | env->PSW_USB_V = ovf << 31; | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  | env->PSW_USB_AV = avf << 24; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint32_t helper_absdif_h(CPUTriCoreState *env, target_ulong r1, target_ulong r2) | 
|  | { | 
|  | int32_t h, i; | 
|  | int32_t extr_r2; | 
|  | int32_t ovf = 0; | 
|  | int32_t avf = 0; | 
|  | int32_t ret = 0; | 
|  |  | 
|  | for (i = 0; i < 2; i++) { | 
|  | extr_r2 = sextract32(r2, i * 16, 16); | 
|  | h = sextract32(r1, i * 16, 16); | 
|  | h = (h > extr_r2) ? (h - extr_r2) : (extr_r2 - h); | 
|  | ovf |= (h > 0x7FFF) || (h < -0x8000); | 
|  | avf |= h ^ h * 2u; | 
|  | ret |= (h & 0xffff) << (i * 16); | 
|  | } | 
|  |  | 
|  | env->PSW_USB_V = ovf << 31; | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  | env->PSW_USB_AV = avf << 16; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint32_t helper_addr_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, | 
|  | uint32_t r2_h) | 
|  | { | 
|  | int64_t mul_res0 = sextract64(r1, 0, 32); | 
|  | int64_t mul_res1 = sextract64(r1, 32, 32); | 
|  | int64_t r2_low = sextract64(r2_l, 0, 32); | 
|  | int64_t r2_high = sextract64(r2_h, 0, 32); | 
|  | int64_t result0, result1; | 
|  | uint32_t ovf0, ovf1; | 
|  | uint32_t avf0, avf1; | 
|  |  | 
|  | ovf0 = ovf1 = 0; | 
|  |  | 
|  | result0 = r2_low + mul_res0 + 0x8000; | 
|  | result1 = r2_high + mul_res1 + 0x8000; | 
|  |  | 
|  | if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) { | 
|  | ovf0 = (1 << 31); | 
|  | } | 
|  |  | 
|  | if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) { | 
|  | ovf1 = (1 << 31); | 
|  | } | 
|  |  | 
|  | env->PSW_USB_V = ovf0 | ovf1; | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  |  | 
|  | avf0 = result0 * 2u; | 
|  | avf0 = result0 ^ avf0; | 
|  | avf1 = result1 * 2u; | 
|  | avf1 = result1 ^ avf1; | 
|  |  | 
|  | env->PSW_USB_AV = avf0 | avf1; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); | 
|  | } | 
|  |  | 
|  | uint32_t helper_addsur_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, | 
|  | uint32_t r2_h) | 
|  | { | 
|  | int64_t mul_res0 = sextract64(r1, 0, 32); | 
|  | int64_t mul_res1 = sextract64(r1, 32, 32); | 
|  | int64_t r2_low = sextract64(r2_l, 0, 32); | 
|  | int64_t r2_high = sextract64(r2_h, 0, 32); | 
|  | int64_t result0, result1; | 
|  | uint32_t ovf0, ovf1; | 
|  | uint32_t avf0, avf1; | 
|  |  | 
|  | ovf0 = ovf1 = 0; | 
|  |  | 
|  | result0 = r2_low - mul_res0 + 0x8000; | 
|  | result1 = r2_high + mul_res1 + 0x8000; | 
|  |  | 
|  | if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) { | 
|  | ovf0 = (1 << 31); | 
|  | } | 
|  |  | 
|  | if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) { | 
|  | ovf1 = (1 << 31); | 
|  | } | 
|  |  | 
|  | env->PSW_USB_V = ovf0 | ovf1; | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  |  | 
|  | avf0 = result0 * 2u; | 
|  | avf0 = result0 ^ avf0; | 
|  | avf1 = result1 * 2u; | 
|  | avf1 = result1 ^ avf1; | 
|  |  | 
|  | env->PSW_USB_AV = avf0 | avf1; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); | 
|  | } | 
|  |  | 
|  | uint32_t helper_maddr_q(CPUTriCoreState *env, uint32_t r1, uint32_t r2, | 
|  | uint32_t r3, uint32_t n) | 
|  | { | 
|  | int64_t t1 = sextract64(r1, 0, 32); | 
|  | int64_t t2 = sextract64(r2, 0, 32); | 
|  | int64_t t3 = sextract64(r3, 0, 32); | 
|  | int64_t mul, ret; | 
|  |  | 
|  | if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) { | 
|  | mul = 0x7fffffff; | 
|  | } else { | 
|  | mul = (t2 * t3) << n; | 
|  | } | 
|  |  | 
|  | ret = t1 + mul + 0x8000; | 
|  |  | 
|  | if ((ret > 0x7fffffffll) || (ret < -0x80000000ll)) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  | } else { | 
|  | env->PSW_USB_V = 0; | 
|  | } | 
|  | env->PSW_USB_AV = ret ^ ret * 2u; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | return ret & 0xffff0000ll; | 
|  | } | 
|  |  | 
|  | uint32_t helper_add_b(CPUTriCoreState *env, target_ulong r1, target_ulong r2) | 
|  | { | 
|  | int32_t b, i; | 
|  | int32_t extr_r1, extr_r2; | 
|  | int32_t ovf = 0; | 
|  | int32_t avf = 0; | 
|  | uint32_t ret = 0; | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | extr_r1 = sextract32(r1, i * 8, 8); | 
|  | extr_r2 = sextract32(r2, i * 8, 8); | 
|  |  | 
|  | b = extr_r1 + extr_r2; | 
|  | ovf |= ((b > 0x7f) || (b < -0x80)); | 
|  | avf |= b ^ b * 2u; | 
|  | ret |= ((b & 0xff) << (i*8)); | 
|  | } | 
|  |  | 
|  | env->PSW_USB_V = (ovf << 31); | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  | env->PSW_USB_AV = avf << 24; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint32_t helper_add_h(CPUTriCoreState *env, target_ulong r1, target_ulong r2) | 
|  | { | 
|  | int32_t h, i; | 
|  | int32_t extr_r1, extr_r2; | 
|  | int32_t ovf = 0; | 
|  | int32_t avf = 0; | 
|  | int32_t ret = 0; | 
|  |  | 
|  | for (i = 0; i < 2; i++) { | 
|  | extr_r1 = sextract32(r1, i * 16, 16); | 
|  | extr_r2 = sextract32(r2, i * 16, 16); | 
|  | h = extr_r1 + extr_r2; | 
|  | ovf |= ((h > 0x7fff) || (h < -0x8000)); | 
|  | avf |= h ^ h * 2u; | 
|  | ret |= (h & 0xffff) << (i * 16); | 
|  | } | 
|  |  | 
|  | env->PSW_USB_V = (ovf << 31); | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  | env->PSW_USB_AV = (avf << 16); | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint32_t helper_subr_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, | 
|  | uint32_t r2_h) | 
|  | { | 
|  | int64_t mul_res0 = sextract64(r1, 0, 32); | 
|  | int64_t mul_res1 = sextract64(r1, 32, 32); | 
|  | int64_t r2_low = sextract64(r2_l, 0, 32); | 
|  | int64_t r2_high = sextract64(r2_h, 0, 32); | 
|  | int64_t result0, result1; | 
|  | uint32_t ovf0, ovf1; | 
|  | uint32_t avf0, avf1; | 
|  |  | 
|  | ovf0 = ovf1 = 0; | 
|  |  | 
|  | result0 = r2_low - mul_res0 + 0x8000; | 
|  | result1 = r2_high - mul_res1 + 0x8000; | 
|  |  | 
|  | if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) { | 
|  | ovf0 = (1 << 31); | 
|  | } | 
|  |  | 
|  | if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) { | 
|  | ovf1 = (1 << 31); | 
|  | } | 
|  |  | 
|  | env->PSW_USB_V = ovf0 | ovf1; | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  |  | 
|  | avf0 = result0 * 2u; | 
|  | avf0 = result0 ^ avf0; | 
|  | avf1 = result1 * 2u; | 
|  | avf1 = result1 ^ avf1; | 
|  |  | 
|  | env->PSW_USB_AV = avf0 | avf1; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); | 
|  | } | 
|  |  | 
|  | uint32_t helper_subadr_h(CPUTriCoreState *env, uint64_t r1, uint32_t r2_l, | 
|  | uint32_t r2_h) | 
|  | { | 
|  | int64_t mul_res0 = sextract64(r1, 0, 32); | 
|  | int64_t mul_res1 = sextract64(r1, 32, 32); | 
|  | int64_t r2_low = sextract64(r2_l, 0, 32); | 
|  | int64_t r2_high = sextract64(r2_h, 0, 32); | 
|  | int64_t result0, result1; | 
|  | uint32_t ovf0, ovf1; | 
|  | uint32_t avf0, avf1; | 
|  |  | 
|  | ovf0 = ovf1 = 0; | 
|  |  | 
