|  | /* | 
|  | * PowerPC implementation of KVM hooks | 
|  | * | 
|  | * Copyright IBM Corp. 2007 | 
|  | * Copyright (C) 2011 Freescale Semiconductor, Inc. | 
|  | * | 
|  | * Authors: | 
|  | *  Jerone Young <jyoung5@us.ibm.com> | 
|  | *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> | 
|  | *  Hollis Blanchard <hollisb@us.ibm.com> | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2 or later. | 
|  | * See the COPYING file in the top-level directory. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <dirent.h> | 
|  | #include <sys/types.h> | 
|  | #include <sys/ioctl.h> | 
|  | #include <sys/mman.h> | 
|  | #include <sys/vfs.h> | 
|  |  | 
|  | #include <linux/kvm.h> | 
|  |  | 
|  | #include "qemu-common.h" | 
|  | #include "qemu/timer.h" | 
|  | #include "sysemu/sysemu.h" | 
|  | #include "sysemu/kvm.h" | 
|  | #include "kvm_ppc.h" | 
|  | #include "cpu.h" | 
|  | #include "sysemu/cpus.h" | 
|  | #include "sysemu/device_tree.h" | 
|  | #include "mmu-hash64.h" | 
|  |  | 
|  | #include "hw/sysbus.h" | 
|  | #include "hw/ppc/spapr.h" | 
|  | #include "hw/ppc/spapr_vio.h" | 
|  | #include "sysemu/watchdog.h" | 
|  | #include "trace.h" | 
|  |  | 
|  | //#define DEBUG_KVM | 
|  |  | 
|  | #ifdef DEBUG_KVM | 
|  | #define DPRINTF(fmt, ...) \ | 
|  | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) | 
|  | #else | 
|  | #define DPRINTF(fmt, ...) \ | 
|  | do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #define PROC_DEVTREE_CPU      "/proc/device-tree/cpus/" | 
|  |  | 
|  | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { | 
|  | KVM_CAP_LAST_INFO | 
|  | }; | 
|  |  | 
|  | static int cap_interrupt_unset = false; | 
|  | static int cap_interrupt_level = false; | 
|  | static int cap_segstate; | 
|  | static int cap_booke_sregs; | 
|  | static int cap_ppc_smt; | 
|  | static int cap_ppc_rma; | 
|  | static int cap_spapr_tce; | 
|  | static int cap_hior; | 
|  | static int cap_one_reg; | 
|  | static int cap_epr; | 
|  | static int cap_ppc_watchdog; | 
|  | static int cap_papr; | 
|  | static int cap_htab_fd; | 
|  |  | 
|  | /* XXX We have a race condition where we actually have a level triggered | 
|  | *     interrupt, but the infrastructure can't expose that yet, so the guest | 
|  | *     takes but ignores it, goes to sleep and never gets notified that there's | 
|  | *     still an interrupt pending. | 
|  | * | 
|  | *     As a quick workaround, let's just wake up again 20 ms after we injected | 
|  | *     an interrupt. That way we can assure that we're always reinjecting | 
|  | *     interrupts in case the guest swallowed them. | 
|  | */ | 
|  | static QEMUTimer *idle_timer; | 
|  |  | 
|  | static void kvm_kick_cpu(void *opaque) | 
|  | { | 
|  | PowerPCCPU *cpu = opaque; | 
|  |  | 
|  | qemu_cpu_kick(CPU(cpu)); | 
|  | } | 
|  |  | 
|  | static int kvm_ppc_register_host_cpu_type(void); | 
|  |  | 
|  | int kvm_arch_init(KVMState *s) | 
|  | { | 
|  | cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ); | 
|  | cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL); | 
|  | cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE); | 
|  | cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS); | 
|  | cap_ppc_smt = kvm_check_extension(s, KVM_CAP_PPC_SMT); | 
|  | cap_ppc_rma = kvm_check_extension(s, KVM_CAP_PPC_RMA); | 
|  | cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE); | 
|  | cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG); | 
|  | cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR); | 
|  | cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR); | 
|  | cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG); | 
|  | /* Note: we don't set cap_papr here, because this capability is | 
|  | * only activated after this by kvmppc_set_papr() */ | 
|  | cap_htab_fd = kvm_check_extension(s, KVM_CAP_PPC_HTAB_FD); | 
|  |  | 
|  | if (!cap_interrupt_level) { | 
|  | fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the " | 
|  | "VM to stall at times!\n"); | 
|  | } | 
|  |  | 
|  | kvm_ppc_register_host_cpu_type(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_arch_sync_sregs(PowerPCCPU *cpu) | 
|  | { | 
|  | CPUPPCState *cenv = &cpu->env; | 
|  | CPUState *cs = CPU(cpu); | 
|  | struct kvm_sregs sregs; | 
|  | int ret; | 
|  |  | 
|  | if (cenv->excp_model == POWERPC_EXCP_BOOKE) { | 
|  | /* What we're really trying to say is "if we're on BookE, we use | 
|  | the native PVR for now". This is the only sane way to check | 
|  | it though, so we potentially confuse users that they can run | 
|  | BookE guests on BookS. Let's hope nobody dares enough :) */ | 
|  | return 0; | 
|  | } else { | 
|  | if (!cap_segstate) { | 
|  | fprintf(stderr, "kvm error: missing PVR setting capability\n"); | 
|  | return -ENOSYS; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | sregs.pvr = cenv->spr[SPR_PVR]; | 
|  | return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); | 
|  | } | 
|  |  | 
|  | /* Set up a shared TLB array with KVM */ | 
|  | static int kvm_booke206_tlb_init(PowerPCCPU *cpu) | 
|  | { | 
|  | CPUPPCState *env = &cpu->env; | 
|  | CPUState *cs = CPU(cpu); | 
|  | struct kvm_book3e_206_tlb_params params = {}; | 
|  | struct kvm_config_tlb cfg = {}; | 
|  | struct kvm_enable_cap encap = {}; | 
|  | unsigned int entries = 0; | 
|  | int ret, i; | 
|  |  | 
|  | if (!kvm_enabled() || | 
|  | !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN); | 
|  |  | 
|  | for (i = 0; i < BOOKE206_MAX_TLBN; i++) { | 
|  | params.tlb_sizes[i] = booke206_tlb_size(env, i); | 
|  | params.tlb_ways[i] = booke206_tlb_ways(env, i); | 
|  | entries += params.tlb_sizes[i]; | 
|  | } | 
|  |  | 
|  | assert(entries == env->nb_tlb); | 
|  | assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t)); | 
|  |  | 
|  | env->tlb_dirty = true; | 
|  |  | 
|  | cfg.array = (uintptr_t)env->tlb.tlbm; | 
|  | cfg.array_len = sizeof(ppcmas_tlb_t) * entries; | 
|  | cfg.params = (uintptr_t)¶ms; | 
|  | cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV; | 
|  |  | 
|  | encap.cap = KVM_CAP_SW_TLB; | 
|  | encap.args[0] = (uintptr_t)&cfg; | 
|  |  | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_ENABLE_CAP, &encap); | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n", | 
|  | __func__, strerror(-ret)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | env->kvm_sw_tlb = true; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | #if defined(TARGET_PPC64) | 
|  | static void kvm_get_fallback_smmu_info(PowerPCCPU *cpu, | 
|  | struct kvm_ppc_smmu_info *info) | 
|  | { | 
|  | CPUPPCState *env = &cpu->env; | 
|  | CPUState *cs = CPU(cpu); | 
|  |  | 
|  | memset(info, 0, sizeof(*info)); | 
|  |  | 
|  | /* We don't have the new KVM_PPC_GET_SMMU_INFO ioctl, so | 
|  | * need to "guess" what the supported page sizes are. | 
|  | * | 
|  | * For that to work we make a few assumptions: | 
|  | * | 
|  | * - If KVM_CAP_PPC_GET_PVINFO is supported we are running "PR" | 
|  | *   KVM which only supports 4K and 16M pages, but supports them | 
|  | *   regardless of the backing store characteritics. We also don't | 
|  | *   support 1T segments. | 
|  | * | 
|  | *   This is safe as if HV KVM ever supports that capability or PR | 
|  | *   KVM grows supports for more page/segment sizes, those versions | 
|  | *   will have implemented KVM_CAP_PPC_GET_SMMU_INFO and thus we | 
