| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "internals.h" |
| #include "exec/gdbstub.h" |
| #include "exec/helper-proto.h" |
| #include "qemu/host-utils.h" |
| #include "sysemu/arch_init.h" |
| #include "sysemu/sysemu.h" |
| #include "qemu/bitops.h" |
| #include "qemu/crc32c.h" |
| #include "exec/exec-all.h" |
| #include "exec/cpu_ldst.h" |
| #include "arm_ldst.h" |
| #include <zlib.h> /* For crc32 */ |
| #include "exec/semihost.h" |
| #include "sysemu/kvm.h" |
| |
| #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ |
| |
| #ifndef CONFIG_USER_ONLY |
| static bool get_phys_addr(CPUARMState *env, target_ulong address, |
| int access_type, ARMMMUIdx mmu_idx, |
| hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, |
| target_ulong *page_size, uint32_t *fsr, |
| ARMMMUFaultInfo *fi); |
| |
| static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, |
| int access_type, ARMMMUIdx mmu_idx, |
| hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, |
| target_ulong *page_size_ptr, uint32_t *fsr, |
| ARMMMUFaultInfo *fi); |
| |
| /* Definitions for the PMCCNTR and PMCR registers */ |
| #define PMCRD 0x8 |
| #define PMCRC 0x4 |
| #define PMCRE 0x1 |
| #endif |
| |
| static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
| { |
| int nregs; |
| |
| /* VFP data registers are always little-endian. */ |
| nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; |
| if (reg < nregs) { |
| stfq_le_p(buf, env->vfp.regs[reg]); |
| return 8; |
| } |
| if (arm_feature(env, ARM_FEATURE_NEON)) { |
| /* Aliases for Q regs. */ |
| nregs += 16; |
| if (reg < nregs) { |
| stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); |
| stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); |
| return 16; |
| } |
| } |
| switch (reg - nregs) { |
| case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; |
| case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; |
| case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; |
| } |
| return 0; |
| } |
| |
| static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
| { |
| int nregs; |
| |
| nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; |
| if (reg < nregs) { |
| env->vfp.regs[reg] = ldfq_le_p(buf); |
| return 8; |
| } |
| if (arm_feature(env, ARM_FEATURE_NEON)) { |
| nregs += 16; |
| if (reg < nregs) { |
| env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); |
| env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); |
| return 16; |
| } |
| } |
| switch (reg - nregs) { |
| case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; |
| case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; |
| case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; |
| } |
| return 0; |
| } |
| |
| static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) |
| { |
| switch (reg) { |
| case 0 ... 31: |
| /* 128 bit FP register */ |
| stfq_le_p(buf, env->vfp.regs[reg * 2]); |
| stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); |
| return 16; |
| case 32: |
| /* FPSR */ |
| stl_p(buf, vfp_get_fpsr(env)); |
| return 4; |
| case 33: |
| /* FPCR */ |
| stl_p(buf, vfp_get_fpcr(env)); |
| return 4; |
| default: |
| return 0; |
| } |
| } |
| |
| static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) |
| { |
| switch (reg) { |
| case 0 ... 31: |
| /* 128 bit FP register */ |
| env->vfp.regs[reg * 2] = ldfq_le_p(buf); |
| env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); |
| return 16; |
| case 32: |
| /* FPSR */ |
| vfp_set_fpsr(env, ldl_p(buf)); |
| return 4; |
| case 33: |
| /* FPCR */ |
| vfp_set_fpcr(env, ldl_p(buf)); |
| return 4; |
| default: |
| return 0; |
| } |
| } |
| |
| static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| assert(ri->fieldoffset); |
| if (cpreg_field_is_64bit(ri)) { |
| return CPREG_FIELD64(env, ri); |
| } else { |
| return CPREG_FIELD32(env, ri); |
| } |
| } |
| |
| static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| assert(ri->fieldoffset); |
| if (cpreg_field_is_64bit(ri)) { |
| CPREG_FIELD64(env, ri) = value; |
| } else { |
| CPREG_FIELD32(env, ri) = value; |
| } |
| } |
| |
| static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return (char *)env + ri->fieldoffset; |
| } |
| |
| uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| /* Raw read of a coprocessor register (as needed for migration, etc). */ |
| if (ri->type & ARM_CP_CONST) { |
| return ri->resetvalue; |
| } else if (ri->raw_readfn) { |
| return ri->raw_readfn(env, ri); |
| } else if (ri->readfn) { |
| return ri->readfn(env, ri); |
| } else { |
| return raw_read(env, ri); |
| } |
| } |
| |
| static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t v) |
| { |
| /* Raw write of a coprocessor register (as needed for migration, etc). |
| * Note that constant registers are treated as write-ignored; the |
| * caller should check for success by whether a readback gives the |
| * value written. |
| */ |
| if (ri->type & ARM_CP_CONST) { |
| return; |
| } else if (ri->raw_writefn) { |
| ri->raw_writefn(env, ri, v); |
| } else if (ri->writefn) { |
| ri->writefn(env, ri, v); |
| } else { |
| raw_write(env, ri, v); |
| } |
| } |
| |
| static bool raw_accessors_invalid(const ARMCPRegInfo *ri) |
| { |
| /* Return true if the regdef would cause an assertion if you called |
| * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a |
| * program bug for it not to have the NO_RAW flag). |
| * NB that returning false here doesn't necessarily mean that calling |
| * read/write_raw_cp_reg() is safe, because we can't distinguish "has |
| * read/write access functions which are safe for raw use" from "has |
| * read/write access functions which have side effects but has forgotten |
| * to provide raw access functions". |
| * The tests here line up with the conditions in read/write_raw_cp_reg() |
| * and assertions in raw_read()/raw_write(). |
| */ |
| if ((ri->type & ARM_CP_CONST) || |
| ri->fieldoffset || |
| ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { |
| return false; |
| } |
| return true; |
| } |
| |
| bool write_cpustate_to_list(ARMCPU *cpu) |
| { |
| /* Write the coprocessor state from cpu->env to the (index,value) list. */ |
| int i; |
| bool ok = true; |
| |
| for (i = 0; i < cpu->cpreg_array_len; i++) { |
| uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); |
| const ARMCPRegInfo *ri; |
| |
| ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
| if (!ri) { |
| ok = false; |
| continue; |
| } |
| if (ri->type & ARM_CP_NO_RAW) { |
| continue; |
| } |
| cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); |
| } |
| return ok; |
| } |
| |
| bool write_list_to_cpustate(ARMCPU *cpu) |
| { |
| int i; |
| bool ok = true; |
| |
| for (i = 0; i < cpu->cpreg_array_len; i++) { |
| uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); |
| uint64_t v = cpu->cpreg_values[i]; |
| const ARMCPRegInfo *ri; |
| |
| ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
| if (!ri) { |
| ok = false; |
| continue; |
| } |
| if (ri->type & ARM_CP_NO_RAW) { |
| continue; |
| } |
| /* Write value and confirm it reads back as written |
| * (to catch read-only registers and partially read-only |
| * registers where the incoming migration value doesn't match) |
| */ |
| write_raw_cp_reg(&cpu->env, ri, v); |
| if (read_raw_cp_reg(&cpu->env, ri) != v) { |
| ok = false; |
| } |
| } |
| return ok; |
| } |
| |
| static void add_cpreg_to_list(gpointer key, gpointer opaque) |
| { |
| ARMCPU *cpu = opaque; |
| uint64_t regidx; |
| const ARMCPRegInfo *ri; |
| |
| regidx = *(uint32_t *)key; |
| ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
| |
| if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
| cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); |
| /* The value array need not be initialized at this point */ |
| cpu->cpreg_array_len++; |
| } |
| } |
| |
| static void count_cpreg(gpointer key, gpointer opaque) |
| { |
| ARMCPU *cpu = opaque; |
| uint64_t regidx; |
| const ARMCPRegInfo *ri; |
| |
| regidx = *(uint32_t *)key; |
| ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); |
| |
| if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { |
| cpu->cpreg_array_len++; |
| } |
| } |
| |
| static gint cpreg_key_compare(gconstpointer a, gconstpointer b) |
| { |
| uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); |
| uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); |
| |
| if (aidx > bidx) { |
| return 1; |
| } |
| if (aidx < bidx) { |
| return -1; |
| } |
| return 0; |
| } |
| |
| void init_cpreg_list(ARMCPU *cpu) |
| { |
| /* Initialise the cpreg_tuples[] array based on the cp_regs hash. |
| * Note that we require cpreg_tuples[] to be sorted by key ID. |
| */ |
| GList *keys; |
| int arraylen; |
| |
| keys = g_hash_table_get_keys(cpu->cp_regs); |
| keys = g_list_sort(keys, cpreg_key_compare); |
| |
| cpu->cpreg_array_len = 0; |
| |
| g_list_foreach(keys, count_cpreg, cpu); |
| |
| arraylen = cpu->cpreg_array_len; |
| cpu->cpreg_indexes = g_new(uint64_t, arraylen); |
| cpu->cpreg_values = g_new(uint64_t, arraylen); |
| cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); |
| cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); |
| cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; |
| cpu->cpreg_array_len = 0; |
| |
| g_list_foreach(keys, add_cpreg_to_list, cpu); |
| |
| assert(cpu->cpreg_array_len == arraylen); |
| |
| g_list_free(keys); |
| } |
| |
| /* |
| * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but |
| * they are accessible when EL3 is using AArch64 regardless of EL3.NS. |
| * |
| * access_el3_aa32ns: Used to check AArch32 register views. |
| * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. |
| */ |
| static CPAccessResult access_el3_aa32ns(CPUARMState *env, |
| const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| bool secure = arm_is_secure_below_el3(env); |
| |
| assert(!arm_el_is_aa64(env, 3)); |
| if (secure) { |
| return CP_ACCESS_TRAP_UNCATEGORIZED; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, |
| const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| if (!arm_el_is_aa64(env, 3)) { |
| return access_el3_aa32ns(env, ri, isread); |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| /* Some secure-only AArch32 registers trap to EL3 if used from |
| * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). |
| * Note that an access from Secure EL1 can only happen if EL3 is AArch64. |
| * We assume that the .access field is set to PL1_RW. |
| */ |
| static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, |
| const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| if (arm_current_el(env) == 3) { |
| return CP_ACCESS_OK; |
| } |
| if (arm_is_secure_below_el3(env)) { |
| return CP_ACCESS_TRAP_EL3; |
| } |
| /* This will be EL1 NS and EL2 NS, which just UNDEF */ |
| return CP_ACCESS_TRAP_UNCATEGORIZED; |
| } |
| |
| /* Check for traps to "powerdown debug" registers, which are controlled |
| * by MDCR.TDOSA |
| */ |
| static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| int el = arm_current_el(env); |
| |
| if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA) |
| && !arm_is_secure_below_el3(env)) { |
| return CP_ACCESS_TRAP_EL2; |
| } |
| if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { |
| return CP_ACCESS_TRAP_EL3; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| /* Check for traps to "debug ROM" registers, which are controlled |
| * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. |
| */ |
| static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| int el = arm_current_el(env); |
| |
| if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA) |
| && !arm_is_secure_below_el3(env)) { |
| return CP_ACCESS_TRAP_EL2; |
| } |
| if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { |
| return CP_ACCESS_TRAP_EL3; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| /* Check for traps to general debug registers, which are controlled |
| * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. |
| */ |
| static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| int el = arm_current_el(env); |
| |
| if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA) |
| && !arm_is_secure_below_el3(env)) { |
| return CP_ACCESS_TRAP_EL2; |
| } |
| if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { |
| return CP_ACCESS_TRAP_EL3; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| /* Check for traps to performance monitor registers, which are controlled |
| * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. |
| */ |
| static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| int el = arm_current_el(env); |
| |
| if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) |
| && !arm_is_secure_below_el3(env)) { |
| return CP_ACCESS_TRAP_EL2; |
| } |
| if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { |
| return CP_ACCESS_TRAP_EL3; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| raw_write(env, ri, value); |
| tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */ |
| } |
| |
| static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| if (raw_read(env, ri) != value) { |
| /* Unlike real hardware the qemu TLB uses virtual addresses, |
| * not modified virtual addresses, so this causes a TLB flush. |
| */ |
| tlb_flush(CPU(cpu), 1); |
| raw_write(env, ri, value); |
| } |
| } |
| |
| static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU) |
| && !extended_addresses_enabled(env)) { |
| /* For VMSA (when not using the LPAE long descriptor page table |