|  | result0 = r2_low + mul_res0 + 0x8000; | 
|  | result1 = r2_high - mul_res1 + 0x8000; | 
|  |  | 
|  | if ((result0 > INT32_MAX) || (result0 < INT32_MIN)) { | 
|  | ovf0 = (1 << 31); | 
|  | } | 
|  |  | 
|  | if ((result1 > INT32_MAX) || (result1 < INT32_MIN)) { | 
|  | ovf1 = (1 << 31); | 
|  | } | 
|  |  | 
|  | env->PSW_USB_V = ovf0 | ovf1; | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  |  | 
|  | avf0 = result0 * 2u; | 
|  | avf0 = result0 ^ avf0; | 
|  | avf1 = result1 * 2u; | 
|  | avf1 = result1 ^ avf1; | 
|  |  | 
|  | env->PSW_USB_AV = avf0 | avf1; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | return (result1 & 0xffff0000ULL) | ((result0 >> 16) & 0xffffULL); | 
|  | } | 
|  |  | 
|  | uint32_t helper_msubr_q(CPUTriCoreState *env, uint32_t r1, uint32_t r2, | 
|  | uint32_t r3, uint32_t n) | 
|  | { | 
|  | int64_t t1 = sextract64(r1, 0, 32); | 
|  | int64_t t2 = sextract64(r2, 0, 32); | 
|  | int64_t t3 = sextract64(r3, 0, 32); | 
|  | int64_t mul, ret; | 
|  |  | 
|  | if ((t2 == -0x8000ll) && (t3 == -0x8000ll) && (n == 1)) { | 
|  | mul = 0x7fffffff; | 
|  | } else { | 
|  | mul = (t2 * t3) << n; | 
|  | } | 
|  |  | 
|  | ret = t1 - mul + 0x8000; | 
|  |  | 
|  | if ((ret > 0x7fffffffll) || (ret < -0x80000000ll)) { | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  | } else { | 
|  | env->PSW_USB_V = 0; | 
|  | } | 
|  | env->PSW_USB_AV = ret ^ ret * 2u; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | return ret & 0xffff0000ll; | 
|  | } | 
|  |  | 
|  | uint32_t helper_sub_b(CPUTriCoreState *env, target_ulong r1, target_ulong r2) | 
|  | { | 
|  | int32_t b, i; | 
|  | int32_t extr_r1, extr_r2; | 
|  | int32_t ovf = 0; | 
|  | int32_t avf = 0; | 
|  | uint32_t ret = 0; | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | extr_r1 = sextract32(r1, i * 8, 8); | 
|  | extr_r2 = sextract32(r2, i * 8, 8); | 
|  |  | 
|  | b = extr_r1 - extr_r2; | 
|  | ovf |= ((b > 0x7f) || (b < -0x80)); | 
|  | avf |= b ^ b * 2u; | 
|  | ret |= ((b & 0xff) << (i*8)); | 
|  | } | 
|  |  | 
|  | env->PSW_USB_V = (ovf << 31); | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  | env->PSW_USB_AV = avf << 24; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint32_t helper_sub_h(CPUTriCoreState *env, target_ulong r1, target_ulong r2) | 
|  | { | 
|  | int32_t h, i; | 
|  | int32_t extr_r1, extr_r2; | 
|  | int32_t ovf = 0; | 
|  | int32_t avf = 0; | 
|  | int32_t ret = 0; | 
|  |  | 
|  | for (i = 0; i < 2; i++) { | 
|  | extr_r1 = sextract32(r1, i * 16, 16); | 
|  | extr_r2 = sextract32(r2, i * 16, 16); | 
|  | h = extr_r1 - extr_r2; | 
|  | ovf |= ((h > 0x7fff) || (h < -0x8000)); | 
|  | avf |= h ^ h * 2u; | 
|  | ret |= (h & 0xffff) << (i * 16); | 
|  | } | 
|  |  | 
|  | env->PSW_USB_V = (ovf << 31); | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  | env->PSW_USB_AV = avf << 16; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint32_t helper_eq_b(target_ulong r1, target_ulong r2) | 
|  | { | 
|  | int32_t ret; | 
|  | int32_t i, msk; | 
|  |  | 
|  | ret = 0; | 
|  | msk = 0xff; | 
|  | for (i = 0; i < 4; i++) { | 
|  | if ((r1 & msk) == (r2 & msk)) { | 
|  | ret |= msk; | 
|  | } | 
|  | msk = msk << 8; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint32_t helper_eq_h(target_ulong r1, target_ulong r2) | 
|  | { | 
|  | int32_t ret = 0; | 
|  |  | 
|  | if ((r1 & 0xffff) == (r2 & 0xffff)) { | 
|  | ret = 0xffff; | 
|  | } | 
|  |  | 
|  | if ((r1 & 0xffff0000) == (r2 & 0xffff0000)) { | 
|  | ret |= 0xffff0000; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint32_t helper_eqany_b(target_ulong r1, target_ulong r2) | 
|  | { | 
|  | int32_t i; | 
|  | uint32_t ret = 0; | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | ret |= (sextract32(r1,  i * 8, 8) == sextract32(r2,  i * 8, 8)); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint32_t helper_eqany_h(target_ulong r1, target_ulong r2) | 
|  | { | 
|  | uint32_t ret; | 
|  |  | 
|  | ret = (sextract32(r1, 0, 16) == sextract32(r2,  0, 16)); | 
|  | ret |= (sextract32(r1, 16, 16) == sextract32(r2,  16, 16)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint32_t helper_lt_b(target_ulong r1, target_ulong r2) | 
|  | { | 
|  | int32_t i; | 
|  | uint32_t ret = 0; | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | if (sextract32(r1,  i * 8, 8) < sextract32(r2,  i * 8, 8)) { | 
|  | ret |= (0xff << (i * 8)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint32_t helper_lt_bu(target_ulong r1, target_ulong r2) | 
|  | { | 
|  | int32_t i; | 
|  | uint32_t ret = 0; | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | if (extract32(r1,  i * 8, 8) < extract32(r2,  i * 8, 8)) { | 
|  | ret |= (0xff << (i * 8)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint32_t helper_lt_h(target_ulong r1, target_ulong r2) | 
|  | { | 
|  | uint32_t ret = 0; | 
|  |  | 
|  | if (sextract32(r1,  0, 16) < sextract32(r2,  0, 16)) { | 
|  | ret |= 0xffff; | 
|  | } | 
|  |  | 
|  | if (sextract32(r1,  16, 16) < sextract32(r2,  16, 16)) { | 
|  | ret |= 0xffff0000; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint32_t helper_lt_hu(target_ulong r1, target_ulong r2) | 
|  | { | 
|  | uint32_t ret = 0; | 
|  |  | 
|  | if (extract32(r1,  0, 16) < extract32(r2,  0, 16)) { | 
|  | ret |= 0xffff; | 
|  | } | 
|  |  | 
|  | if (extract32(r1,  16, 16) < extract32(r2,  16, 16)) { | 
|  | ret |= 0xffff0000; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define EXTREMA_H_B(name, op)                                 \ | 
|  | uint32_t helper_##name ##_b(target_ulong r1, target_ulong r2) \ | 
|  | {                                                             \ | 
|  | int32_t i, extr_r1, extr_r2;                              \ | 
|  | uint32_t ret = 0;                                         \ | 
|  | \ | 
|  | for (i = 0; i < 4; i++) {                                 \ | 
|  | extr_r1 = sextract32(r1, i * 8, 8);                   \ | 
|  | extr_r2 = sextract32(r2, i * 8, 8);                   \ | 
|  | extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2;   \ | 
|  | ret |= (extr_r1 & 0xff) << (i * 8);                   \ | 
|  | }                                                         \ | 
|  | return ret;                                               \ | 
|  | }                                                             \ | 
|  | \ | 
|  | uint32_t helper_##name ##_bu(target_ulong r1, target_ulong r2)\ | 
|  | {                                                             \ | 
|  | int32_t i;                                                \ | 
|  | uint32_t extr_r1, extr_r2;                                \ | 
|  | uint32_t ret = 0;                                         \ | 
|  | \ | 
|  | for (i = 0; i < 4; i++) {                                 \ | 
|  | extr_r1 = extract32(r1, i * 8, 8);                    \ | 
|  | extr_r2 = extract32(r2, i * 8, 8);                    \ | 