|  | *   will not hit this fallback | 
|  | * | 
|  | * - Else we are running HV KVM. This means we only support page | 
|  | *   sizes that fit in the backing store. Additionally we only | 
|  | *   advertize 64K pages if the processor is ARCH 2.06 and we assume | 
|  | *   P7 encodings for the SLB and hash table. Here too, we assume | 
|  | *   support for any newer processor will mean a kernel that | 
|  | *   implements KVM_CAP_PPC_GET_SMMU_INFO and thus doesn't hit | 
|  | *   this fallback. | 
|  | */ | 
|  | if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO)) { | 
|  | /* No flags */ | 
|  | info->flags = 0; | 
|  | info->slb_size = 64; | 
|  |  | 
|  | /* Standard 4k base page size segment */ | 
|  | info->sps[0].page_shift = 12; | 
|  | info->sps[0].slb_enc = 0; | 
|  | info->sps[0].enc[0].page_shift = 12; | 
|  | info->sps[0].enc[0].pte_enc = 0; | 
|  |  | 
|  | /* Standard 16M large page size segment */ | 
|  | info->sps[1].page_shift = 24; | 
|  | info->sps[1].slb_enc = SLB_VSID_L; | 
|  | info->sps[1].enc[0].page_shift = 24; | 
|  | info->sps[1].enc[0].pte_enc = 0; | 
|  | } else { | 
|  | int i = 0; | 
|  |  | 
|  | /* HV KVM has backing store size restrictions */ | 
|  | info->flags = KVM_PPC_PAGE_SIZES_REAL; | 
|  |  | 
|  | if (env->mmu_model & POWERPC_MMU_1TSEG) { | 
|  | info->flags |= KVM_PPC_1T_SEGMENTS; | 
|  | } | 
|  |  | 
|  | if (env->mmu_model == POWERPC_MMU_2_06) { | 
|  | info->slb_size = 32; | 
|  | } else { | 
|  | info->slb_size = 64; | 
|  | } | 
|  |  | 
|  | /* Standard 4k base page size segment */ | 
|  | info->sps[i].page_shift = 12; | 
|  | info->sps[i].slb_enc = 0; | 
|  | info->sps[i].enc[0].page_shift = 12; | 
|  | info->sps[i].enc[0].pte_enc = 0; | 
|  | i++; | 
|  |  | 
|  | /* 64K on MMU 2.06 */ | 
|  | if (env->mmu_model == POWERPC_MMU_2_06) { | 
|  | info->sps[i].page_shift = 16; | 
|  | info->sps[i].slb_enc = 0x110; | 
|  | info->sps[i].enc[0].page_shift = 16; | 
|  | info->sps[i].enc[0].pte_enc = 1; | 
|  | i++; | 
|  | } | 
|  |  | 
|  | /* Standard 16M large page size segment */ | 
|  | info->sps[i].page_shift = 24; | 
|  | info->sps[i].slb_enc = SLB_VSID_L; | 
|  | info->sps[i].enc[0].page_shift = 24; | 
|  | info->sps[i].enc[0].pte_enc = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_get_smmu_info(PowerPCCPU *cpu, struct kvm_ppc_smmu_info *info) | 
|  | { | 
|  | CPUState *cs = CPU(cpu); | 
|  | int ret; | 
|  |  | 
|  | if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) { | 
|  | ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_SMMU_INFO, info); | 
|  | if (ret == 0) { | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | kvm_get_fallback_smmu_info(cpu, info); | 
|  | } | 
|  |  | 
|  | static long getrampagesize(void) | 
|  | { | 
|  | struct statfs fs; | 
|  | int ret; | 
|  |  | 
|  | if (!mem_path) { | 
|  | /* guest RAM is backed by normal anonymous pages */ | 
|  | return getpagesize(); | 
|  | } | 
|  |  | 
|  | do { | 
|  | ret = statfs(mem_path, &fs); | 
|  | } while (ret != 0 && errno == EINTR); | 
|  |  | 
|  | if (ret != 0) { | 
|  | fprintf(stderr, "Couldn't statfs() memory path: %s\n", | 
|  | strerror(errno)); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | #define HUGETLBFS_MAGIC       0x958458f6 | 
|  |  | 
|  | if (fs.f_type != HUGETLBFS_MAGIC) { | 
|  | /* Explicit mempath, but it's ordinary pages */ | 
|  | return getpagesize(); | 
|  | } | 
|  |  | 
|  | /* It's hugepage, return the huge page size */ | 
|  | return fs.f_bsize; | 
|  | } | 
|  |  | 
|  | static bool kvm_valid_page_size(uint32_t flags, long rampgsize, uint32_t shift) | 
|  | { | 
|  | if (!(flags & KVM_PPC_PAGE_SIZES_REAL)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return (1ul << shift) <= rampgsize; | 
|  | } | 
|  |  | 
|  | static void kvm_fixup_page_sizes(PowerPCCPU *cpu) | 
|  | { | 
|  | static struct kvm_ppc_smmu_info smmu_info; | 
|  | static bool has_smmu_info; | 
|  | CPUPPCState *env = &cpu->env; | 
|  | long rampagesize; | 
|  | int iq, ik, jq, jk; | 
|  |  | 
|  | /* We only handle page sizes for 64-bit server guests for now */ | 
|  | if (!(env->mmu_model & POWERPC_MMU_64)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Collect MMU info from kernel if not already */ | 
|  | if (!has_smmu_info) { | 
|  | kvm_get_smmu_info(cpu, &smmu_info); | 
|  | has_smmu_info = true; | 
|  | } | 
|  |  | 
|  | rampagesize = getrampagesize(); | 
|  |  | 
|  | /* Convert to QEMU form */ | 
|  | memset(&env->sps, 0, sizeof(env->sps)); | 
|  |  | 
|  | for (ik = iq = 0; ik < KVM_PPC_PAGE_SIZES_MAX_SZ; ik++) { | 
|  | struct ppc_one_seg_page_size *qsps = &env->sps.sps[iq]; | 
|  | struct kvm_ppc_one_seg_page_size *ksps = &smmu_info.sps[ik]; | 
|  |  | 
|  | if (!kvm_valid_page_size(smmu_info.flags, rampagesize, | 
|  | ksps->page_shift)) { | 
|  | continue; | 
|  | } | 
|  | qsps->page_shift = ksps->page_shift; | 
|  | qsps->slb_enc = ksps->slb_enc; | 
|  | for (jk = jq = 0; jk < KVM_PPC_PAGE_SIZES_MAX_SZ; jk++) { | 
|  | if (!kvm_valid_page_size(smmu_info.flags, rampagesize, | 
|  | ksps->enc[jk].page_shift)) { | 
|  | continue; | 
|  | } | 
|  | qsps->enc[jq].page_shift = ksps->enc[jk].page_shift; | 
|  | qsps->enc[jq].pte_enc = ksps->enc[jk].pte_enc; | 
|  | if (++jq >= PPC_PAGE_SIZES_MAX_SZ) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (++iq >= PPC_PAGE_SIZES_MAX_SZ) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | env->slb_nr = smmu_info.slb_size; | 
|  | if (smmu_info.flags & KVM_PPC_1T_SEGMENTS) { | 
|  | env->mmu_model |= POWERPC_MMU_1TSEG; | 
|  | } else { | 
|  | env->mmu_model &= ~POWERPC_MMU_1TSEG; | 
|  | } | 
|  | } | 
|  | #else /* defined (TARGET_PPC64) */ | 
|  |  | 
|  | static inline void kvm_fixup_page_sizes(PowerPCCPU *cpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif /* !defined (TARGET_PPC64) */ | 
|  |  | 
|  | unsigned long kvm_arch_vcpu_id(CPUState *cpu) | 
|  | { | 
|  | return ppc_get_vcpu_dt_id(POWERPC_CPU(cpu)); | 
|  | } | 
|  |  | 
|  | int kvm_arch_init_vcpu(CPUState *cs) | 
|  | { | 
|  | PowerPCCPU *cpu = POWERPC_CPU(cs); | 
|  | CPUPPCState *cenv = &cpu->env; | 
|  | int ret; | 
|  |  | 
|  | /* Gather server mmu info from KVM and update the CPU state */ | 
|  | kvm_fixup_page_sizes(cpu); | 
|  |  | 
|  | /* Synchronize sregs with kvm */ | 
|  | ret = kvm_arch_sync_sregs(cpu); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | idle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, kvm_kick_cpu, cpu); | 
|  |  | 
|  | /* Some targets support access to KVM's guest TLB. */ | 
|  | switch (cenv->mmu_model) { | 
|  | case POWERPC_MMU_BOOKE206: | 
|  | ret = kvm_booke206_tlb_init(cpu); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void kvm_arch_reset_vcpu(CPUState *cpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void kvm_sw_tlb_put(PowerPCCPU *cpu) | 
|  | { | 
|  | CPUPPCState *env = &cpu->env; | 
|  | CPUState *cs = CPU(cpu); | 
|  | struct kvm_dirty_tlb dirty_tlb; | 
|  | unsigned char *bitmap; | 
|  | int ret; | 
|  |  | 
|  | if (!env->kvm_sw_tlb) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | bitmap = g_malloc((env->nb_tlb + 7) / 8); | 
|  | memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8); | 
|  |  | 
|  | dirty_tlb.bitmap = (uintptr_t)bitmap; | 
|  | dirty_tlb.num_dirty = env->nb_tlb; | 
|  |  | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb); | 
|  | if (ret) { | 
|  | fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n", | 