| * format) this register includes the ASID, so do a TLB flush. |
| * For PMSA it is purely a process ID and no action is needed. |
| */ |
| tlb_flush(CPU(cpu), 1); |
| } |
| raw_write(env, ri, value); |
| } |
| |
| static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Invalidate all (TLBIALL) */ |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| tlb_flush(CPU(cpu), 1); |
| } |
| |
| static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); |
| } |
| |
| static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Invalidate by ASID (TLBIASID) */ |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| tlb_flush(CPU(cpu), value == 0); |
| } |
| |
| static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); |
| } |
| |
| /* IS variants of TLB operations must affect all cores */ |
| static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *other_cs; |
| |
| CPU_FOREACH(other_cs) { |
| tlb_flush(other_cs, 1); |
| } |
| } |
| |
| static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *other_cs; |
| |
| CPU_FOREACH(other_cs) { |
| tlb_flush(other_cs, value == 0); |
| } |
| } |
| |
| static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *other_cs; |
| |
| CPU_FOREACH(other_cs) { |
| tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); |
| } |
| } |
| |
| static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *other_cs; |
| |
| CPU_FOREACH(other_cs) { |
| tlb_flush_page(other_cs, value & TARGET_PAGE_MASK); |
| } |
| } |
| |
| static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| |
| tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, |
| ARMMMUIdx_S2NS, -1); |
| } |
| |
| static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *other_cs; |
| |
| CPU_FOREACH(other_cs) { |
| tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, |
| ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1); |
| } |
| } |
| |
| static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Invalidate by IPA. This has to invalidate any structures that |
| * contain only stage 2 translation information, but does not need |
| * to apply to structures that contain combined stage 1 and stage 2 |
| * translation information. |
| * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. |
| */ |
| CPUState *cs = ENV_GET_CPU(env); |
| uint64_t pageaddr; |
| |
| if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { |
| return; |
| } |
| |
| pageaddr = sextract64(value << 12, 0, 40); |
| |
| tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1); |
| } |
| |
| static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *other_cs; |
| uint64_t pageaddr; |
| |
| if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { |
| return; |
| } |
| |
| pageaddr = sextract64(value << 12, 0, 40); |
| |
| CPU_FOREACH(other_cs) { |
| tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1); |
| } |
| } |
| |
| static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| |
| tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1); |
| } |
| |
| static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *other_cs; |
| |
| CPU_FOREACH(other_cs) { |
| tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1); |
| } |
| } |
| |
| static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); |
| |
| tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1); |
| } |
| |
| static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *other_cs; |
| uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); |
| |
| CPU_FOREACH(other_cs) { |
| tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1); |
| } |
| } |
| |
| static const ARMCPRegInfo cp_reginfo[] = { |
| /* Define the secure and non-secure FCSE identifier CP registers |
| * separately because there is no secure bank in V8 (no _EL3). This allows |
| * the secure register to be properly reset and migrated. There is also no |
| * v8 EL1 version of the register so the non-secure instance stands alone. |
| */ |
| { .name = "FCSEIDR(NS)", |
| .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, |
| .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, |
| .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), |
| .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
| { .name = "FCSEIDR(S)", |
| .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, |
| .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, |
| .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), |
| .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, |
| /* Define the secure and non-secure context identifier CP registers |
| * separately because there is no secure bank in V8 (no _EL3). This allows |
| * the secure register to be properly reset and migrated. In the |
| * non-secure case, the 32-bit register will have reset and migration |
| * disabled during registration as it is handled by the 64-bit instance. |
| */ |
| { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, |
| .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, |
| .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), |
| .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
| { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, |
| .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, |
| .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), |
| .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo not_v8_cp_reginfo[] = { |
| /* NB: Some of these registers exist in v8 but with more precise |
| * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). |
| */ |
| /* MMU Domain access control / MPU write buffer control */ |
| { .name = "DACR", |
| .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, |
| .access = PL1_RW, .resetvalue = 0, |
| .writefn = dacr_write, .raw_writefn = raw_write, |
| .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), |
| offsetoflow32(CPUARMState, cp15.dacr_ns) } }, |
| /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. |
| * For v6 and v5, these mappings are overly broad. |
| */ |
| { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, |
| .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, |
| { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, |
| .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, |
| { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, |
| .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, |
| { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, |
| .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, |
| /* Cache maintenance ops; some of this space may be overridden later. */ |
| { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
| .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
| .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo not_v6_cp_reginfo[] = { |