|  | extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2;   \ | 
|  | ret |= (extr_r1 & 0xff) << (i * 8);                   \ | 
|  | }                                                         \ | 
|  | return ret;                                               \ | 
|  | }                                                             \ | 
|  | \ | 
|  | uint32_t helper_##name ##_h(target_ulong r1, target_ulong r2) \ | 
|  | {                                                             \ | 
|  | int32_t extr_r1, extr_r2;                                 \ | 
|  | uint32_t ret = 0;                                         \ | 
|  | \ | 
|  | extr_r1 = sextract32(r1, 0, 16);                          \ | 
|  | extr_r2 = sextract32(r2, 0, 16);                          \ | 
|  | ret = (extr_r1 op extr_r2) ? extr_r1 : extr_r2;           \ | 
|  | ret = ret & 0xffff;                                       \ | 
|  | \ | 
|  | extr_r1 = sextract32(r1, 16, 16);                         \ | 
|  | extr_r2 = sextract32(r2, 16, 16);                         \ | 
|  | extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2;       \ | 
|  | ret |= extr_r1 << 16;                                     \ | 
|  | \ | 
|  | return ret;                                               \ | 
|  | }                                                             \ | 
|  | \ | 
|  | uint32_t helper_##name ##_hu(target_ulong r1, target_ulong r2)\ | 
|  | {                                                             \ | 
|  | uint32_t extr_r1, extr_r2;                                \ | 
|  | uint32_t ret = 0;                                         \ | 
|  | \ | 
|  | extr_r1 = extract32(r1, 0, 16);                           \ | 
|  | extr_r2 = extract32(r2, 0, 16);                           \ | 
|  | ret = (extr_r1 op extr_r2) ? extr_r1 : extr_r2;           \ | 
|  | ret = ret & 0xffff;                                       \ | 
|  | \ | 
|  | extr_r1 = extract32(r1, 16, 16);                          \ | 
|  | extr_r2 = extract32(r2, 16, 16);                          \ | 
|  | extr_r1 = (extr_r1 op extr_r2) ? extr_r1 : extr_r2;       \ | 
|  | ret |= extr_r1 << (16);                                   \ | 
|  | \ | 
|  | return ret;                                               \ | 
|  | }                                                             \ | 
|  | \ | 
|  | uint64_t helper_ix##name(uint64_t r1, uint32_t r2)            \ | 
|  | {                                                             \ | 
|  | int64_t r2l, r2h, r1hl;                                   \ | 
|  | uint64_t ret = 0;                                         \ | 
|  | \ | 
|  | ret = ((r1 + 2) & 0xffff);                                \ | 
|  | r2l = sextract64(r2, 0, 16);                              \ | 
|  | r2h = sextract64(r2, 16, 16);                             \ | 
|  | r1hl = sextract64(r1, 32, 16);                            \ | 
|  | \ | 
|  | if ((r2l op ## = r2h) && (r2l op r1hl)) {                 \ | 
|  | ret |= (r2l & 0xffff) << 32;                          \ | 
|  | ret |= extract64(r1, 0, 16) << 16;                    \ | 
|  | } else if ((r2h op r2l) && (r2h op r1hl)) {               \ | 
|  | ret |= extract64(r2, 16, 16) << 32;                   \ | 
|  | ret |= extract64(r1 + 1, 0, 16) << 16;                \ | 
|  | } else {                                                  \ | 
|  | ret |= r1 & 0xffffffff0000ull;                        \ | 
|  | }                                                         \ | 
|  | return ret;                                               \ | 
|  | }                                                             \ | 
|  | \ | 
|  | uint64_t helper_ix##name ##_u(uint64_t r1, uint32_t r2)       \ | 
|  | {                                                             \ | 
|  | int64_t r2l, r2h, r1hl;                                   \ | 
|  | uint64_t ret = 0;                                         \ | 
|  | \ | 
|  | ret = ((r1 + 2) & 0xffff);                                \ | 
|  | r2l = extract64(r2, 0, 16);                               \ | 
|  | r2h = extract64(r2, 16, 16);                              \ | 
|  | r1hl = extract64(r1, 32, 16);                             \ | 
|  | \ | 
|  | if ((r2l op ## = r2h) && (r2l op r1hl)) {                 \ | 
|  | ret |= (r2l & 0xffff) << 32;                          \ | 
|  | ret |= extract64(r1, 0, 16) << 16;                    \ | 
|  | } else if ((r2h op r2l) && (r2h op r1hl)) {               \ | 
|  | ret |= extract64(r2, 16, 16) << 32;                   \ | 
|  | ret |= extract64(r1 + 1, 0, 16) << 16;                \ | 
|  | } else {                                                  \ | 
|  | ret |= r1 & 0xffffffff0000ull;                        \ | 
|  | }                                                         \ | 
|  | return ret;                                               \ | 
|  | } | 
|  |  | 
|  | EXTREMA_H_B(max, >) | 
|  | EXTREMA_H_B(min, <) | 
|  |  | 
|  | #undef EXTREMA_H_B | 
|  |  | 
|  | uint32_t helper_clo(target_ulong r1) | 
|  | { | 
|  | return clo32(r1); | 
|  | } | 
|  |  | 
|  | uint32_t helper_clo_h(target_ulong r1) | 
|  | { | 
|  | uint32_t ret_hw0 = extract32(r1, 0, 16); | 
|  | uint32_t ret_hw1 = extract32(r1, 16, 16); | 
|  |  | 
|  | ret_hw0 = clo32(ret_hw0 << 16); | 
|  | ret_hw1 = clo32(ret_hw1 << 16); | 
|  |  | 
|  | if (ret_hw0 > 16) { | 
|  | ret_hw0 = 16; | 
|  | } | 
|  | if (ret_hw1 > 16) { | 
|  | ret_hw1 = 16; | 
|  | } | 
|  |  | 
|  | return ret_hw0 | (ret_hw1 << 16); | 
|  | } | 
|  |  | 
|  | uint32_t helper_clz(target_ulong r1) | 
|  | { | 
|  | return clz32(r1); | 
|  | } | 
|  |  | 
|  | uint32_t helper_clz_h(target_ulong r1) | 
|  | { | 
|  | uint32_t ret_hw0 = extract32(r1, 0, 16); | 
|  | uint32_t ret_hw1 = extract32(r1, 16, 16); | 
|  |  | 
|  | ret_hw0 = clz32(ret_hw0 << 16); | 
|  | ret_hw1 = clz32(ret_hw1 << 16); | 
|  |  | 
|  | if (ret_hw0 > 16) { | 
|  | ret_hw0 = 16; | 
|  | } | 
|  | if (ret_hw1 > 16) { | 
|  | ret_hw1 = 16; | 
|  | } | 
|  |  | 
|  | return ret_hw0 | (ret_hw1 << 16); | 
|  | } | 
|  |  | 
|  | uint32_t helper_cls(target_ulong r1) | 
|  | { | 
|  | return clrsb32(r1); | 
|  | } | 
|  |  | 
|  | uint32_t helper_cls_h(target_ulong r1) | 
|  | { | 
|  | uint32_t ret_hw0 = extract32(r1, 0, 16); | 
|  | uint32_t ret_hw1 = extract32(r1, 16, 16); | 
|  |  | 
|  | ret_hw0 = clrsb32(ret_hw0 << 16); | 
|  | ret_hw1 = clrsb32(ret_hw1 << 16); | 
|  |  | 
|  | if (ret_hw0 > 15) { | 
|  | ret_hw0 = 15; | 
|  | } | 
|  | if (ret_hw1 > 15) { | 
|  | ret_hw1 = 15; | 
|  | } | 
|  |  | 
|  | return ret_hw0 | (ret_hw1 << 16); | 
|  | } | 
|  |  | 
|  | uint32_t helper_sh(target_ulong r1, target_ulong r2) | 
|  | { | 
|  | int32_t shift_count = sextract32(r2, 0, 6); | 
|  |  | 
|  | if (shift_count == -32) { | 
|  | return 0; | 
|  | } else if (shift_count < 0) { | 
|  | return r1 >> -shift_count; | 