|  | __func__, strerror(-ret)); | 
|  | } | 
|  |  | 
|  | g_free(bitmap); | 
|  | } | 
|  |  | 
|  | static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr) | 
|  | { | 
|  | PowerPCCPU *cpu = POWERPC_CPU(cs); | 
|  | CPUPPCState *env = &cpu->env; | 
|  | union { | 
|  | uint32_t u32; | 
|  | uint64_t u64; | 
|  | } val; | 
|  | struct kvm_one_reg reg = { | 
|  | .id = id, | 
|  | .addr = (uintptr_t) &val, | 
|  | }; | 
|  | int ret; | 
|  |  | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | 
|  | if (ret != 0) { | 
|  | trace_kvm_failed_spr_get(spr, strerror(errno)); | 
|  | } else { | 
|  | switch (id & KVM_REG_SIZE_MASK) { | 
|  | case KVM_REG_SIZE_U32: | 
|  | env->spr[spr] = val.u32; | 
|  | break; | 
|  |  | 
|  | case KVM_REG_SIZE_U64: | 
|  | env->spr[spr] = val.u64; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | /* Don't handle this size yet */ | 
|  | abort(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr) | 
|  | { | 
|  | PowerPCCPU *cpu = POWERPC_CPU(cs); | 
|  | CPUPPCState *env = &cpu->env; | 
|  | union { | 
|  | uint32_t u32; | 
|  | uint64_t u64; | 
|  | } val; | 
|  | struct kvm_one_reg reg = { | 
|  | .id = id, | 
|  | .addr = (uintptr_t) &val, | 
|  | }; | 
|  | int ret; | 
|  |  | 
|  | switch (id & KVM_REG_SIZE_MASK) { | 
|  | case KVM_REG_SIZE_U32: | 
|  | val.u32 = env->spr[spr]; | 
|  | break; | 
|  |  | 
|  | case KVM_REG_SIZE_U64: | 
|  | val.u64 = env->spr[spr]; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | /* Don't handle this size yet */ | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | 
|  | if (ret != 0) { | 
|  | trace_kvm_failed_spr_set(spr, strerror(errno)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int kvm_put_fp(CPUState *cs) | 
|  | { | 
|  | PowerPCCPU *cpu = POWERPC_CPU(cs); | 
|  | CPUPPCState *env = &cpu->env; | 
|  | struct kvm_one_reg reg; | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | if (env->insns_flags & PPC_FLOAT) { | 
|  | uint64_t fpscr = env->fpscr; | 
|  | bool vsx = !!(env->insns_flags2 & PPC2_VSX); | 
|  |  | 
|  | reg.id = KVM_REG_PPC_FPSCR; | 
|  | reg.addr = (uintptr_t)&fpscr; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | 
|  | if (ret < 0) { | 
|  | DPRINTF("Unable to set FPSCR to KVM: %s\n", strerror(errno)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 32; i++) { | 
|  | uint64_t vsr[2]; | 
|  |  | 
|  | vsr[0] = float64_val(env->fpr[i]); | 
|  | vsr[1] = env->vsr[i]; | 
|  | reg.addr = (uintptr_t) &vsr; | 
|  | reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i); | 
|  |  | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | 
|  | if (ret < 0) { | 
|  | DPRINTF("Unable to set %s%d to KVM: %s\n", vsx ? "VSR" : "FPR", | 
|  | i, strerror(errno)); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (env->insns_flags & PPC_ALTIVEC) { | 
|  | reg.id = KVM_REG_PPC_VSCR; | 
|  | reg.addr = (uintptr_t)&env->vscr; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | 
|  | if (ret < 0) { | 
|  | DPRINTF("Unable to set VSCR to KVM: %s\n", strerror(errno)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 32; i++) { | 
|  | reg.id = KVM_REG_PPC_VR(i); | 
|  | reg.addr = (uintptr_t)&env->avr[i]; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | 
|  | if (ret < 0) { | 
|  | DPRINTF("Unable to set VR%d to KVM: %s\n", i, strerror(errno)); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_get_fp(CPUState *cs) | 
|  | { | 
|  | PowerPCCPU *cpu = POWERPC_CPU(cs); | 
|  | CPUPPCState *env = &cpu->env; | 
|  | struct kvm_one_reg reg; | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | if (env->insns_flags & PPC_FLOAT) { | 
|  | uint64_t fpscr; | 
|  | bool vsx = !!(env->insns_flags2 & PPC2_VSX); | 
|  |  | 
|  | reg.id = KVM_REG_PPC_FPSCR; | 
|  | reg.addr = (uintptr_t)&fpscr; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | 
|  | if (ret < 0) { | 
|  | DPRINTF("Unable to get FPSCR from KVM: %s\n", strerror(errno)); | 
|  | return ret; | 
|  | } else { | 
|  | env->fpscr = fpscr; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 32; i++) { | 
|  | uint64_t vsr[2]; | 
|  |  | 
|  | reg.addr = (uintptr_t) &vsr; | 
|  | reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i); | 
|  |  | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | 
|  | if (ret < 0) { | 
|  | DPRINTF("Unable to get %s%d from KVM: %s\n", | 
|  | vsx ? "VSR" : "FPR", i, strerror(errno)); | 
|  | return ret; | 
|  | } else { | 
|  | env->fpr[i] = vsr[0]; | 
|  | if (vsx) { | 
|  | env->vsr[i] = vsr[1]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (env->insns_flags & PPC_ALTIVEC) { | 
|  | reg.id = KVM_REG_PPC_VSCR; | 
|  | reg.addr = (uintptr_t)&env->vscr; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | 
|  | if (ret < 0) { | 
|  | DPRINTF("Unable to get VSCR from KVM: %s\n", strerror(errno)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 32; i++) { | 
|  | reg.id = KVM_REG_PPC_VR(i); | 
|  | reg.addr = (uintptr_t)&env->avr[i]; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | 
|  | if (ret < 0) { | 
|  | DPRINTF("Unable to get VR%d from KVM: %s\n", | 
|  | i, strerror(errno)); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if defined(TARGET_PPC64) | 
|  | static int kvm_get_vpa(CPUState *cs) | 
|  | { | 
|  | PowerPCCPU *cpu = POWERPC_CPU(cs); | 
|  | CPUPPCState *env = &cpu->env; | 
|  | struct kvm_one_reg reg; | 
|  | int ret; | 
|  |  | 
|  | reg.id = KVM_REG_PPC_VPA_ADDR; | 
|  | reg.addr = (uintptr_t)&env->vpa_addr; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | 
|  | if (ret < 0) { | 
|  | DPRINTF("Unable to get VPA address from KVM: %s\n", strerror(errno)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | assert((uintptr_t)&env->slb_shadow_size | 
|  | == ((uintptr_t)&env->slb_shadow_addr + 8)); | 
|  | reg.id = KVM_REG_PPC_VPA_SLB; | 
|  | reg.addr = (uintptr_t)&env->slb_shadow_addr; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | 
|  | if (ret < 0) { | 
|  | DPRINTF("Unable to get SLB shadow state from KVM: %s\n", | 
|  | strerror(errno)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8)); | 
|  | reg.id = KVM_REG_PPC_VPA_DTL; | 
|  | reg.addr = (uintptr_t)&env->dtl_addr; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | 
|  | if (ret < 0) { | 
|  | DPRINTF("Unable to get dispatch trace log state from KVM: %s\n", | 
|  | strerror(errno)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_put_vpa(CPUState *cs) | 
|  | { | 
|  | PowerPCCPU *cpu = POWERPC_CPU(cs); | 
|  | CPUPPCState *env = &cpu->env; | 
|  | struct kvm_one_reg reg; | 
|  | int ret; | 
|  |  | 
|  | /* SLB shadow or DTL can't be registered unless a master VPA is | 
|  | * registered.  That means when restoring state, if a VPA *is* | 
|  | * registered, we need to set that up first.  If not, we need to | 
|  | * deregister the others before deregistering the master VPA */ | 
|  | assert(env->vpa_addr || !(env->slb_shadow_addr || env->dtl_addr)); | 
|  |  | 
|  | if (env->vpa_addr) { | 
|  | reg.id = KVM_REG_PPC_VPA_ADDR; | 
|  | reg.addr = (uintptr_t)&env->vpa_addr; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | 
|  | if (ret < 0) { | 
|  | DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno)); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert((uintptr_t)&env->slb_shadow_size | 
|  | == ((uintptr_t)&env->slb_shadow_addr + 8)); | 
|  | reg.id = KVM_REG_PPC_VPA_SLB; | 