| /* Not all pre-v6 cores implemented this WFI, so this is slightly |
| * over-broad. |
| */ |
| { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, |
| .access = PL1_W, .type = ARM_CP_WFI }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo not_v7_cp_reginfo[] = { |
| /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which |
| * is UNPREDICTABLE; we choose to NOP as most implementations do). |
| */ |
| { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, |
| .access = PL1_W, .type = ARM_CP_WFI }, |
| /* L1 cache lockdown. Not architectural in v6 and earlier but in practice |
| * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and |
| * OMAPCP will override this space. |
| */ |
| { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), |
| .resetvalue = 0 }, |
| { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), |
| .resetvalue = 0 }, |
| /* v6 doesn't have the cache ID registers but Linux reads them anyway */ |
| { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, |
| .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
| .resetvalue = 0 }, |
| /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; |
| * implementing it as RAZ means the "debug architecture version" bits |
| * will read as a reserved value, which should cause Linux to not try |
| * to use the debug hardware. |
| */ |
| { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| /* MMU TLB control. Note that the wildcarding means we cover not just |
| * the unified TLB ops but also the dside/iside/inner-shareable variants. |
| */ |
| { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, |
| .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, |
| .type = ARM_CP_NO_RAW }, |
| { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, |
| .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, |
| .type = ARM_CP_NO_RAW }, |
| { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, |
| .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, |
| .type = ARM_CP_NO_RAW }, |
| { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, |
| .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, |
| .type = ARM_CP_NO_RAW }, |
| { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, |
| .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, |
| { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, |
| .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, |
| REGINFO_SENTINEL |
| }; |
| |
| static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| uint32_t mask = 0; |
| |
| /* In ARMv8 most bits of CPACR_EL1 are RES0. */ |
| if (!arm_feature(env, ARM_FEATURE_V8)) { |
| /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. |
| * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. |
| * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. |
| */ |
| if (arm_feature(env, ARM_FEATURE_VFP)) { |
| /* VFP coprocessor: cp10 & cp11 [23:20] */ |
| mask |= (1 << 31) | (1 << 30) | (0xf << 20); |
| |
| if (!arm_feature(env, ARM_FEATURE_NEON)) { |
| /* ASEDIS [31] bit is RAO/WI */ |
| value |= (1 << 31); |
| } |
| |
| /* VFPv3 and upwards with NEON implement 32 double precision |
| * registers (D0-D31). |
| */ |
| if (!arm_feature(env, ARM_FEATURE_NEON) || |
| !arm_feature(env, ARM_FEATURE_VFP3)) { |
| /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ |
| value |= (1 << 30); |
| } |
| } |
| value &= mask; |
| } |
| env->cp15.cpacr_el1 = value; |
| } |
| |
| static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| /* Check if CPACR accesses are to be trapped to EL2 */ |
| if (arm_current_el(env) == 1 && |
| (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { |
| return CP_ACCESS_TRAP_EL2; |
| /* Check if CPACR accesses are to be trapped to EL3 */ |
| } else if (arm_current_el(env) < 3 && |
| (env->cp15.cptr_el[3] & CPTR_TCPAC)) { |
| return CP_ACCESS_TRAP_EL3; |
| } |
| } |
| |
| return CP_ACCESS_OK; |
| } |
| |
| static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| /* Check if CPTR accesses are set to trap to EL3 */ |
| if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { |
| return CP_ACCESS_TRAP_EL3; |
| } |
| |
| return CP_ACCESS_OK; |
| } |
| |
| static const ARMCPRegInfo v6_cp_reginfo[] = { |
| /* prefetch by MVA in v6, NOP in v7 */ |
| { .name = "MVA_prefetch", |
| .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, |
| .access = PL1_W, .type = ARM_CP_NOP }, |
| /* We need to break the TB after ISB to execute self-modifying code |
| * correctly and also to take any pending interrupts immediately. |
| * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. |
| */ |
| { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, |
| .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, |
| { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, |
| .access = PL0_W, .type = ARM_CP_NOP }, |
| { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, |
| .access = PL0_W, .type = ARM_CP_NOP }, |
| { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, |
| .access = PL1_RW, |
| .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), |
| offsetof(CPUARMState, cp15.ifar_ns) }, |
| .resetvalue = 0, }, |
| /* Watchpoint Fault Address Register : should actually only be present |
| * for 1136, 1176, 11MPCore. |
| */ |
| { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, |
| { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, |
| .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), |
| .resetvalue = 0, .writefn = cpacr_write }, |
| REGINFO_SENTINEL |
| }; |
| |
| static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| /* Performance monitor registers user accessibility is controlled |
| * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable |
| * trapping to EL2 or EL3 for other accesses. |
| */ |
| int el = arm_current_el(env); |
| |
| if (el == 0 && !env->cp15.c9_pmuserenr) { |
| return CP_ACCESS_TRAP; |
| } |
| if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) |
| && !arm_is_secure_below_el3(env)) { |
| return CP_ACCESS_TRAP_EL2; |
| } |
| if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { |
| return CP_ACCESS_TRAP_EL3; |
| } |
| |
| return CP_ACCESS_OK; |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| |
| static inline bool arm_ccnt_enabled(CPUARMState *env) |
| { |
| /* This does not support checking PMCCFILTR_EL0 register */ |
| |
| if (!(env->cp15.c9_pmcr & PMCRE)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void pmccntr_sync(CPUARMState *env) |
| { |
| uint64_t temp_ticks; |
| |
| temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
| ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); |
| |
| if (env->cp15.c9_pmcr & PMCRD) { |
| /* Increment once every 64 processor clock cycles */ |
| temp_ticks /= 64; |
| } |
| |