|  | } else { | 
|  | return r1 << shift_count; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t helper_sh_h(target_ulong r1, target_ulong r2) | 
|  | { | 
|  | int32_t ret_hw0, ret_hw1; | 
|  | int32_t shift_count; | 
|  |  | 
|  | shift_count = sextract32(r2, 0, 5); | 
|  |  | 
|  | if (shift_count == -16) { | 
|  | return 0; | 
|  | } else if (shift_count < 0) { | 
|  | ret_hw0 = extract32(r1, 0, 16) >> -shift_count; | 
|  | ret_hw1 = extract32(r1, 16, 16) >> -shift_count; | 
|  | return (ret_hw0 & 0xffff) | (ret_hw1 << 16); | 
|  | } else { | 
|  | ret_hw0 = extract32(r1, 0, 16) << shift_count; | 
|  | ret_hw1 = extract32(r1, 16, 16) << shift_count; | 
|  | return (ret_hw0 & 0xffff) | (ret_hw1 << 16); | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t helper_sha(CPUTriCoreState *env, target_ulong r1, target_ulong r2) | 
|  | { | 
|  | int32_t shift_count; | 
|  | int64_t result, t1; | 
|  | uint32_t ret; | 
|  |  | 
|  | shift_count = sextract32(r2, 0, 6); | 
|  | t1 = sextract32(r1, 0, 32); | 
|  |  | 
|  | if (shift_count == 0) { | 
|  | env->PSW_USB_C = env->PSW_USB_V = 0; | 
|  | ret = r1; | 
|  | } else if (shift_count == -32) { | 
|  | env->PSW_USB_C = r1; | 
|  | env->PSW_USB_V = 0; | 
|  | ret = t1 >> 31; | 
|  | } else if (shift_count > 0) { | 
|  | result = t1 << shift_count; | 
|  | /* calc carry */ | 
|  | env->PSW_USB_C = ((result & 0xffffffff00000000ULL) != 0); | 
|  | /* calc v */ | 
|  | env->PSW_USB_V = (((result > 0x7fffffffLL) || | 
|  | (result < -0x80000000LL)) << 31); | 
|  | /* calc sv */ | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  | ret = (uint32_t)result; | 
|  | } else { | 
|  | env->PSW_USB_V = 0; | 
|  | env->PSW_USB_C = (r1 & ((1 << -shift_count) - 1)); | 
|  | ret = t1 >> -shift_count; | 
|  | } | 
|  |  | 
|  | env->PSW_USB_AV = ret ^ ret * 2u; | 
|  | env->PSW_USB_SAV |= env->PSW_USB_AV; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint32_t helper_sha_h(target_ulong r1, target_ulong r2) | 
|  | { | 
|  | int32_t shift_count; | 
|  | int32_t ret_hw0, ret_hw1; | 
|  |  | 
|  | shift_count = sextract32(r2, 0, 5); | 
|  |  | 
|  | if (shift_count == 0) { | 
|  | return r1; | 
|  | } else if (shift_count < 0) { | 
|  | ret_hw0 = sextract32(r1, 0, 16) >> -shift_count; | 
|  | ret_hw1 = sextract32(r1, 16, 16) >> -shift_count; | 
|  | return (ret_hw0 & 0xffff) | (ret_hw1 << 16); | 
|  | } else { | 
|  | ret_hw0 = sextract32(r1, 0, 16) << shift_count; | 
|  | ret_hw1 = sextract32(r1, 16, 16) << shift_count; | 
|  | return (ret_hw0 & 0xffff) | (ret_hw1 << 16); | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t helper_bmerge(target_ulong r1, target_ulong r2) | 
|  | { | 
|  | uint32_t i, ret; | 
|  |  | 
|  | ret = 0; | 
|  | for (i = 0; i < 16; i++) { | 
|  | ret |= (r1 & 1) << (2 * i + 1); | 
|  | ret |= (r2 & 1) << (2 * i); | 
|  | r1 = r1 >> 1; | 
|  | r2 = r2 >> 1; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint64_t helper_bsplit(uint32_t r1) | 
|  | { | 
|  | int32_t i; | 
|  | uint64_t ret; | 
|  |  | 
|  | ret = 0; | 
|  | for (i = 0; i < 32; i = i + 2) { | 
|  | /* even */ | 
|  | ret |= (r1 & 1) << (i/2); | 
|  | r1 = r1 >> 1; | 
|  | /* odd */ | 
|  | ret |= (uint64_t)(r1 & 1) << (i/2 + 32); | 
|  | r1 = r1 >> 1; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint32_t helper_parity(target_ulong r1) | 
|  | { | 
|  | uint32_t ret; | 
|  | uint32_t nOnes, i; | 
|  |  | 
|  | ret = 0; | 
|  | nOnes = 0; | 
|  | for (i = 0; i < 8; i++) { | 
|  | ret ^= (r1 & 1); | 
|  | r1 = r1 >> 1; | 
|  | } | 
|  | /* second byte */ | 
|  | nOnes = 0; | 
|  | for (i = 0; i < 8; i++) { | 
|  | nOnes ^= (r1 & 1); | 
|  | r1 = r1 >> 1; | 
|  | } | 
|  | ret |= nOnes << 8; | 
|  | /* third byte */ | 
|  | nOnes = 0; | 
|  | for (i = 0; i < 8; i++) { | 
|  | nOnes ^= (r1 & 1); | 
|  | r1 = r1 >> 1; | 
|  | } | 
|  | ret |= nOnes << 16; | 
|  | /* fourth byte */ | 
|  | nOnes = 0; | 
|  | for (i = 0; i < 8; i++) { | 
|  | nOnes ^= (r1 & 1); | 
|  | r1 = r1 >> 1; | 
|  | } | 
|  | ret |= nOnes << 24; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint32_t helper_pack(uint32_t carry, uint32_t r1_low, uint32_t r1_high, | 
|  | target_ulong r2) | 
|  | { | 
|  | uint32_t ret; | 
|  | int32_t fp_exp, fp_frac, temp_exp, fp_exp_frac; | 
|  | int32_t int_exp  = r1_high; | 
|  | int32_t int_mant = r1_low; | 
|  | uint32_t flag_rnd = (int_mant & (1 << 7)) && ( | 
|  | (int_mant & (1 << 8)) || | 
|  | (int_mant & 0x7f)     || | 
|  | (carry != 0)); | 
|  | if (((int_mant & (1<<31)) == 0) && (int_exp == 255)) { | 
|  | fp_exp = 255; | 
|  | fp_frac = extract32(int_mant, 8, 23); | 
|  | } else if ((int_mant & (1<<31)) && (int_exp >= 127)) { | 
|  | fp_exp  = 255; | 
|  | fp_frac = 0; | 
|  | } else if ((int_mant & (1<<31)) && (int_exp <= -128)) { | 
|  | fp_exp  = 0; | 
|  | fp_frac = 0; | 
|  | } else if (int_mant == 0) { | 
|  | fp_exp  = 0; | 
|  | fp_frac = 0; | 
|  | } else { | 
|  | if (((int_mant & (1 << 31)) == 0)) { | 
|  | temp_exp = 0; | 
|  | } else { | 
|  | temp_exp = int_exp + 128; | 
|  | } | 
|  | fp_exp_frac = (((temp_exp & 0xff) << 23) | | 
|  | extract32(int_mant, 8, 23)) | 
|  | + flag_rnd; | 
|  | fp_exp  = extract32(fp_exp_frac, 23, 8); | 
|  | fp_frac = extract32(fp_exp_frac, 0, 23); | 
|  | } | 
|  | ret = r2 & (1 << 31); | 
|  | ret = ret + (fp_exp << 23); | 
|  | ret = ret + (fp_frac & 0x7fffff); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint64_t helper_unpack(target_ulong arg1) | 
|  | { | 
|  | int32_t fp_exp  = extract32(arg1, 23, 8); | 
|  | int32_t fp_frac = extract32(arg1, 0, 23); | 
|  | uint64_t ret; | 
|  | int32_t int_exp, int_mant; | 
|  |  | 
|  | if (fp_exp == 255) { | 
|  | int_exp = 255; | 
|  | int_mant = (fp_frac << 7); | 
|  | } else if ((fp_exp == 0) && (fp_frac == 0)) { | 
|  | int_exp  = -127; | 
|  | int_mant = 0; | 
|  | } else if ((fp_exp == 0) && (fp_frac != 0)) { | 
|  | int_exp  = -126; | 
|  | int_mant = (fp_frac << 7); | 
|  | } else { | 
|  | int_exp  = fp_exp - 127; | 
|  | int_mant = (fp_frac << 7); | 
|  | int_mant |= (1 << 30); | 
|  | } | 
|  | ret = int_exp; | 
|  | ret = ret << 32; | 
|  | ret |= int_mant; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint64_t helper_dvinit_b_13(CPUTriCoreState *env, uint32_t r1, uint32_t r2) | 
|  | { | 
|  | uint64_t ret; | 
|  | int32_t abs_sig_dividend, abs_divisor; | 
|  |  | 
|  | ret = sextract32(r1, 0, 32); | 
|  | ret = ret << 24; | 
|  | if (!((r1 & 0x80000000) == (r2 & 0x80000000))) { | 
|  | ret |= 0xffffff; | 
|  | } | 
|  |  | 
|  | abs_sig_dividend = abs((int32_t)r1) >> 8; | 
|  | abs_divisor = abs((int32_t)r2); | 
|  | /* calc overflow | 
|  | ofv if (a/b >= 255) <=> (a/255 >= b) */ | 
|  | env->PSW_USB_V = (abs_sig_dividend >= abs_divisor) << 31; | 
|  | env->PSW_USB_V = env->PSW_USB_V << 31; | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  | env->PSW_USB_AV = 0; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint64_t helper_dvinit_b_131(CPUTriCoreState *env, uint32_t r1, uint32_t r2) | 