|  | reg.addr = (uintptr_t)&env->slb_shadow_addr; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | 
|  | if (ret < 0) { | 
|  | DPRINTF("Unable to set SLB shadow state to KVM: %s\n", strerror(errno)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8)); | 
|  | reg.id = KVM_REG_PPC_VPA_DTL; | 
|  | reg.addr = (uintptr_t)&env->dtl_addr; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | 
|  | if (ret < 0) { | 
|  | DPRINTF("Unable to set dispatch trace log state to KVM: %s\n", | 
|  | strerror(errno)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (!env->vpa_addr) { | 
|  | reg.id = KVM_REG_PPC_VPA_ADDR; | 
|  | reg.addr = (uintptr_t)&env->vpa_addr; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | 
|  | if (ret < 0) { | 
|  | DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno)); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif /* TARGET_PPC64 */ | 
|  |  | 
|  | int kvm_arch_put_registers(CPUState *cs, int level) | 
|  | { | 
|  | PowerPCCPU *cpu = POWERPC_CPU(cs); | 
|  | CPUPPCState *env = &cpu->env; | 
|  | struct kvm_regs regs; | 
|  | int ret; | 
|  | int i; | 
|  |  | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | regs.ctr = env->ctr; | 
|  | regs.lr  = env->lr; | 
|  | regs.xer = cpu_read_xer(env); | 
|  | regs.msr = env->msr; | 
|  | regs.pc = env->nip; | 
|  |  | 
|  | regs.srr0 = env->spr[SPR_SRR0]; | 
|  | regs.srr1 = env->spr[SPR_SRR1]; | 
|  |  | 
|  | regs.sprg0 = env->spr[SPR_SPRG0]; | 
|  | regs.sprg1 = env->spr[SPR_SPRG1]; | 
|  | regs.sprg2 = env->spr[SPR_SPRG2]; | 
|  | regs.sprg3 = env->spr[SPR_SPRG3]; | 
|  | regs.sprg4 = env->spr[SPR_SPRG4]; | 
|  | regs.sprg5 = env->spr[SPR_SPRG5]; | 
|  | regs.sprg6 = env->spr[SPR_SPRG6]; | 
|  | regs.sprg7 = env->spr[SPR_SPRG7]; | 
|  |  | 
|  | regs.pid = env->spr[SPR_BOOKE_PID]; | 
|  |  | 
|  | for (i = 0;i < 32; i++) | 
|  | regs.gpr[i] = env->gpr[i]; | 
|  |  | 
|  | regs.cr = 0; | 
|  | for (i = 0; i < 8; i++) { | 
|  | regs.cr |= (env->crf[i] & 15) << (4 * (7 - i)); | 
|  | } | 
|  |  | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | kvm_put_fp(cs); | 
|  |  | 
|  | if (env->tlb_dirty) { | 
|  | kvm_sw_tlb_put(cpu); | 
|  | env->tlb_dirty = false; | 
|  | } | 
|  |  | 
|  | if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) { | 
|  | struct kvm_sregs sregs; | 
|  |  | 
|  | sregs.pvr = env->spr[SPR_PVR]; | 
|  |  | 
|  | sregs.u.s.sdr1 = env->spr[SPR_SDR1]; | 
|  |  | 
|  | /* Sync SLB */ | 
|  | #ifdef TARGET_PPC64 | 
|  | for (i = 0; i < ARRAY_SIZE(env->slb); i++) { | 
|  | sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid; | 
|  | if (env->slb[i].esid & SLB_ESID_V) { | 
|  | sregs.u.s.ppc64.slb[i].slbe |= i; | 
|  | } | 
|  | sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Sync SRs */ | 
|  | for (i = 0; i < 16; i++) { | 
|  | sregs.u.s.ppc32.sr[i] = env->sr[i]; | 
|  | } | 
|  |  | 
|  | /* Sync BATs */ | 
|  | for (i = 0; i < 8; i++) { | 
|  | /* Beware. We have to swap upper and lower bits here */ | 
|  | sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32) | 
|  | | env->DBAT[1][i]; | 
|  | sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32) | 
|  | | env->IBAT[1][i]; | 
|  | } | 
|  |  | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cap_hior && (level >= KVM_PUT_RESET_STATE)) { | 
|  | kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR); | 
|  | } | 
|  |  | 
|  | if (cap_one_reg) { | 
|  | int i; | 
|  |  | 
|  | /* We deliberately ignore errors here, for kernels which have | 
|  | * the ONE_REG calls, but don't support the specific | 
|  | * registers, there's a reasonable chance things will still | 
|  | * work, at least until we try to migrate. */ | 
|  | for (i = 0; i < 1024; i++) { | 
|  | uint64_t id = env->spr_cb[i].one_reg_id; | 
|  |  | 
|  | if (id != 0) { | 
|  | kvm_put_one_spr(cs, id, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef TARGET_PPC64 | 
|  | if (cap_papr) { | 
|  | if (kvm_put_vpa(cs) < 0) { | 
|  | DPRINTF("Warning: Unable to set VPA information to KVM\n"); | 
|  | } | 
|  | } | 
|  | #endif /* TARGET_PPC64 */ | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int kvm_arch_get_registers(CPUState *cs) | 
|  | { | 
|  | PowerPCCPU *cpu = POWERPC_CPU(cs); | 
|  | CPUPPCState *env = &cpu->env; | 
|  | struct kvm_regs regs; | 
|  | struct kvm_sregs sregs; | 
|  | uint32_t cr; | 
|  | int i, ret; | 
|  |  | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | cr = regs.cr; | 
|  | for (i = 7; i >= 0; i--) { | 
|  | env->crf[i] = cr & 15; | 
|  | cr >>= 4; | 
|  | } | 
|  |  | 
|  | env->ctr = regs.ctr; | 
|  | env->lr = regs.lr; | 
|  | cpu_write_xer(env, regs.xer); | 
|  | env->msr = regs.msr; | 
|  | env->nip = regs.pc; | 
|  |  | 
|  | env->spr[SPR_SRR0] = regs.srr0; | 
|  | env->spr[SPR_SRR1] = regs.srr1; | 
|  |  | 
|  | env->spr[SPR_SPRG0] = regs.sprg0; | 
|  | env->spr[SPR_SPRG1] = regs.sprg1; | 
|  | env->spr[SPR_SPRG2] = regs.sprg2; | 
|  | env->spr[SPR_SPRG3] = regs.sprg3; | 
|  | env->spr[SPR_SPRG4] = regs.sprg4; | 
|  | env->spr[SPR_SPRG5] = regs.sprg5; | 
|  | env->spr[SPR_SPRG6] = regs.sprg6; | 
|  | env->spr[SPR_SPRG7] = regs.sprg7; | 
|  |  | 
|  | env->spr[SPR_BOOKE_PID] = regs.pid; | 
|  |  | 
|  | for (i = 0;i < 32; i++) | 
|  | env->gpr[i] = regs.gpr[i]; | 
|  |  | 
|  | kvm_get_fp(cs); | 
|  |  | 
|  | if (cap_booke_sregs) { | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (sregs.u.e.features & KVM_SREGS_E_BASE) { | 
|  | env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0; | 
|  | env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1; | 
|  | env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr; | 
|  | env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear; | 
|  | env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr; | 
|  | env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr; | 
|  | env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr; | 
|  | env->spr[SPR_DECR] = sregs.u.e.dec; | 
|  | env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff; | 
|  | env->spr[SPR_TBU] = sregs.u.e.tb >> 32; | 
|  | env->spr[SPR_VRSAVE] = sregs.u.e.vrsave; | 
|  | } | 
|  |  | 
|  | if (sregs.u.e.features & KVM_SREGS_E_ARCH206) { | 
|  | env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir; | 
|  | env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0; | 
|  | env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1; | 
|  | env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar; | 
|  | env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr; | 
|  | } | 
|  |  | 
|  | if (sregs.u.e.features & KVM_SREGS_E_64) { | 
|  | env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr; | 
|  | } | 
|  |  | 
|  | if (sregs.u.e.features & KVM_SREGS_E_SPRG8) { | 
|  | env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8; | 
|  | } | 
|  |  | 
|  | if (sregs.u.e.features & KVM_SREGS_E_IVOR) { | 
|  | env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0]; | 
|  | env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1]; | 
|  | env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2]; | 
|  | env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3]; | 
|  | env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4]; | 
|  | env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5]; | 
|  | env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6]; | 
|  | env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7]; | 