| if (arm_ccnt_enabled(env)) { |
| env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; |
| } |
| } |
| |
| static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| pmccntr_sync(env); |
| |
| if (value & PMCRC) { |
| /* The counter has been reset */ |
| env->cp15.c15_ccnt = 0; |
| } |
| |
| /* only the DP, X, D and E bits are writable */ |
| env->cp15.c9_pmcr &= ~0x39; |
| env->cp15.c9_pmcr |= (value & 0x39); |
| |
| pmccntr_sync(env); |
| } |
| |
| static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| uint64_t total_ticks; |
| |
| if (!arm_ccnt_enabled(env)) { |
| /* Counter is disabled, do not change value */ |
| return env->cp15.c15_ccnt; |
| } |
| |
| total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
| ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); |
| |
| if (env->cp15.c9_pmcr & PMCRD) { |
| /* Increment once every 64 processor clock cycles */ |
| total_ticks /= 64; |
| } |
| return total_ticks - env->cp15.c15_ccnt; |
| } |
| |
| static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| uint64_t total_ticks; |
| |
| if (!arm_ccnt_enabled(env)) { |
| /* Counter is disabled, set the absolute value */ |
| env->cp15.c15_ccnt = value; |
| return; |
| } |
| |
| total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), |
| ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); |
| |
| if (env->cp15.c9_pmcr & PMCRD) { |
| /* Increment once every 64 processor clock cycles */ |
| total_ticks /= 64; |
| } |
| env->cp15.c15_ccnt = total_ticks - value; |
| } |
| |
| static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| uint64_t cur_val = pmccntr_read(env, NULL); |
| |
| pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); |
| } |
| |
| #else /* CONFIG_USER_ONLY */ |
| |
| void pmccntr_sync(CPUARMState *env) |
| { |
| } |
| |
| #endif |
| |
| static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| pmccntr_sync(env); |
| env->cp15.pmccfiltr_el0 = value & 0x7E000000; |
| pmccntr_sync(env); |
| } |
| |
| static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| value &= (1 << 31); |
| env->cp15.c9_pmcnten |= value; |
| } |
| |
| static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| value &= (1 << 31); |
| env->cp15.c9_pmcnten &= ~value; |
| } |
| |
| static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c9_pmovsr &= ~value; |
| } |
| |
| static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c9_pmxevtyper = value & 0xff; |
| } |
| |
| static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c9_pmuserenr = value & 1; |
| } |
| |
| static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* We have no event counters so only the C bit can be changed */ |
| value &= (1 << 31); |
| env->cp15.c9_pminten |= value; |
| } |
| |
| static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| value &= (1 << 31); |
| env->cp15.c9_pminten &= ~value; |
| } |
| |
| static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Note that even though the AArch64 view of this register has bits |
| * [10:0] all RES0 we can only mask the bottom 5, to comply with the |
| * architectural requirements for bits which are RES0 only in some |
| * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 |
| * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) |
| */ |
| raw_write(env, ri, value & ~0x1FULL); |
| } |
| |
| static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| { |
| /* We only mask off bits that are RES0 both for AArch64 and AArch32. |
| * For bits that vary between AArch32/64, code needs to check the |
| * current execution mode before directly using the feature bit. |
| */ |
| uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; |
| |
| if (!arm_feature(env, ARM_FEATURE_EL2)) { |
| valid_mask &= ~SCR_HCE; |
| |
| /* On ARMv7, SMD (or SCD as it is called in v7) is only |
| * supported if EL2 exists. The bit is UNK/SBZP when |
| * EL2 is unavailable. In QEMU ARMv7, we force it to always zero |
| * when EL2 is unavailable. |
| * On ARMv8, this bit is always available. |
| */ |
| if (arm_feature(env, ARM_FEATURE_V7) && |
| !arm_feature(env, ARM_FEATURE_V8)) { |
| valid_mask &= ~SCR_SMD; |
| } |
| } |
| |
| /* Clear all-context RES0 bits. */ |
| value &= valid_mask; |
| raw_write(env, ri, value); |
| } |
| |
| static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| /* Acquire the CSSELR index from the bank corresponding to the CCSIDR |
| * bank |
| */ |
| uint32_t index = A32_BANKED_REG_GET(env, csselr, |
| ri->secure & ARM_CP_SECSTATE_S); |
| |
| return cpu->ccsidr[index]; |
| } |
| |
| static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| raw_write(env, ri, value & 0xf); |
| } |
| |
| static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| CPUState *cs = ENV_GET_CPU(env); |
| uint64_t ret = 0; |
| |
| if (cs->interrupt_request & CPU_INTERRUPT_HARD) { |
| ret |= CPSR_I; |
| } |
| if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { |
| ret |= CPSR_F; |
| } |
| /* External aborts are not possible in QEMU so A bit is always clear */ |
| return ret; |
| } |
| |
| static const ARMCPRegInfo v7_cp_reginfo[] = { |
| /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ |
| { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, |
| .access = PL1_W, .type = ARM_CP_NOP }, |
| /* Performance monitors are implementation defined in v7, |
| * but with an ARM recommended set of registers, which we |
| * follow (although we don't actually implement any counters) |
| * |
| * Performance registers fall into three categories: |
| * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) |
| * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) |
| * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) |
| * For the cases controlled by PMUSERENR we must set .access to PL0_RW |
| * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. |
| */ |
| { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, |
| .access = PL0_RW, .type = ARM_CP_ALIAS, |
| .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), |
| .writefn = pmcntenset_write, |
| .accessfn = pmreg_access, |
| .raw_writefn = raw_write }, |
| { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, |
| .access = PL0_RW, .accessfn = pmreg_access, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, |
| .writefn = pmcntenset_write, .raw_writefn = raw_write }, |
| { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, |
| .access = PL0_RW, |
| .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), |
| .accessfn = pmreg_access, |
| .writefn = pmcntenclr_write, |
| .type = ARM_CP_ALIAS }, |
| { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, |
| .access = PL0_RW, .accessfn = pmreg_access, |
| .type = ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), |