|  | { | 
|  | uint64_t ret = sextract32(r1, 0, 32); | 
|  |  | 
|  | ret = ret << 24; | 
|  | if (!((r1 & 0x80000000) == (r2 & 0x80000000))) { | 
|  | ret |= 0xffffff; | 
|  | } | 
|  | /* calc overflow */ | 
|  | env->PSW_USB_V = ((r2 == 0) || ((r2 == 0xffffffff) && (r1 == 0xffffff80))); | 
|  | env->PSW_USB_V = env->PSW_USB_V << 31; | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  | env->PSW_USB_AV = 0; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint64_t helper_dvinit_h_13(CPUTriCoreState *env, uint32_t r1, uint32_t r2) | 
|  | { | 
|  | uint64_t ret; | 
|  | int32_t abs_sig_dividend, abs_divisor; | 
|  |  | 
|  | ret = sextract32(r1, 0, 32); | 
|  | ret = ret << 16; | 
|  | if (!((r1 & 0x80000000) == (r2 & 0x80000000))) { | 
|  | ret |= 0xffff; | 
|  | } | 
|  |  | 
|  | abs_sig_dividend = abs((int32_t)r1) >> 16; | 
|  | abs_divisor = abs((int32_t)r2); | 
|  | /* calc overflow | 
|  | ofv if (a/b >= 0xffff) <=> (a/0xffff >= b) */ | 
|  | env->PSW_USB_V = (abs_sig_dividend >= abs_divisor) << 31; | 
|  | env->PSW_USB_V = env->PSW_USB_V << 31; | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  | env->PSW_USB_AV = 0; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint64_t helper_dvinit_h_131(CPUTriCoreState *env, uint32_t r1, uint32_t r2) | 
|  | { | 
|  | uint64_t ret = sextract32(r1, 0, 32); | 
|  |  | 
|  | ret = ret << 16; | 
|  | if (!((r1 & 0x80000000) == (r2 & 0x80000000))) { | 
|  | ret |= 0xffff; | 
|  | } | 
|  | /* calc overflow */ | 
|  | env->PSW_USB_V = ((r2 == 0) || ((r2 == 0xffffffff) && (r1 == 0xffff8000))); | 
|  | env->PSW_USB_V = env->PSW_USB_V << 31; | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  | env->PSW_USB_AV = 0; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint64_t helper_dvadj(uint64_t r1, uint32_t r2) | 
|  | { | 
|  | int32_t x_sign = (r1 >> 63); | 
|  | int32_t q_sign = x_sign ^ (r2 >> 31); | 
|  | int32_t eq_pos = x_sign & ((r1 >> 32) == r2); | 
|  | int32_t eq_neg = x_sign & ((r1 >> 32) == -r2); | 
|  | uint32_t quotient; | 
|  | uint64_t ret, remainder; | 
|  |  | 
|  | if ((q_sign & ~eq_neg) | eq_pos) { | 
|  | quotient = (r1 + 1) & 0xffffffff; | 
|  | } else { | 
|  | quotient = r1 & 0xffffffff; | 
|  | } | 
|  |  | 
|  | if (eq_pos | eq_neg) { | 
|  | remainder = 0; | 
|  | } else { | 
|  | remainder = (r1 & 0xffffffff00000000ull); | 
|  | } | 
|  | ret = remainder|quotient; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint64_t helper_dvstep(uint64_t r1, uint32_t r2) | 
|  | { | 
|  | int32_t dividend_sign = extract64(r1, 63, 1); | 
|  | int32_t divisor_sign = extract32(r2, 31, 1); | 
|  | int32_t quotient_sign = (dividend_sign != divisor_sign); | 
|  | int32_t addend, dividend_quotient, remainder; | 
|  | int32_t i, temp; | 
|  |  | 
|  | if (quotient_sign) { | 
|  | addend = r2; | 
|  | } else { | 
|  | addend = -r2; | 
|  | } | 
|  | dividend_quotient = (int32_t)r1; | 
|  | remainder = (int32_t)(r1 >> 32); | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | remainder = (remainder << 1) | extract32(dividend_quotient, 31, 1); | 
|  | dividend_quotient <<= 1; | 
|  | temp = remainder + addend; | 
|  | if ((temp < 0) == dividend_sign) { | 
|  | remainder = temp; | 
|  | } | 
|  | if (((temp < 0) == dividend_sign)) { | 
|  | dividend_quotient = dividend_quotient | !quotient_sign; | 
|  | } else { | 
|  | dividend_quotient = dividend_quotient | quotient_sign; | 
|  | } | 
|  | } | 
|  | return ((uint64_t)remainder << 32) | (uint32_t)dividend_quotient; | 
|  | } | 
|  |  | 
|  | uint64_t helper_dvstep_u(uint64_t r1, uint32_t r2) | 
|  | { | 
|  | int32_t dividend_quotient = extract64(r1, 0, 32); | 
|  | int64_t remainder = extract64(r1, 32, 32); | 
|  | int32_t i; | 
|  | int64_t temp; | 
|  | for (i = 0; i < 8; i++) { | 
|  | remainder = (remainder << 1) | extract32(dividend_quotient, 31, 1); | 
|  | dividend_quotient <<= 1; | 
|  | temp = (remainder & 0xffffffff) - r2; | 
|  | if (temp >= 0) { | 
|  | remainder = temp; | 
|  | } | 
|  | dividend_quotient = dividend_quotient | !(temp < 0); | 
|  | } | 
|  | return ((uint64_t)remainder << 32) | (uint32_t)dividend_quotient; | 
|  | } | 
|  |  | 
|  | uint64_t helper_divide(CPUTriCoreState *env, uint32_t r1, uint32_t r2) | 
|  | { | 
|  | int32_t quotient, remainder; | 
|  | int32_t dividend = (int32_t)r1; | 
|  | int32_t divisor = (int32_t)r2; | 
|  |  | 
|  | if (divisor == 0) { | 
|  | if (dividend >= 0) { | 
|  | quotient = 0x7fffffff; | 
|  | remainder = 0; | 
|  | } else { | 
|  | quotient = 0x80000000; | 
|  | remainder = 0; | 
|  | } | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | } else if ((divisor == 0xffffffff) && (dividend == 0x80000000)) { | 
|  | quotient = 0x7fffffff; | 
|  | remainder = 0; | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | } else { | 
|  | remainder = dividend % divisor; | 
|  | quotient = (dividend - remainder)/divisor; | 
|  | env->PSW_USB_V = 0; | 
|  | } | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  | env->PSW_USB_AV = 0; | 
|  | return ((uint64_t)remainder << 32) | (uint32_t)quotient; | 
|  | } | 
|  |  | 
|  | uint64_t helper_divide_u(CPUTriCoreState *env, uint32_t r1, uint32_t r2) | 
|  | { | 
|  | uint32_t quotient, remainder; | 
|  | uint32_t dividend = r1; | 
|  | uint32_t divisor = r2; | 
|  |  | 
|  | if (divisor == 0) { | 
|  | quotient = 0xffffffff; | 
|  | remainder = 0; | 
|  | env->PSW_USB_V = (1 << 31); | 
|  | } else { | 
|  | remainder = dividend % divisor; | 
|  | quotient = (dividend - remainder)/divisor; | 
|  | env->PSW_USB_V = 0; | 
|  | } | 
|  | env->PSW_USB_SV |= env->PSW_USB_V; | 
|  | env->PSW_USB_AV = 0; | 
|  | return ((uint64_t)remainder << 32) | quotient; | 
|  | } | 
|  |  | 
|  | uint64_t helper_mul_h(uint32_t arg00, uint32_t arg01, | 
|  | uint32_t arg10, uint32_t arg11, uint32_t n) | 
|  | { | 
|  | uint64_t ret; | 
|  | uint32_t result0, result1; | 
|  |  | 
|  | int32_t sc1 = ((arg00 & 0xffff) == 0x8000) && | 
|  | ((arg10 & 0xffff) == 0x8000) && (n == 1); | 
|  | int32_t sc0 = ((arg01 & 0xffff) == 0x8000) && | 
|  | ((arg11 & 0xffff) == 0x8000) && (n == 1); | 
|  | if (sc1) { | 
|  | result1 = 0x7fffffff; | 
|  | } else { | 
|  | result1 = (((uint32_t)(arg00 * arg10)) << n); | 
|  | } | 
|  | if (sc0) { | 
|  | result0 = 0x7fffffff; | 
|  | } else { | 
|  | result0 = (((uint32_t)(arg01 * arg11)) << n); | 
|  | } | 
|  | ret = (((uint64_t)result1 << 32)) | result0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint64_t helper_mulm_h(uint32_t arg00, uint32_t arg01, | 
|  | uint32_t arg10, uint32_t arg11, uint32_t n) | 
|  | { | 
|  | uint64_t ret; | 
|  | int64_t result0, result1; | 
|  |  | 
|  | int32_t sc1 = ((arg00 & 0xffff) == 0x8000) && | 
|  | ((arg10 & 0xffff) == 0x8000) && (n == 1); | 
|  | int32_t sc0 = ((arg01 & 0xffff) == 0x8000) && | 