|  | env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8]; | 
|  | env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9]; | 
|  | env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10]; | 
|  | env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11]; | 
|  | env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12]; | 
|  | env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13]; | 
|  | env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14]; | 
|  | env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15]; | 
|  |  | 
|  | if (sregs.u.e.features & KVM_SREGS_E_SPE) { | 
|  | env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0]; | 
|  | env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1]; | 
|  | env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2]; | 
|  | } | 
|  |  | 
|  | if (sregs.u.e.features & KVM_SREGS_E_PM) { | 
|  | env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3]; | 
|  | } | 
|  |  | 
|  | if (sregs.u.e.features & KVM_SREGS_E_PC) { | 
|  | env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4]; | 
|  | env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5]; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) { | 
|  | env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0; | 
|  | env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1; | 
|  | env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2; | 
|  | env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff; | 
|  | env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4; | 
|  | env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6; | 
|  | env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32; | 
|  | env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg; | 
|  | env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0]; | 
|  | env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1]; | 
|  | } | 
|  |  | 
|  | if (sregs.u.e.features & KVM_SREGS_EXP) { | 
|  | env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr; | 
|  | } | 
|  |  | 
|  | if (sregs.u.e.features & KVM_SREGS_E_PD) { | 
|  | env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc; | 
|  | env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc; | 
|  | } | 
|  |  | 
|  | if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) { | 
|  | env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr; | 
|  | env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar; | 
|  | env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0; | 
|  |  | 
|  | if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) { | 
|  | env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1; | 
|  | env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cap_segstate) { | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (!env->external_htab) { | 
|  | ppc_store_sdr1(env, sregs.u.s.sdr1); | 
|  | } | 
|  |  | 
|  | /* Sync SLB */ | 
|  | #ifdef TARGET_PPC64 | 
|  | /* | 
|  | * The packed SLB array we get from KVM_GET_SREGS only contains | 
|  | * information about valid entries. So we flush our internal | 
|  | * copy to get rid of stale ones, then put all valid SLB entries | 
|  | * back in. | 
|  | */ | 
|  | memset(env->slb, 0, sizeof(env->slb)); | 
|  | for (i = 0; i < ARRAY_SIZE(env->slb); i++) { | 
|  | target_ulong rb = sregs.u.s.ppc64.slb[i].slbe; | 
|  | target_ulong rs = sregs.u.s.ppc64.slb[i].slbv; | 
|  | /* | 
|  | * Only restore valid entries | 
|  | */ | 
|  | if (rb & SLB_ESID_V) { | 
|  | ppc_store_slb(env, rb, rs); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Sync SRs */ | 
|  | for (i = 0; i < 16; i++) { | 
|  | env->sr[i] = sregs.u.s.ppc32.sr[i]; | 
|  | } | 
|  |  | 
|  | /* Sync BATs */ | 
|  | for (i = 0; i < 8; i++) { | 
|  | env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff; | 
|  | env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32; | 
|  | env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff; | 
|  | env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cap_hior) { | 
|  | kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR); | 
|  | } | 
|  |  | 
|  | if (cap_one_reg) { | 
|  | int i; | 
|  |  | 
|  | /* We deliberately ignore errors here, for kernels which have | 
|  | * the ONE_REG calls, but don't support the specific | 
|  | * registers, there's a reasonable chance things will still | 
|  | * work, at least until we try to migrate. */ | 
|  | for (i = 0; i < 1024; i++) { | 
|  | uint64_t id = env->spr_cb[i].one_reg_id; | 
|  |  | 
|  | if (id != 0) { | 
|  | kvm_get_one_spr(cs, id, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef TARGET_PPC64 | 
|  | if (cap_papr) { | 
|  | if (kvm_get_vpa(cs) < 0) { | 
|  | DPRINTF("Warning: Unable to get VPA information from KVM\n"); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level) | 
|  | { | 
|  | unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET; | 
|  |  | 
|  | if (irq != PPC_INTERRUPT_EXT) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if defined(TARGET_PPCEMB) | 
|  | #define PPC_INPUT_INT PPC40x_INPUT_INT | 
|  | #elif defined(TARGET_PPC64) | 
|  | #define PPC_INPUT_INT PPC970_INPUT_INT | 
|  | #else | 
|  | #define PPC_INPUT_INT PPC6xx_INPUT_INT | 
|  | #endif | 
|  |  | 
|  | void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) | 
|  | { | 
|  | PowerPCCPU *cpu = POWERPC_CPU(cs); | 
|  | CPUPPCState *env = &cpu->env; | 
|  | int r; | 
|  | unsigned irq; | 
|  |  | 
|  | /* PowerPC QEMU tracks the various core input pins (interrupt, critical | 
|  | * interrupt, reset, etc) in PPC-specific env->irq_input_state. */ | 
|  | if (!cap_interrupt_level && | 
|  | run->ready_for_interrupt_injection && | 
|  | (cs->interrupt_request & CPU_INTERRUPT_HARD) && | 
|  | (env->irq_input_state & (1<<PPC_INPUT_INT))) | 
|  | { | 
|  | /* For now KVM disregards the 'irq' argument. However, in the | 
|  | * future KVM could cache it in-kernel to avoid a heavyweight exit | 
|  | * when reading the UIC. | 
|  | */ | 
|  | irq = KVM_INTERRUPT_SET; | 
|  |  | 
|  | DPRINTF("injected interrupt %d\n", irq); | 
|  | r = kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &irq); | 
|  | if (r < 0) { | 
|  | printf("cpu %d fail inject %x\n", cs->cpu_index, irq); | 
|  | } | 
|  |  | 
|  | /* Always wake up soon in case the interrupt was level based */ | 
|  | timer_mod(idle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + | 
|  | (get_ticks_per_sec() / 50)); | 
|  | } | 
|  |  | 
|  | /* We don't know if there are more interrupts pending after this. However, | 
|  | * the guest will return to userspace in the course of handling this one | 
|  | * anyways, so we will get a chance to deliver the rest. */ | 
|  | } | 
|  |  | 
|  | void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) | 
|  | { | 
|  | } | 
|  |  | 
|  | int kvm_arch_process_async_events(CPUState *cs) | 
|  | { | 
|  | return cs->halted; | 
|  | } | 
|  |  | 
|  | static int kvmppc_handle_halt(PowerPCCPU *cpu) | 
|  | { | 
|  | CPUState *cs = CPU(cpu); | 
|  | CPUPPCState *env = &cpu->env; | 
|  |  | 
|  | if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) { | 
|  | cs->halted = 1; | 
|  | cs->exception_index = EXCP_HLT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* map dcr access to existing qemu dcr emulation */ | 
|  | static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data) | 
|  | { | 