| .writefn = pmcntenclr_write }, |
| { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, |
| .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), |
| .accessfn = pmreg_access, |
| .writefn = pmovsr_write, |
| .raw_writefn = raw_write }, |
| { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, |
| .access = PL0_RW, .accessfn = pmreg_access, |
| .type = ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), |
| .writefn = pmovsr_write, |
| .raw_writefn = raw_write }, |
| /* Unimplemented so WI. */ |
| { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, |
| .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP }, |
| /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE. |
| * We choose to RAZ/WI. |
| */ |
| { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, |
| .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
| .accessfn = pmreg_access }, |
| #ifndef CONFIG_USER_ONLY |
| { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, |
| .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, |
| .readfn = pmccntr_read, .writefn = pmccntr_write32, |
| .accessfn = pmreg_access }, |
| { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, |
| .access = PL0_RW, .accessfn = pmreg_access, |
| .type = ARM_CP_IO, |
| .readfn = pmccntr_read, .writefn = pmccntr_write, }, |
| #endif |
| { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, |
| .writefn = pmccfiltr_write, |
| .access = PL0_RW, .accessfn = pmreg_access, |
| .type = ARM_CP_IO, |
| .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), |
| .resetvalue = 0, }, |
| { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, |
| .access = PL0_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper), |
| .accessfn = pmreg_access, .writefn = pmxevtyper_write, |
| .raw_writefn = raw_write }, |
| /* Unimplemented, RAZ/WI. */ |
| { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, |
| .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, |
| .accessfn = pmreg_access }, |
| { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, |
| .access = PL0_R | PL1_RW, .accessfn = access_tpm, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), |
| .resetvalue = 0, |
| .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
| { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, |
| .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), |
| .resetvalue = 0, |
| .writefn = pmuserenr_write, .raw_writefn = raw_write }, |
| { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, .accessfn = access_tpm, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
| .resetvalue = 0, |
| .writefn = pmintenset_write, .raw_writefn = raw_write }, |
| { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, |
| .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
| .writefn = pmintenclr_write, }, |
| { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, |
| .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), |
| .writefn = pmintenclr_write }, |
| { .name = "VBAR", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .writefn = vbar_write, |
| .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), |
| offsetof(CPUARMState, cp15.vbar_ns) }, |
| .resetvalue = 0 }, |
| { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, |
| .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, |
| { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, |
| .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, |
| .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), |
| offsetof(CPUARMState, cp15.csselr_ns) } }, |
| /* Auxiliary ID register: this actually has an IMPDEF value but for now |
| * just RAZ for all cores: |
| */ |
| { .name = "AIDR", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| /* Auxiliary fault status registers: these also are IMPDEF, and we |
| * choose to RAZ/WI for all cores. |
| */ |
| { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, |
| .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, |
| .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| /* MAIR can just read-as-written because we don't implement caches |
| * and so don't need to care about memory attributes. |
| */ |
| { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), |
| .resetvalue = 0 }, |
| { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, |
| .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), |
| .resetvalue = 0 }, |
| /* For non-long-descriptor page tables these are PRRR and NMRR; |
| * regardless they still act as reads-as-written for QEMU. |
| */ |
| /* MAIR0/1 are defined separately from their 64-bit counterpart which |
| * allows them to assign the correct fieldoffset based on the endianness |
| * handled in the field definitions. |
| */ |
| { .name = "MAIR0", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, |
| .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), |
| offsetof(CPUARMState, cp15.mair0_ns) }, |
| .resetfn = arm_cp_reset_ignore }, |
| { .name = "MAIR1", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, |
| .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), |
| offsetof(CPUARMState, cp15.mair1_ns) }, |
| .resetfn = arm_cp_reset_ignore }, |
| { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, |
| .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, |
| /* 32 bit ITLB invalidates */ |
| { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
| { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
| { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
| /* 32 bit DTLB invalidates */ |
| { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
| { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
| { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
| /* 32 bit TLB invalidates */ |
| { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, |
| { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
| { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, |
| { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo v7mp_cp_reginfo[] = { |
| /* 32 bit TLB invalidates, Inner Shareable */ |
| { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, |
| { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, |
| { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, |
| .writefn = tlbiasid_is_write }, |
| { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, |
| .writefn = tlbimvaa_is_write }, |
| REGINFO_SENTINEL |
| }; |
| |
| static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| value &= 1; |
| env->teecr = value; |
| } |
| |
| static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| if (arm_current_el(env) == 0 && (env->teecr & 1)) { |
| return CP_ACCESS_TRAP; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static const ARMCPRegInfo t2ee_cp_reginfo[] = { |
| { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), |
| .resetvalue = 0, |
| .writefn = teecr_write }, |
| { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, |
| .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), |
| .accessfn = teehbr_access, .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo v6k_cp_reginfo[] = { |
| { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, |
| .access = PL0_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, |
| { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, |
| .access = PL0_RW, |
| .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), |
| offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, |
| .resetfn = arm_cp_reset_ignore }, |
| { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, |
| .access = PL0_R|PL1_W, |
| .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), |
| .resetvalue = 0}, |
| { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, |
| .access = PL0_R|PL1_W, |
| .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), |
| offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, |
| .resetfn = arm_cp_reset_ignore }, |
| { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, |
| { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, |
| .access = PL1_RW, |
| .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), |
| offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, |
| .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| #ifndef CONFIG_USER_ONLY |
| |
| static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. |
| * Writable only at the highest implemented exception level. |
| */ |
| int el = arm_current_el(env); |
| |
| switch (el) { |
| case 0: |
| if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { |
| return CP_ACCESS_TRAP; |
| } |
| break; |
| case 1: |
| if (!isread && ri->state == ARM_CP_STATE_AA32 && |
| arm_is_secure_below_el3(env)) { |
| /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ |
| return CP_ACCESS_TRAP_UNCATEGORIZED; |
| } |
| break; |
| case 2: |
| case 3: |
| break; |
| } |
| |
| if (!isread && el < arm_highest_el(env)) { |
| return CP_ACCESS_TRAP_UNCATEGORIZED; |
| } |
| |
| return CP_ACCESS_OK; |
| } |
| |
| static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, |
| bool isread) |
| { |
| unsigned int cur_el = arm_current_el(env); |
| bool secure = arm_is_secure(env); |
| |
| /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ |
| if (cur_el == 0 && |
| !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { |
| return CP_ACCESS_TRAP; |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_EL2) && |
| timeridx == GTIMER_PHYS && !secure && cur_el < 2 && |
| !extract32(env->cp15.cnthctl_el2, 0, 1)) { |
| return CP_ACCESS_TRAP_EL2; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, |
| bool isread) |
| { |
| unsigned int cur_el = arm_current_el(env); |
| bool secure = arm_is_secure(env); |
| |
| /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if |
| * EL0[PV]TEN is zero. |
| */ |
| if (cur_el == 0 && |
| !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { |
| return CP_ACCESS_TRAP; |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_EL2) && |
| timeridx == GTIMER_PHYS && !secure && cur_el < 2 && |
| !extract32(env->cp15.cnthctl_el2, 1, 1)) { |
| return CP_ACCESS_TRAP_EL2; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static CPAccessResult gt_pct_access(CPUARMState *env, |
| const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| return gt_counter_access(env, GTIMER_PHYS, isread); |
| } |
| |
| static CPAccessResult gt_vct_access(CPUARMState *env, |
| const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| return gt_counter_access(env, GTIMER_VIRT, isread); |
| } |
| |
| static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| return gt_timer_access(env, GTIMER_PHYS, isread); |
| } |
| |
| static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| return gt_timer_access(env, GTIMER_VIRT, isread); |
| } |
| |
| static CPAccessResult gt_stimer_access(CPUARMState *env, |
| const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| /* The AArch64 register view of the secure physical timer is |
| * always accessible from EL3, and configurably accessible from |
| * Secure EL1. |
| */ |
| switch (arm_current_el(env)) { |
| case 1: |
| if (!arm_is_secure(env)) { |
| return CP_ACCESS_TRAP; |
| } |
| if (!(env->cp15.scr_el3 & SCR_ST)) { |
| return CP_ACCESS_TRAP_EL3; |
| } |
| return CP_ACCESS_OK; |
| case 0: |
| case 2: |
| return CP_ACCESS_TRAP; |
| case 3: |
| return CP_ACCESS_OK; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static uint64_t gt_get_countervalue(CPUARMState *env) |
| { |
| return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; |
| } |
| |
| static void gt_recalc_timer(ARMCPU *cpu, int timeridx) |
| { |
| ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; |
| |
| if (gt->ctl & 1) { |
| /* Timer enabled: calculate and set current ISTATUS, irq, and |
| * reset timer to when ISTATUS next has to change |
| */ |
| uint64_t offset = timeridx == GTIMER_VIRT ? |
| cpu->env.cp15.cntvoff_el2 : 0; |
| uint64_t count = gt_get_countervalue(&cpu->env); |
| /* Note that this must be unsigned 64 bit arithmetic: */ |
| int istatus = count - offset >= gt->cval; |
| uint64_t nexttick; |
| |
| gt->ctl = deposit32(gt->ctl, 2, 1, istatus); |
| qemu_set_irq(cpu->gt_timer_outputs[timeridx], |
| (istatus && !(gt->ctl & 2))); |
| if (istatus) { |
| /* Next transition is when count rolls back over to zero */ |
| nexttick = UINT64_MAX; |
| } else { |
| /* Next transition is when we hit cval */ |
| nexttick = gt->cval + offset; |
| } |
| /* Note that the desired next expiry time might be beyond the |
| * signed-64-bit range of a QEMUTimer -- in this case we just |
| * set the timer for as far in the future as possible. When the |
| * timer expires we will reset the timer for any remaining period. |
| */ |
| if (nexttick > INT64_MAX / GTIMER_SCALE) { |
| nexttick = INT64_MAX / GTIMER_SCALE; |
| } |
| timer_mod(cpu->gt_timer[timeridx], nexttick); |
| } else { |
| /* Timer disabled: ISTATUS and timer output always clear */ |
| gt->ctl &= ~4; |
| qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); |
| timer_del(cpu->gt_timer[timeridx]); |
| } |
| } |
| |
| static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, |
| int timeridx) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| timer_del(cpu->gt_timer[timeridx]); |
| } |
| |
| static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return gt_get_countervalue(env); |
| } |
| |
| static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return gt_get_countervalue(env) - env->cp15.cntvoff_el2; |
| } |
| |