|  | ((arg11 & 0xffff) == 0x8000) && (n == 1); | 
|  |  | 
|  | if (sc1) { | 
|  | result1 = 0x7fffffff; | 
|  | } else { | 
|  | result1 = (((int32_t)arg00 * (int32_t)arg10) << n); | 
|  | } | 
|  | if (sc0) { | 
|  | result0 = 0x7fffffff; | 
|  | } else { | 
|  | result0 = (((int32_t)arg01 * (int32_t)arg11) << n); | 
|  | } | 
|  | ret = (result1 + result0); | 
|  | ret = ret << 16; | 
|  | return ret; | 
|  | } | 
|  | uint32_t helper_mulr_h(uint32_t arg00, uint32_t arg01, | 
|  | uint32_t arg10, uint32_t arg11, uint32_t n) | 
|  | { | 
|  | uint32_t result0, result1; | 
|  |  | 
|  | int32_t sc1 = ((arg00 & 0xffff) == 0x8000) && | 
|  | ((arg10 & 0xffff) == 0x8000) && (n == 1); | 
|  | int32_t sc0 = ((arg01 & 0xffff) == 0x8000) && | 
|  | ((arg11 & 0xffff) == 0x8000) && (n == 1); | 
|  |  | 
|  | if (sc1) { | 
|  | result1 = 0x7fffffff; | 
|  | } else { | 
|  | result1 = ((arg00 * arg10) << n) + 0x8000; | 
|  | } | 
|  | if (sc0) { | 
|  | result0 = 0x7fffffff; | 
|  | } else { | 
|  | result0 = ((arg01 * arg11) << n) + 0x8000; | 
|  | } | 
|  | return (result1 & 0xffff0000) | (result0 >> 16); | 
|  | } | 
|  |  | 
|  | uint32_t helper_crc32(uint32_t arg0, uint32_t arg1) | 
|  | { | 
|  | uint8_t buf[4]; | 
|  | uint32_t ret; | 
|  | stl_be_p(buf, arg0); | 
|  |  | 
|  | ret = crc32(arg1, buf, 4); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* context save area (CSA) related helpers */ | 
|  |  | 
|  | static int cdc_increment(target_ulong *psw) | 
|  | { | 
|  | if ((*psw & MASK_PSW_CDC) == 0x7f) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | (*psw)++; | 
|  | /* check for overflow */ | 
|  | int lo = clo32((*psw & MASK_PSW_CDC) << (32 - 7)); | 
|  | int mask = (1u << (7 - lo)) - 1; | 
|  | int count = *psw & mask; | 
|  | if (count == 0) { | 
|  | (*psw)--; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cdc_decrement(target_ulong *psw) | 
|  | { | 
|  | if ((*psw & MASK_PSW_CDC) == 0x7f) { | 
|  | return 0; | 
|  | } | 
|  | /* check for underflow */ | 
|  | int lo = clo32((*psw & MASK_PSW_CDC) << (32 - 7)); | 
|  | int mask = (1u << (7 - lo)) - 1; | 
|  | int count = *psw & mask; | 
|  | if (count == 0) { | 
|  | return 1; | 
|  | } | 
|  | (*psw)--; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool cdc_zero(target_ulong *psw) | 
|  | { | 
|  | int cdc = *psw & MASK_PSW_CDC; | 
|  | /* Returns TRUE if PSW.CDC.COUNT == 0 or if PSW.CDC == | 
|  | 7'b1111111, otherwise returns FALSE. */ | 
|  | if (cdc == 0x7f) { | 
|  | return true; | 
|  | } | 
|  | /* find CDC.COUNT */ | 
|  | int lo = clo32((*psw & MASK_PSW_CDC) << (32 - 7)); | 
|  | int mask = (1u << (7 - lo)) - 1; | 
|  | int count = *psw & mask; | 
|  | return count == 0; | 
|  | } | 
|  |  | 
|  | static void save_context_upper(CPUTriCoreState *env, int ea) | 
|  | { | 
|  | cpu_stl_data(env, ea, env->PCXI); | 
|  | cpu_stl_data(env, ea+4, psw_read(env)); | 
|  | cpu_stl_data(env, ea+8, env->gpr_a[10]); | 
|  | cpu_stl_data(env, ea+12, env->gpr_a[11]); | 
|  | cpu_stl_data(env, ea+16, env->gpr_d[8]); | 
|  | cpu_stl_data(env, ea+20, env->gpr_d[9]); | 
|  | cpu_stl_data(env, ea+24, env->gpr_d[10]); | 
|  | cpu_stl_data(env, ea+28, env->gpr_d[11]); | 
|  | cpu_stl_data(env, ea+32, env->gpr_a[12]); | 
|  | cpu_stl_data(env, ea+36, env->gpr_a[13]); | 
|  | cpu_stl_data(env, ea+40, env->gpr_a[14]); | 
|  | cpu_stl_data(env, ea+44, env->gpr_a[15]); | 
|  | cpu_stl_data(env, ea+48, env->gpr_d[12]); | 
|  | cpu_stl_data(env, ea+52, env->gpr_d[13]); | 
|  | cpu_stl_data(env, ea+56, env->gpr_d[14]); | 
|  | cpu_stl_data(env, ea+60, env->gpr_d[15]); | 
|  | } | 
|  |  | 
|  | static void save_context_lower(CPUTriCoreState *env, int ea) | 
|  | { | 
|  | cpu_stl_data(env, ea, env->PCXI); | 
|  | cpu_stl_data(env, ea+4, env->gpr_a[11]); | 
|  | cpu_stl_data(env, ea+8, env->gpr_a[2]); | 
|  | cpu_stl_data(env, ea+12, env->gpr_a[3]); | 
|  | cpu_stl_data(env, ea+16, env->gpr_d[0]); | 
|  | cpu_stl_data(env, ea+20, env->gpr_d[1]); | 
|  | cpu_stl_data(env, ea+24, env->gpr_d[2]); | 
|  | cpu_stl_data(env, ea+28, env->gpr_d[3]); | 
|  | cpu_stl_data(env, ea+32, env->gpr_a[4]); | 
|  | cpu_stl_data(env, ea+36, env->gpr_a[5]); | 
|  | cpu_stl_data(env, ea+40, env->gpr_a[6]); | 
|  | cpu_stl_data(env, ea+44, env->gpr_a[7]); | 
|  | cpu_stl_data(env, ea+48, env->gpr_d[4]); | 
|  | cpu_stl_data(env, ea+52, env->gpr_d[5]); | 
|  | cpu_stl_data(env, ea+56, env->gpr_d[6]); | 
|  | cpu_stl_data(env, ea+60, env->gpr_d[7]); | 
|  | } | 
|  |  | 
|  | static void restore_context_upper(CPUTriCoreState *env, int ea, | 
|  | target_ulong *new_PCXI, target_ulong *new_PSW) | 
|  | { | 
|  | *new_PCXI = cpu_ldl_data(env, ea); | 
|  | *new_PSW = cpu_ldl_data(env, ea+4); | 
|  | env->gpr_a[10] = cpu_ldl_data(env, ea+8); | 
|  | env->gpr_a[11] = cpu_ldl_data(env, ea+12); | 
|  | env->gpr_d[8]  = cpu_ldl_data(env, ea+16); | 
|  | env->gpr_d[9]  = cpu_ldl_data(env, ea+20); | 
|  | env->gpr_d[10] = cpu_ldl_data(env, ea+24); | 
|  | env->gpr_d[11] = cpu_ldl_data(env, ea+28); | 
|  | env->gpr_a[12] = cpu_ldl_data(env, ea+32); | 
|  | env->gpr_a[13] = cpu_ldl_data(env, ea+36); | 
|  | env->gpr_a[14] = cpu_ldl_data(env, ea+40); | 
|  | env->gpr_a[15] = cpu_ldl_data(env, ea+44); | 
|  | env->gpr_d[12] = cpu_ldl_data(env, ea+48); | 
|  | env->gpr_d[13] = cpu_ldl_data(env, ea+52); | 
|  | env->gpr_d[14] = cpu_ldl_data(env, ea+56); | 
|  | env->gpr_d[15] = cpu_ldl_data(env, ea+60); | 
|  | } | 
|  |  | 
|  | static void restore_context_lower(CPUTriCoreState *env, int ea, | 
|  | target_ulong *ra, target_ulong *pcxi) | 
|  | { | 
|  | *pcxi = cpu_ldl_data(env, ea); | 
|  | *ra = cpu_ldl_data(env, ea+4); | 
|  | env->gpr_a[2] = cpu_ldl_data(env, ea+8); | 
|  | env->gpr_a[3] = cpu_ldl_data(env, ea+12); | 
|  | env->gpr_d[0] = cpu_ldl_data(env, ea+16); | 
|  | env->gpr_d[1] = cpu_ldl_data(env, ea+20); | 
|  | env->gpr_d[2] = cpu_ldl_data(env, ea+24); | 
|  | env->gpr_d[3] = cpu_ldl_data(env, ea+28); | 
|  | env->gpr_a[4] = cpu_ldl_data(env, ea+32); | 
|  | env->gpr_a[5] = cpu_ldl_data(env, ea+36); | 
|  | env->gpr_a[6] = cpu_ldl_data(env, ea+40); | 
|  | env->gpr_a[7] = cpu_ldl_data(env, ea+44); | 
|  | env->gpr_d[4] = cpu_ldl_data(env, ea+48); | 
|  | env->gpr_d[5] = cpu_ldl_data(env, ea+52); | 
|  | env->gpr_d[6] = cpu_ldl_data(env, ea+56); | 
|  | env->gpr_d[7] = cpu_ldl_data(env, ea+60); | 
|  | } | 
|  |  | 
|  | void helper_call(CPUTriCoreState *env, uint32_t next_pc) | 
|  | { | 
|  | target_ulong tmp_FCX; | 
|  | target_ulong ea; | 
|  | target_ulong new_FCX; | 
|  | target_ulong psw; | 
|  |  | 
|  | psw = psw_read(env); | 
|  | /* if (FCX == 0) trap(FCU); */ | 
|  | if (env->FCX == 0) { | 
|  | /* FCU trap */ | 
|  | raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCU, GETPC()); | 
|  | } | 
|  | /* if (PSW.CDE) then if (cdc_increment()) then trap(CDO); */ | 
|  | if (psw & MASK_PSW_CDE) { | 