|  | if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) | 
|  | fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data) | 
|  | { | 
|  | if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) | 
|  | fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) | 
|  | { | 
|  | PowerPCCPU *cpu = POWERPC_CPU(cs); | 
|  | CPUPPCState *env = &cpu->env; | 
|  | int ret; | 
|  |  | 
|  | switch (run->exit_reason) { | 
|  | case KVM_EXIT_DCR: | 
|  | if (run->dcr.is_write) { | 
|  | DPRINTF("handle dcr write\n"); | 
|  | ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data); | 
|  | } else { | 
|  | DPRINTF("handle dcr read\n"); | 
|  | ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data); | 
|  | } | 
|  | break; | 
|  | case KVM_EXIT_HLT: | 
|  | DPRINTF("handle halt\n"); | 
|  | ret = kvmppc_handle_halt(cpu); | 
|  | break; | 
|  | #if defined(TARGET_PPC64) | 
|  | case KVM_EXIT_PAPR_HCALL: | 
|  | DPRINTF("handle PAPR hypercall\n"); | 
|  | run->papr_hcall.ret = spapr_hypercall(cpu, | 
|  | run->papr_hcall.nr, | 
|  | run->papr_hcall.args); | 
|  | ret = 0; | 
|  | break; | 
|  | #endif | 
|  | case KVM_EXIT_EPR: | 
|  | DPRINTF("handle epr\n"); | 
|  | run->epr.epr = ldl_phys(cs->as, env->mpic_iack); | 
|  | ret = 0; | 
|  | break; | 
|  | case KVM_EXIT_WATCHDOG: | 
|  | DPRINTF("handle watchdog expiry\n"); | 
|  | watchdog_perform_action(); | 
|  | ret = 0; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); | 
|  | ret = -1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits) | 
|  | { | 
|  | CPUState *cs = CPU(cpu); | 
|  | uint32_t bits = tsr_bits; | 
|  | struct kvm_one_reg reg = { | 
|  | .id = KVM_REG_PPC_OR_TSR, | 
|  | .addr = (uintptr_t) &bits, | 
|  | }; | 
|  |  | 
|  | return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | 
|  | } | 
|  |  | 
|  | int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits) | 
|  | { | 
|  |  | 
|  | CPUState *cs = CPU(cpu); | 
|  | uint32_t bits = tsr_bits; | 
|  | struct kvm_one_reg reg = { | 
|  | .id = KVM_REG_PPC_CLEAR_TSR, | 
|  | .addr = (uintptr_t) &bits, | 
|  | }; | 
|  |  | 
|  | return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | 
|  | } | 
|  |  | 
|  | int kvmppc_set_tcr(PowerPCCPU *cpu) | 
|  | { | 
|  | CPUState *cs = CPU(cpu); | 
|  | CPUPPCState *env = &cpu->env; | 
|  | uint32_t tcr = env->spr[SPR_BOOKE_TCR]; | 
|  |  | 
|  | struct kvm_one_reg reg = { | 
|  | .id = KVM_REG_PPC_TCR, | 
|  | .addr = (uintptr_t) &tcr, | 
|  | }; | 
|  |  | 
|  | return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | 
|  | } | 
|  |  | 
|  | int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu) | 
|  | { | 
|  | CPUState *cs = CPU(cpu); | 
|  | struct kvm_enable_cap encap = {}; | 
|  | int ret; | 
|  |  | 
|  | if (!kvm_enabled()) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (!cap_ppc_watchdog) { | 
|  | printf("warning: KVM does not support watchdog"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | encap.cap = KVM_CAP_PPC_BOOKE_WATCHDOG; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_ENABLE_CAP, &encap); | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n", | 
|  | __func__, strerror(-ret)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int read_cpuinfo(const char *field, char *value, int len) | 
|  | { | 
|  | FILE *f; | 
|  | int ret = -1; | 
|  | int field_len = strlen(field); | 
|  | char line[512]; | 
|  |  | 
|  | f = fopen("/proc/cpuinfo", "r"); | 
|  | if (!f) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | do { | 
|  | if(!fgets(line, sizeof(line), f)) { | 
|  | break; | 
|  | } | 
|  | if (!strncmp(line, field, field_len)) { | 
|  | pstrcpy(value, len, line); | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | } while(*line); | 
|  |  | 
|  | fclose(f); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint32_t kvmppc_get_tbfreq(void) | 
|  | { | 
|  | char line[512]; | 
|  | char *ns; | 
|  | uint32_t retval = get_ticks_per_sec(); | 
|  |  | 
|  | if (read_cpuinfo("timebase", line, sizeof(line))) { | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | if (!(ns = strchr(line, ':'))) { | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | ns++; | 
|  |  | 
|  | retval = atoi(ns); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* Try to find a device tree node for a CPU with clock-frequency property */ | 
|  | static int kvmppc_find_cpu_dt(char *buf, int buf_len) | 
|  | { | 
|  | struct dirent *dirp; | 
|  | DIR *dp; | 
|  |  | 
|  | if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) { | 
|  | printf("Can't open directory " PROC_DEVTREE_CPU "\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | buf[0] = '\0'; | 
|  | while ((dirp = readdir(dp)) != NULL) { | 
|  | FILE *f; | 
|  | snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU, | 
|  | dirp->d_name); | 
|  | f = fopen(buf, "r"); | 
|  | if (f) { | 
|  | snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name); | 
|  | fclose(f); | 
|  | break; | 
|  | } | 
|  | buf[0] = '\0'; | 
|  | } | 
|  | closedir(dp); | 
|  | if (buf[0] == '\0') { | 
|  | printf("Unknown host!\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Read a CPU node property from the host device tree that's a single | 
|  | * integer (32-bit or 64-bit).  Returns 0 if anything goes wrong | 
|  | * (can't find or open the property, or doesn't understand the | 
|  | * format) */ | 
|  | static uint64_t kvmppc_read_int_cpu_dt(const char *propname) | 
|  | { | 
|  | char buf[PATH_MAX]; | 
|  | union { | 
|  | uint32_t v32; | 
|  | uint64_t v64; | 
|  | } u; | 
|  | FILE *f; | 
|  | int len; | 
|  |  | 
|  | if (kvmppc_find_cpu_dt(buf, sizeof(buf))) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | strncat(buf, "/", sizeof(buf) - strlen(buf)); | 
|  | strncat(buf, propname, sizeof(buf) - strlen(buf)); | 
|  |  | 
|  | f = fopen(buf, "rb"); | 
|  | if (!f) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | len = fread(&u, 1, sizeof(u), f); | 
|  | fclose(f); | 
|  | switch (len) { | 
|  | case 4: | 
|  | /* property is a 32-bit quantity */ | 
|  | return be32_to_cpu(u.v32); | 
|  | case 8: | 
|  | return be64_to_cpu(u.v64); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint64_t kvmppc_get_clockfreq(void) | 
|  | { | 
|  | return kvmppc_read_int_cpu_dt("clock-frequency"); | 
|  | } | 
|  |  | 
|  | uint32_t kvmppc_get_vmx(void) | 
|  | { | 
|  | return kvmppc_read_int_cpu_dt("ibm,vmx"); | 
|  | } | 
|  |  | 
|  | uint32_t kvmppc_get_dfp(void) | 
|  | { | 
|  | return kvmppc_read_int_cpu_dt("ibm,dfp"); | 
|  | } | 
|  |  | 
|  | static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo) | 
|  | { | 
|  | PowerPCCPU *cpu = ppc_env_get_cpu(env); | 
|  | CPUState *cs = CPU(cpu); | 
|  |  | 
|  | if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) && | 
|  | !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int kvmppc_get_hasidle(CPUPPCState *env) | 
|  | { | 
|  | struct kvm_ppc_pvinfo pvinfo; | 
|  |  | 
|  | if (!kvmppc_get_pvinfo(env, &pvinfo) && | 
|  | (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len) | 
|  | { | 
|  | uint32_t *hc = (uint32_t*)buf; | 
|  | struct kvm_ppc_pvinfo pvinfo; | 
|  |  | 
|  | if (!kvmppc_get_pvinfo(env, &pvinfo)) { | 
|  | memcpy(buf, pvinfo.hcall, buf_len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fallback to always fail hypercalls: | 
|  | * | 
|  | *     li r3, -1 | 
|  | *     nop | 
|  | *     nop | 
|  | *     nop | 
|  | */ | 
|  |  | 
|  | hc[0] = 0x3860ffff; | 
|  | hc[1] = 0x60000000; | 
|  | hc[2] = 0x60000000; | 
|  | hc[3] = 0x60000000; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvmppc_set_papr(PowerPCCPU *cpu) | 
|  | { | 
|  | CPUState *cs = CPU(cpu); | 
|  | struct kvm_enable_cap cap = {}; | 
|  | int ret; | 
|  |  | 
|  | cap.cap = KVM_CAP_PPC_PAPR; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_ENABLE_CAP, &cap); | 
|  |  | 
|  | if (ret) { | 
|  | cpu_abort(cs, "This KVM version does not support PAPR\n"); | 
|  | } | 
|  |  | 
|  | /* Update the capability flag so we sync the right information | 
|  | * with kvm */ | 
|  | cap_papr = 1; | 
|  | } | 
|  |  | 
|  | void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy) | 
|  | { | 
|  | CPUState *cs = CPU(cpu); | 
|  | struct kvm_enable_cap cap = {}; | 
|  | int ret; | 
|  |  | 
|  | cap.cap = KVM_CAP_PPC_EPR; | 
|  | cap.args[0] = mpic_proxy; | 
|  | ret = kvm_vcpu_ioctl(cs, KVM_ENABLE_CAP, &cap); | 
|  |  | 
|  | if (ret && mpic_proxy) { | 
|  | cpu_abort(cs, "This KVM version does not support EPR\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | int kvmppc_smt_threads(void) | 
|  | { | 
|  | return cap_ppc_smt ? cap_ppc_smt : 1; | 
|  | } | 
|  |  | 
|  | #ifdef TARGET_PPC64 | 
|  | off_t kvmppc_alloc_rma(const char *name, MemoryRegion *sysmem) | 
|  | { | 
|  | void *rma; | 
|  | off_t size; | 
|  | int fd; | 
|  | struct kvm_allocate_rma ret; | 
|  | MemoryRegion *rma_region; | 
|  |  | 
|  | /* If cap_ppc_rma == 0, contiguous RMA allocation is not supported | 
|  | * if cap_ppc_rma == 1, contiguous RMA allocation is supported, but | 
|  | *                      not necessary on this hardware | 
|  | * if cap_ppc_rma == 2, contiguous RMA allocation is needed on this hardware | 
|  | * | 
|  | * FIXME: We should allow the user to force contiguous RMA | 
|  | * allocation in the cap_ppc_rma==1 case. | 
|  | */ | 
|  | if (cap_ppc_rma < 2) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | fd = kvm_vm_ioctl(kvm_state, KVM_ALLOCATE_RMA, &ret); | 
|  | if (fd < 0) { | 
|  | fprintf(stderr, "KVM: Error on KVM_ALLOCATE_RMA: %s\n", | 
|  | strerror(errno)); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | size = MIN(ret.rma_size, 256ul << 20); | 
|  |  | 
|  | rma = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0); | 
|  | if (rma == MAP_FAILED) { | 
|  | fprintf(stderr, "KVM: Error mapping RMA: %s\n", strerror(errno)); | 
|  | return -1; | 
|  | }; | 
|  |  | 
|  | rma_region = g_new(MemoryRegion, 1); | 
|  | memory_region_init_ram_ptr(rma_region, NULL, name, size, rma); | 
|  | vmstate_register_ram_global(rma_region); | 
|  | memory_region_add_subregion(sysmem, 0, rma_region); | 
|  |  | 
|  | return size; | 
|  | } | 
|  |  | 
|  | uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift) | 
|  | { | 
|  | struct kvm_ppc_smmu_info info; | 
|  | long rampagesize, best_page_shift; | 
|  | int i; | 
|  |  | 
|  | if (cap_ppc_rma >= 2) { | 
|  | return current_size; | 
|  | } | 
|  |  | 
|  | /* Find the largest hardware supported page size that's less than | 
|  | * or equal to the (logical) backing page size of guest RAM */ | 
|  | kvm_get_smmu_info(POWERPC_CPU(first_cpu), &info); | 
|  | rampagesize = getrampagesize(); | 
|  | best_page_shift = 0; | 
|  |  | 
|  | for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) { | 
|  | struct kvm_ppc_one_seg_page_size *sps = &info.sps[i]; | 
|  |  | 
|  | if (!sps->page_shift) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if ((sps->page_shift > best_page_shift) | 
|  | && ((1UL << sps->page_shift) <= rampagesize)) { | 
|  | best_page_shift = sps->page_shift; | 
|  | } | 
|  | } | 
|  |  | 
|  | return MIN(current_size, | 
|  | 1ULL << (best_page_shift + hash_shift - 7)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t window_size, int *pfd) | 
|  | { | 
|  | struct kvm_create_spapr_tce args = { | 
|  | .liobn = liobn, | 
|  | .window_size = window_size, | 
|  | }; | 
|  | long len; | 
|  | int fd; | 
|  | void *table; | 
|  |  | 
|  | /* Must set fd to -1 so we don't try to munmap when called for | 
|  | * destroying the table, which the upper layers -will- do | 
|  | */ | 
|  | *pfd = -1; | 
|  | if (!cap_spapr_tce) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args); | 
|  | if (fd < 0) { | 
|  | fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n", | 
|  | liobn); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | len = (window_size / SPAPR_TCE_PAGE_SIZE) * sizeof(uint64_t); | 
|  | /* FIXME: round this up to page size */ | 
|  |  | 
|  | table = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0); | 
|  | if (table == MAP_FAILED) { | 
|  | fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n", | 
|  | liobn); | 
|  | close(fd); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | *pfd = fd; | 
|  | return table; | 
|  | } | 
|  |  | 
|  | int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t window_size) | 
|  | { | 
|  | long len; | 
|  |  | 
|  | if (fd < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | len = (window_size / SPAPR_TCE_PAGE_SIZE)*sizeof(uint64_t); | 
|  | if ((munmap(table, len) < 0) || | 
|  | (close(fd) < 0)) { | 
|  | fprintf(stderr, "KVM: Unexpected error removing TCE table: %s", | 
|  | strerror(errno)); | 
|  | /* Leak the table */ | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvmppc_reset_htab(int shift_hint) | 
|  | { | 
|  | uint32_t shift = shift_hint; | 
|  |  | 
|  | if (!kvm_enabled()) { | 
|  | /* Full emulation, tell caller to allocate htab itself */ | 
|  | return 0; | 
|  | } | 
|  | if (kvm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) { | 
|  | int ret; | 
|  | ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift); | 
|  | if (ret == -ENOTTY) { | 
|  | /* At least some versions of PR KVM advertise the | 
|  | * capability, but don't implement the ioctl().  Oops. | 
|  | * Return 0 so that we allocate the htab in qemu, as is | 
|  | * correct for PR. */ | 
|  | return 0; | 
|  | } else if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | return shift; | 
|  | } | 
|  |  | 
|  | /* We have a kernel that predates the htab reset calls.  For PR | 
|  | * KVM, we need to allocate the htab ourselves, for an HV KVM of | 
|  | * this era, it has allocated a 16MB fixed size hash table | 
|  | * already.  Kernels of this era have the GET_PVINFO capability | 
|  | * only on PR, so we use this hack to determine the right | 
|  | * answer */ | 
|  | if (kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_PVINFO)) { | 
|  | /* PR - tell caller to allocate htab */ | 
|  | return 0; | 
|  | } else { | 
|  | /* HV - assume 16MB kernel allocated htab */ | 
|  | return 24; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline uint32_t mfpvr(void) | 
|  | { | 
|  | uint32_t pvr; | 
|  |  | 
|  | asm ("mfpvr %0" | 
|  | : "=r"(pvr)); | 
|  | return pvr; | 
|  | } | 
|  |  | 
|  | static void alter_insns(uint64_t *word, uint64_t flags, bool on) | 
|  | { | 
|  | if (on) { | 
|  | *word |= flags; | 
|  | } else { | 
|  | *word &= ~flags; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvmppc_host_cpu_initfn(Object *obj) | 
|  | { | 
|  | assert(kvm_enabled()); | 
|  | } | 
|  |  | 
|  | static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data) | 
|  | { | 
|  | PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc); | 
|  | uint32_t vmx = kvmppc_get_vmx(); | 