|  | if (cdc_increment(&psw)) { | 
|  | /* CDO trap */ | 
|  | raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CDO, GETPC()); | 
|  | } | 
|  | } | 
|  | /* PSW.CDE = 1;*/ | 
|  | psw |= MASK_PSW_CDE; | 
|  | /* tmp_FCX = FCX; */ | 
|  | tmp_FCX = env->FCX; | 
|  | /* EA = {FCX.FCXS, 6'b0, FCX.FCXO, 6'b0}; */ | 
|  | ea = ((env->FCX & MASK_FCX_FCXS) << 12) + | 
|  | ((env->FCX & MASK_FCX_FCXO) << 6); | 
|  | /* new_FCX = M(EA, word); */ | 
|  | new_FCX = cpu_ldl_data(env, ea); | 
|  | /* M(EA, 16 * word) = {PCXI, PSW, A[10], A[11], D[8], D[9], D[10], D[11], | 
|  | A[12], A[13], A[14], A[15], D[12], D[13], D[14], | 
|  | D[15]}; */ | 
|  | save_context_upper(env, ea); | 
|  |  | 
|  | /* PCXI.PCPN = ICR.CCPN; */ | 
|  | env->PCXI = (env->PCXI & 0xffffff) + | 
|  | ((env->ICR & MASK_ICR_CCPN) << 24); | 
|  | /* PCXI.PIE = ICR.IE; */ | 
|  | env->PCXI = ((env->PCXI & ~MASK_PCXI_PIE) + | 
|  | ((env->ICR & MASK_ICR_IE) << 15)); | 
|  | /* PCXI.UL = 1; */ | 
|  | env->PCXI |= MASK_PCXI_UL; | 
|  |  | 
|  | /* PCXI[19: 0] = FCX[19: 0]; */ | 
|  | env->PCXI = (env->PCXI & 0xfff00000) + (env->FCX & 0xfffff); | 
|  | /* FCX[19: 0] = new_FCX[19: 0]; */ | 
|  | env->FCX = (env->FCX & 0xfff00000) + (new_FCX & 0xfffff); | 
|  | /* A[11] = next_pc[31: 0]; */ | 
|  | env->gpr_a[11] = next_pc; | 
|  |  | 
|  | /* if (tmp_FCX == LCX) trap(FCD);*/ | 
|  | if (tmp_FCX == env->LCX) { | 
|  | /* FCD trap */ | 
|  | raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCD, GETPC()); | 
|  | } | 
|  | psw_write(env, psw); | 
|  | } | 
|  |  | 
|  | void helper_ret(CPUTriCoreState *env) | 
|  | { | 
|  | target_ulong ea; | 
|  | target_ulong new_PCXI; | 
|  | target_ulong new_PSW, psw; | 
|  |  | 
|  | psw = psw_read(env); | 
|  | /* if (PSW.CDE) then if (cdc_decrement()) then trap(CDU);*/ | 
|  | if (psw & MASK_PSW_CDE) { | 
|  | if (cdc_decrement(&psw)) { | 
|  | /* CDU trap */ | 
|  | psw_write(env, psw); | 
|  | raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CDU, GETPC()); | 
|  | } | 
|  | } | 
|  | /*   if (PCXI[19: 0] == 0) then trap(CSU); */ | 
|  | if ((env->PCXI & 0xfffff) == 0) { | 
|  | /* CSU trap */ | 
|  | psw_write(env, psw); | 
|  | raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CSU, GETPC()); | 
|  | } | 
|  | /* if (PCXI.UL == 0) then trap(CTYP); */ | 
|  | if ((env->PCXI & MASK_PCXI_UL) == 0) { | 
|  | /* CTYP trap */ | 
|  | cdc_increment(&psw); /* restore to the start of helper */ | 
|  | psw_write(env, psw); | 
|  | raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CTYP, GETPC()); | 
|  | } | 
|  | /* PC = {A11 [31: 1], 1’b0}; */ | 
|  | env->PC = env->gpr_a[11] & 0xfffffffe; | 
|  |  | 
|  | /* EA = {PCXI.PCXS, 6'b0, PCXI.PCXO, 6'b0}; */ | 
|  | ea = ((env->PCXI & MASK_PCXI_PCXS) << 12) + | 
|  | ((env->PCXI & MASK_PCXI_PCXO) << 6); | 
|  | /* {new_PCXI, new_PSW, A[10], A[11], D[8], D[9], D[10], D[11], A[12], | 
|  | A[13], A[14], A[15], D[12], D[13], D[14], D[15]} = M(EA, 16 * word); */ | 
|  | restore_context_upper(env, ea, &new_PCXI, &new_PSW); | 
|  | /* M(EA, word) = FCX; */ | 
|  | cpu_stl_data(env, ea, env->FCX); | 
|  | /* FCX[19: 0] = PCXI[19: 0]; */ | 
|  | env->FCX = (env->FCX & 0xfff00000) + (env->PCXI & 0x000fffff); | 
|  | /* PCXI = new_PCXI; */ | 
|  | env->PCXI = new_PCXI; | 
|  |  | 
|  | if (tricore_feature(env, TRICORE_FEATURE_13)) { | 
|  | /* PSW = new_PSW */ | 
|  | psw_write(env, new_PSW); | 
|  | } else { | 
|  | /* PSW = {new_PSW[31:26], PSW[25:24], new_PSW[23:0]}; */ | 
|  | psw_write(env, (new_PSW & ~(0x3000000)) + (psw & (0x3000000))); | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_bisr(CPUTriCoreState *env, uint32_t const9) | 
|  | { | 
|  | target_ulong tmp_FCX; | 
|  | target_ulong ea; | 
|  | target_ulong new_FCX; | 
|  |  | 
|  | if (env->FCX == 0) { | 
|  | /* FCU trap */ | 
|  | raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCU, GETPC()); | 
|  | } | 
|  |  | 
|  | tmp_FCX = env->FCX; | 
|  | ea = ((env->FCX & 0xf0000) << 12) + ((env->FCX & 0xffff) << 6); | 
|  |  | 
|  | /* new_FCX = M(EA, word); */ | 
|  | new_FCX = cpu_ldl_data(env, ea); | 
|  | /* M(EA, 16 * word) = {PCXI, A[11], A[2], A[3], D[0], D[1], D[2], D[3], A[4] | 
|  | , A[5], A[6], A[7], D[4], D[5], D[6], D[7]}; */ | 
|  | save_context_lower(env, ea); | 
|  |  | 
|  |  | 
|  | /* PCXI.PCPN = ICR.CCPN */ | 
|  | env->PCXI = (env->PCXI & 0xffffff) + | 
|  | ((env->ICR & MASK_ICR_CCPN) << 24); | 
|  | /* PCXI.PIE  = ICR.IE */ | 
|  | env->PCXI = ((env->PCXI & ~MASK_PCXI_PIE) + | 
|  | ((env->ICR & MASK_ICR_IE) << 15)); | 
|  | /* PCXI.UL = 0 */ | 
|  | env->PCXI &= ~(MASK_PCXI_UL); | 
|  | /* PCXI[19: 0] = FCX[19: 0] */ | 
|  | env->PCXI = (env->PCXI & 0xfff00000) + (env->FCX & 0xfffff); | 
|  | /* FXC[19: 0] = new_FCX[19: 0] */ | 
|  | env->FCX = (env->FCX & 0xfff00000) + (new_FCX & 0xfffff); | 
|  | /* ICR.IE = 1 */ | 
|  | env->ICR |= MASK_ICR_IE; | 
|  |  | 
|  | env->ICR |= const9; /* ICR.CCPN = const9[7: 0];*/ | 
|  |  | 
|  | if (tmp_FCX == env->LCX) { | 
|  | /* FCD trap */ | 
|  | raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCD, GETPC()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_rfe(CPUTriCoreState *env) | 
|  | { | 
|  | target_ulong ea; | 
|  | target_ulong new_PCXI; | 
|  | target_ulong new_PSW; | 
|  | /* if (PCXI[19: 0] == 0) then trap(CSU); */ | 
|  | if ((env->PCXI & 0xfffff) == 0) { | 
|  | /* raise csu trap */ | 
|  | raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CSU, GETPC()); | 
|  | } | 
|  | /* if (PCXI.UL == 0) then trap(CTYP); */ | 
|  | if ((env->PCXI & MASK_PCXI_UL) == 0) { | 
|  | /* raise CTYP trap */ | 
|  | raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CTYP, GETPC()); | 
|  | } | 
|  | /* if (!cdc_zero() AND PSW.CDE) then trap(NEST); */ | 
|  | if (!cdc_zero(&(env->PSW)) && (env->PSW & MASK_PSW_CDE)) { | 
|  | /* raise NEST trap */ | 
|  | raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_NEST, GETPC()); | 
|  | } | 
|  | env->PC = env->gpr_a[11] & ~0x1; | 
|  | /* ICR.IE = PCXI.PIE; */ | 
|  | env->ICR = (env->ICR & ~MASK_ICR_IE) + ((env->PCXI & MASK_PCXI_PIE) >> 15); | 
|  | /* ICR.CCPN = PCXI.PCPN; */ | 
|  | env->ICR = (env->ICR & ~MASK_ICR_CCPN) + | 
|  | ((env->PCXI & MASK_PCXI_PCPN) >> 24); | 
|  | /*EA = {PCXI.PCXS, 6'b0, PCXI.PCXO, 6'b0};*/ | 
|  | ea = ((env->PCXI & MASK_PCXI_PCXS) << 12) + | 
|  | ((env->PCXI & MASK_PCXI_PCXO) << 6); | 
|  | /*{new_PCXI, PSW, A[10], A[11], D[8], D[9], D[10], D[11], A[12], | 
|  | A[13], A[14], A[15], D[12], D[13], D[14], D[15]} = M(EA, 16 * word); */ | 
|  | restore_context_upper(env, ea, &new_PCXI, &new_PSW); | 
|  | /* M(EA, word) = FCX;*/ | 
|  | cpu_stl_data(env, ea, env->FCX); | 
|  | /* FCX[19: 0] = PCXI[19: 0]; */ | 
|  | env->FCX = (env->FCX & 0xfff00000) + (env->PCXI & 0x000fffff); | 
|  | /* PCXI = new_PCXI; */ | 
|  | env->PCXI = new_PCXI; | 
|  | /* write psw */ | 
|  | psw_write(env, new_PSW); | 
|  | } | 