|  | uint32_t dfp = kvmppc_get_dfp(); | 
|  | uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size"); | 
|  | uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size"); | 
|  |  | 
|  | /* Now fix up the class with information we can query from the host */ | 
|  | pcc->pvr = mfpvr(); | 
|  |  | 
|  | if (vmx != -1) { | 
|  | /* Only override when we know what the host supports */ | 
|  | alter_insns(&pcc->insns_flags, PPC_ALTIVEC, vmx > 0); | 
|  | alter_insns(&pcc->insns_flags2, PPC2_VSX, vmx > 1); | 
|  | } | 
|  | if (dfp != -1) { | 
|  | /* Only override when we know what the host supports */ | 
|  | alter_insns(&pcc->insns_flags2, PPC2_DFP, dfp); | 
|  | } | 
|  |  | 
|  | if (dcache_size != -1) { | 
|  | pcc->l1_dcache_size = dcache_size; | 
|  | } | 
|  |  | 
|  | if (icache_size != -1) { | 
|  | pcc->l1_icache_size = icache_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool kvmppc_has_cap_epr(void) | 
|  | { | 
|  | return cap_epr; | 
|  | } | 
|  |  | 
|  | bool kvmppc_has_cap_htab_fd(void) | 
|  | { | 
|  | return cap_htab_fd; | 
|  | } | 
|  |  | 
|  | static int kvm_ppc_register_host_cpu_type(void) | 
|  | { | 
|  | TypeInfo type_info = { | 
|  | .name = TYPE_HOST_POWERPC_CPU, | 
|  | .instance_init = kvmppc_host_cpu_initfn, | 
|  | .class_init = kvmppc_host_cpu_class_init, | 
|  | }; | 
|  | uint32_t host_pvr = mfpvr(); | 
|  | PowerPCCPUClass *pvr_pcc; | 
|  |  | 
|  | pvr_pcc = ppc_cpu_class_by_pvr(host_pvr); | 
|  | if (pvr_pcc == NULL) { | 
|  | pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr); | 
|  | } | 
|  | if (pvr_pcc == NULL) { | 
|  | return -1; | 
|  | } | 
|  | type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc)); | 
|  | type_register(&type_info); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function) | 
|  | { | 
|  | struct kvm_rtas_token_args args = { | 
|  | .token = token, | 
|  | }; | 
|  |  | 
|  | if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) { | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | strncpy(args.name, function, sizeof(args.name)); | 
|  |  | 
|  | return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args); | 
|  | } | 
|  |  | 
|  | int kvmppc_get_htab_fd(bool write) | 
|  | { | 
|  | struct kvm_get_htab_fd s = { | 
|  | .flags = write ? KVM_GET_HTAB_WRITE : 0, | 
|  | .start_index = 0, | 
|  | }; | 
|  |  | 
|  | if (!cap_htab_fd) { | 
|  | fprintf(stderr, "KVM version doesn't support saving the hash table\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s); | 
|  | } | 
|  |  | 
|  | int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns) | 
|  | { | 
|  | int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); | 
|  | uint8_t buf[bufsize]; | 
|  | ssize_t rc; | 
|  |  | 
|  | do { | 
|  | rc = read(fd, buf, bufsize); | 
|  | if (rc < 0) { | 
|  | fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n", | 
|  | strerror(errno)); | 
|  | return rc; | 
|  | } else if (rc) { | 
|  | /* Kernel already retuns data in BE format for the file */ | 
|  | qemu_put_buffer(f, buf, rc); | 
|  | } | 
|  | } while ((rc != 0) | 
|  | && ((max_ns < 0) | 
|  | || ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns))); | 
|  |  | 
|  | return (rc == 0) ? 1 : 0; | 
|  | } | 
|  |  | 
|  | int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index, | 
|  | uint16_t n_valid, uint16_t n_invalid) | 
|  | { | 
|  | struct kvm_get_htab_header *buf; | 
|  | size_t chunksize = sizeof(*buf) + n_valid*HASH_PTE_SIZE_64; | 
|  | ssize_t rc; | 
|  |  | 
|  | buf = alloca(chunksize); | 
|  | /* This is KVM on ppc, so this is all big-endian */ | 
|  | buf->index = index; | 
|  | buf->n_valid = n_valid; | 
|  | buf->n_invalid = n_invalid; | 
|  |  | 
|  | qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64*n_valid); | 
|  |  | 
|  | rc = write(fd, buf, chunksize); | 
|  | if (rc < 0) { | 
|  | fprintf(stderr, "Error writing KVM hash table: %s\n", | 
|  | strerror(errno)); | 
|  | return rc; | 
|  | } | 
|  | if (rc != chunksize) { | 
|  | /* We should never get a short write on a single chunk */ | 
|  | fprintf(stderr, "Short write, restoring KVM hash table\n"); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool kvm_arch_stop_on_emulation_error(CPUState *cpu) | 
|  | { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int kvm_arch_on_sigbus(int code, void *addr) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void kvm_arch_init_irq_routing(KVMState *s) | 
|  | { | 
|  | } | 
|  |  | 
|  | int kvm_arch_insert_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | int kvm_arch_remove_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | int kvm_arch_insert_hw_breakpoint(target_ulong addr, target_ulong len, int type) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | int kvm_arch_remove_hw_breakpoint(target_ulong addr, target_ulong len, int type) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | void kvm_arch_remove_all_hw_breakpoints(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) | 
|  | { | 
|  | } | 
|  |  | 
|  | struct kvm_get_htab_buf { | 
|  | struct kvm_get_htab_header header; | 
|  | /* | 
|  | * We require one extra byte for read | 
|  | */ | 
|  | target_ulong hpte[(HPTES_PER_GROUP * 2) + 1]; | 
|  | }; | 
|  |  | 
|  | uint64_t kvmppc_hash64_read_pteg(PowerPCCPU *cpu, target_ulong pte_index) | 
|  | { | 
|  | int htab_fd; | 
|  | struct kvm_get_htab_fd ghf; | 
|  | struct kvm_get_htab_buf  *hpte_buf; | 
|  |  | 
|  | ghf.flags = 0; | 
|  | ghf.start_index = pte_index; | 
|  | htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf); | 
|  | if (htab_fd < 0) { | 
|  | goto error_out; | 
|  | } | 
|  |  | 
|  | hpte_buf = g_malloc0(sizeof(*hpte_buf)); | 
|  | /* | 
|  | * Read the hpte group | 
|  | */ | 
|  | if (read(htab_fd, hpte_buf, sizeof(*hpte_buf)) < 0) { | 
|  | goto out_close; | 
|  | } | 
|  |  | 
|  | close(htab_fd); | 
|  | return (uint64_t)(uintptr_t) hpte_buf->hpte; | 
|  |  | 
|  | out_close: | 
|  | g_free(hpte_buf); | 
|  | close(htab_fd); | 
|  | error_out: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvmppc_hash64_free_pteg(uint64_t token) | 
|  | { | 
|  | struct kvm_get_htab_buf *htab_buf; | 
|  |  | 
|  | htab_buf = container_of((void *)(uintptr_t) token, struct kvm_get_htab_buf, | 
|  | hpte); | 
|  | g_free(htab_buf); | 
|  | return; | 
|  | } | 
|  |  | 
|  | void kvmppc_hash64_write_pte(CPUPPCState *env, target_ulong pte_index, | 
|  | target_ulong pte0, target_ulong pte1) | 
|  | { | 
|  | int htab_fd; | 
|  | struct kvm_get_htab_fd ghf; | 
|  | struct kvm_get_htab_buf hpte_buf; | 
|  |  | 
|  | ghf.flags = 0; | 
|  | ghf.start_index = 0;     /* Ignored */ | 
|  | htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf); | 
|  | if (htab_fd < 0) { | 
|  | goto error_out; | 
|  | } | 
|  |  | 
|  | hpte_buf.header.n_valid = 1; | 
|  | hpte_buf.header.n_invalid = 0; | 
|  | hpte_buf.header.index = pte_index; | 
|  | hpte_buf.hpte[0] = pte0; | 
|  | hpte_buf.hpte[1] = pte1; | 
|  | /* | 
|  | * Write the hpte entry. | 
|  | * CAUTION: write() has the warn_unused_result attribute. Hence we | 
|  | * need to check the return value, even though we do nothing. | 
|  | */ | 
|  | if (write(htab_fd, &hpte_buf, sizeof(hpte_buf)) < 0) { | 
|  | goto out_close; | 
|  | } | 
|  |  | 
|  | out_close: | 
|  | close(htab_fd); | 
|  | return; | 
|  |  | 
|  | error_out: | 
|  | return; | 
|  | } |