|  |  | 
|  | void helper_rfm(CPUTriCoreState *env) | 
|  | { | 
|  | env->PC = (env->gpr_a[11] & ~0x1); | 
|  | /* ICR.IE = PCXI.PIE; */ | 
|  | env->ICR = (env->ICR & ~MASK_ICR_IE) | | 
|  | ((env->PCXI & MASK_PCXI_PIE) >> 15); | 
|  | /* ICR.CCPN = PCXI.PCPN; */ | 
|  | env->ICR = (env->ICR & ~MASK_ICR_CCPN) | | 
|  | ((env->PCXI & MASK_PCXI_PCPN) >> 24); | 
|  | /* {PCXI, PSW, A[10], A[11]} = M(DCX, 4 * word); */ | 
|  | env->PCXI = cpu_ldl_data(env, env->DCX); | 
|  | psw_write(env, cpu_ldl_data(env, env->DCX+4)); | 
|  | env->gpr_a[10] = cpu_ldl_data(env, env->DCX+8); | 
|  | env->gpr_a[11] = cpu_ldl_data(env, env->DCX+12); | 
|  |  | 
|  | if (tricore_feature(env, TRICORE_FEATURE_131)) { | 
|  | env->DBGTCR = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_ldlcx(CPUTriCoreState *env, uint32_t ea) | 
|  | { | 
|  | uint32_t dummy; | 
|  | /* insn doesn't load PCXI and RA */ | 
|  | restore_context_lower(env, ea, &dummy, &dummy); | 
|  | } | 
|  |  | 
|  | void helper_lducx(CPUTriCoreState *env, uint32_t ea) | 
|  | { | 
|  | uint32_t dummy; | 
|  | /* insn doesn't load PCXI and PSW */ | 
|  | restore_context_upper(env, ea, &dummy, &dummy); | 
|  | } | 
|  |  | 
|  | void helper_stlcx(CPUTriCoreState *env, uint32_t ea) | 
|  | { | 
|  | save_context_lower(env, ea); | 
|  | } | 
|  |  | 
|  | void helper_stucx(CPUTriCoreState *env, uint32_t ea) | 
|  | { | 
|  | save_context_upper(env, ea); | 
|  | } | 
|  |  | 
|  | void helper_svlcx(CPUTriCoreState *env) | 
|  | { | 
|  | target_ulong tmp_FCX; | 
|  | target_ulong ea; | 
|  | target_ulong new_FCX; | 
|  |  | 
|  | if (env->FCX == 0) { | 
|  | /* FCU trap */ | 
|  | raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCU, GETPC()); | 
|  | } | 
|  | /* tmp_FCX = FCX; */ | 
|  | tmp_FCX = env->FCX; | 
|  | /* EA = {FCX.FCXS, 6'b0, FCX.FCXO, 6'b0}; */ | 
|  | ea = ((env->FCX & MASK_FCX_FCXS) << 12) + | 
|  | ((env->FCX & MASK_FCX_FCXO) << 6); | 
|  | /* new_FCX = M(EA, word); */ | 
|  | new_FCX = cpu_ldl_data(env, ea); | 
|  | /* M(EA, 16 * word) = {PCXI, PSW, A[10], A[11], D[8], D[9], D[10], D[11], | 
|  | A[12], A[13], A[14], A[15], D[12], D[13], D[14], | 
|  | D[15]}; */ | 
|  | save_context_lower(env, ea); | 
|  |  | 
|  | /* PCXI.PCPN = ICR.CCPN; */ | 
|  | env->PCXI = (env->PCXI & 0xffffff) + | 
|  | ((env->ICR & MASK_ICR_CCPN) << 24); | 
|  | /* PCXI.PIE = ICR.IE; */ | 
|  | env->PCXI = ((env->PCXI & ~MASK_PCXI_PIE) + | 
|  | ((env->ICR & MASK_ICR_IE) << 15)); | 
|  | /* PCXI.UL = 0; */ | 
|  | env->PCXI &= ~MASK_PCXI_UL; | 
|  |  | 
|  | /* PCXI[19: 0] = FCX[19: 0]; */ | 
|  | env->PCXI = (env->PCXI & 0xfff00000) + (env->FCX & 0xfffff); | 
|  | /* FCX[19: 0] = new_FCX[19: 0]; */ | 
|  | env->FCX = (env->FCX & 0xfff00000) + (new_FCX & 0xfffff); | 
|  |  | 
|  | /* if (tmp_FCX == LCX) trap(FCD);*/ | 
|  | if (tmp_FCX == env->LCX) { | 
|  | /* FCD trap */ | 
|  | raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCD, GETPC()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_svucx(CPUTriCoreState *env) | 
|  | { | 
|  | target_ulong tmp_FCX; | 
|  | target_ulong ea; | 
|  | target_ulong new_FCX; | 
|  |  | 
|  | if (env->FCX == 0) { | 
|  | /* FCU trap */ | 
|  | raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCU, GETPC()); | 
|  | } | 
|  | /* tmp_FCX = FCX; */ | 
|  | tmp_FCX = env->FCX; | 
|  | /* EA = {FCX.FCXS, 6'b0, FCX.FCXO, 6'b0}; */ | 
|  | ea = ((env->FCX & MASK_FCX_FCXS) << 12) + | 
|  | ((env->FCX & MASK_FCX_FCXO) << 6); | 
|  | /* new_FCX = M(EA, word); */ | 
|  | new_FCX = cpu_ldl_data(env, ea); | 
|  | /* M(EA, 16 * word) = {PCXI, PSW, A[10], A[11], D[8], D[9], D[10], D[11], | 
|  | A[12], A[13], A[14], A[15], D[12], D[13], D[14], | 
|  | D[15]}; */ | 
|  | save_context_upper(env, ea); | 
|  |  | 
|  | /* PCXI.PCPN = ICR.CCPN; */ | 
|  | env->PCXI = (env->PCXI & 0xffffff) + | 
|  | ((env->ICR & MASK_ICR_CCPN) << 24); | 
|  | /* PCXI.PIE = ICR.IE; */ | 
|  | env->PCXI = ((env->PCXI & ~MASK_PCXI_PIE) + | 
|  | ((env->ICR & MASK_ICR_IE) << 15)); | 
|  | /* PCXI.UL = 1; */ | 
|  | env->PCXI |= MASK_PCXI_UL; | 
|  |  | 
|  | /* PCXI[19: 0] = FCX[19: 0]; */ | 
|  | env->PCXI = (env->PCXI & 0xfff00000) + (env->FCX & 0xfffff); | 
|  | /* FCX[19: 0] = new_FCX[19: 0]; */ | 
|  | env->FCX = (env->FCX & 0xfff00000) + (new_FCX & 0xfffff); | 
|  |  | 
|  | /* if (tmp_FCX == LCX) trap(FCD);*/ | 
|  | if (tmp_FCX == env->LCX) { | 
|  | /* FCD trap */ | 
|  | raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_FCD, GETPC()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_rslcx(CPUTriCoreState *env) | 
|  | { | 
|  | target_ulong ea; | 
|  | target_ulong new_PCXI; | 
|  | /*   if (PCXI[19: 0] == 0) then trap(CSU); */ | 
|  | if ((env->PCXI & 0xfffff) == 0) { | 
|  | /* CSU trap */ | 
|  | raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CSU, GETPC()); | 
|  | } | 
|  | /* if (PCXI.UL == 1) then trap(CTYP); */ | 
|  | if ((env->PCXI & MASK_PCXI_UL) != 0) { | 
|  | /* CTYP trap */ | 
|  | raise_exception_sync_helper(env, TRAPC_CTX_MNG, TIN3_CTYP, GETPC()); | 
|  | } | 
|  | /* EA = {PCXI.PCXS, 6'b0, PCXI.PCXO, 6'b0}; */ | 
|  | ea = ((env->PCXI & MASK_PCXI_PCXS) << 12) + | 
|  | ((env->PCXI & MASK_PCXI_PCXO) << 6); | 
|  | /* {new_PCXI, A[11], A[10], A[11], D[8], D[9], D[10], D[11], A[12], | 
|  | A[13], A[14], A[15], D[12], D[13], D[14], D[15]} = M(EA, 16 * word); */ | 
|  | restore_context_lower(env, ea, &env->gpr_a[11], &new_PCXI); | 
|  | /* M(EA, word) = FCX; */ | 
|  | cpu_stl_data(env, ea, env->FCX); | 
|  | /* M(EA, word) = FCX; */ | 
|  | cpu_stl_data(env, ea, env->FCX); | 
|  | /* FCX[19: 0] = PCXI[19: 0]; */ | 
|  | env->FCX = (env->FCX & 0xfff00000) + (env->PCXI & 0x000fffff); | 
|  | /* PCXI = new_PCXI; */ | 
|  | env->PCXI = new_PCXI; | 
|  | } | 
|  |  | 
|  | void helper_psw_write(CPUTriCoreState *env, uint32_t arg) | 
|  | { | 
|  | psw_write(env, arg); | 
|  | } | 
|  |  | 
|  | uint32_t helper_psw_read(CPUTriCoreState *env) | 
|  | { | 
|  | return psw_read(env); | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline void QEMU_NORETURN do_raise_exception_err(CPUTriCoreState *env, | 
|  | uint32_t exception, | 
|  | int error_code, | 
|  | uintptr_t pc) | 
|  | { | 
|  | CPUState *cs = CPU(tricore_env_get_cpu(env)); | 
|  | cs->exception_index = exception; | 
|  | env->error_code = error_code; | 
|  |  | 
|  | if (pc) { | 
|  | /* now we have a real cpu fault */ | 
|  | cpu_restore_state(cs, pc); | 
|  | } | 
|  |  | 
|  | cpu_loop_exit(cs); | 
|  | } | 
|  |  | 
|  | void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx, | 
|  | uintptr_t retaddr) | 
|  | { | 
|  | int ret; | 
|  | ret = cpu_tricore_handle_mmu_fault(cs, addr, is_write, mmu_idx); | 
|  | if (ret) { | 
|  | TriCoreCPU *cpu = TRICORE_CPU(cs); | 
|  | CPUTriCoreState *env = &cpu->env; | 
|  | do_raise_exception_err(env, cs->exception_index, | 
|  | env->error_code, retaddr); | 
|  | } | 
|  | } |