| static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| int timeridx, |
| uint64_t value) |
| { |
| env->cp15.c14_timer[timeridx].cval = value; |
| gt_recalc_timer(arm_env_get_cpu(env), timeridx); |
| } |
| |
| static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, |
| int timeridx) |
| { |
| uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; |
| |
| return (uint32_t)(env->cp15.c14_timer[timeridx].cval - |
| (gt_get_countervalue(env) - offset)); |
| } |
| |
| static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| int timeridx, |
| uint64_t value) |
| { |
| uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; |
| |
| env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + |
| sextract64(value, 0, 32); |
| gt_recalc_timer(arm_env_get_cpu(env), timeridx); |
| } |
| |
| static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| int timeridx, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; |
| |
| env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); |
| if ((oldval ^ value) & 1) { |
| /* Enable toggled */ |
| gt_recalc_timer(cpu, timeridx); |
| } else if ((oldval ^ value) & 2) { |
| /* IMASK toggled: don't need to recalculate, |
| * just set the interrupt line based on ISTATUS |
| */ |
| qemu_set_irq(cpu->gt_timer_outputs[timeridx], |
| (oldval & 4) && !(value & 2)); |
| } |
| } |
| |
| static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| gt_timer_reset(env, ri, GTIMER_PHYS); |
| } |
| |
| static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| gt_cval_write(env, ri, GTIMER_PHYS, value); |
| } |
| |
| static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return gt_tval_read(env, ri, GTIMER_PHYS); |
| } |
| |
| static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| gt_tval_write(env, ri, GTIMER_PHYS, value); |
| } |
| |
| static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| gt_ctl_write(env, ri, GTIMER_PHYS, value); |
| } |
| |
| static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| gt_timer_reset(env, ri, GTIMER_VIRT); |
| } |
| |
| static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| gt_cval_write(env, ri, GTIMER_VIRT, value); |
| } |
| |
| static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return gt_tval_read(env, ri, GTIMER_VIRT); |
| } |
| |
| static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| gt_tval_write(env, ri, GTIMER_VIRT, value); |
| } |
| |
| static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| gt_ctl_write(env, ri, GTIMER_VIRT, value); |
| } |
| |
| static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| raw_write(env, ri, value); |
| gt_recalc_timer(cpu, GTIMER_VIRT); |
| } |
| |
| static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| gt_timer_reset(env, ri, GTIMER_HYP); |
| } |
| |
| static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| gt_cval_write(env, ri, GTIMER_HYP, value); |
| } |
| |
| static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return gt_tval_read(env, ri, GTIMER_HYP); |
| } |
| |
| static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| gt_tval_write(env, ri, GTIMER_HYP, value); |
| } |
| |
| static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| gt_ctl_write(env, ri, GTIMER_HYP, value); |
| } |
| |
| static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| gt_timer_reset(env, ri, GTIMER_SEC); |
| } |
| |
| static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| gt_cval_write(env, ri, GTIMER_SEC, value); |
| } |
| |
| static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return gt_tval_read(env, ri, GTIMER_SEC); |
| } |
| |
| static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| gt_tval_write(env, ri, GTIMER_SEC, value); |
| } |
| |
| static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| gt_ctl_write(env, ri, GTIMER_SEC, value); |
| } |
| |
| void arm_gt_ptimer_cb(void *opaque) |
| { |
| ARMCPU *cpu = opaque; |
| |
| gt_recalc_timer(cpu, GTIMER_PHYS); |
| } |
| |
| void arm_gt_vtimer_cb(void *opaque) |
| { |
| ARMCPU *cpu = opaque; |
| |
| gt_recalc_timer(cpu, GTIMER_VIRT); |
| } |
| |
| void arm_gt_htimer_cb(void *opaque) |
| { |
| ARMCPU *cpu = opaque; |
| |
| gt_recalc_timer(cpu, GTIMER_HYP); |
| } |
| |
| void arm_gt_stimer_cb(void *opaque) |
| { |
| ARMCPU *cpu = opaque; |
| |
| gt_recalc_timer(cpu, GTIMER_SEC); |
| } |
| |
| static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
| /* Note that CNTFRQ is purely reads-as-written for the benefit |
| * of software; writing it doesn't actually change the timer frequency. |
| * Our reset value matches the fixed frequency we implement the timer at. |
| */ |
| { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .type = ARM_CP_ALIAS, |
| .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, |
| .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), |
| }, |
| { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, |
| .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), |
| .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, |
| }, |
| /* overall control: mostly access permissions */ |
| { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), |
| .resetvalue = 0, |
| }, |
| /* per-timer control */ |
| { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, |
| .secure = ARM_CP_SECSTATE_NS, |
| .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, |
| .accessfn = gt_ptimer_access, |
| .fieldoffset = offsetoflow32(CPUARMState, |
| cp15.c14_timer[GTIMER_PHYS].ctl), |
| .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, |
| }, |
| { .name = "CNTP_CTL(S)", |
| .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, |
| .secure = ARM_CP_SECSTATE_S, |
| .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, |
| .accessfn = gt_ptimer_access, |
| .fieldoffset = offsetoflow32(CPUARMState, |
| cp15.c14_timer[GTIMER_SEC].ctl), |
| .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, |
| }, |
| { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, |
| .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
| .accessfn = gt_ptimer_access, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), |
| .resetvalue = 0, |
| .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, |
| }, |
| { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, |
| .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, |
| .accessfn = gt_vtimer_access, |
| .fieldoffset = offsetoflow32(CPUARMState, |
| cp15.c14_timer[GTIMER_VIRT].ctl), |
| .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, |
| }, |
| { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, |
| .type = ARM_CP_IO, .access = PL1_RW | PL0_R, |
| .accessfn = gt_vtimer_access, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), |
| .resetvalue = 0, |
| .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, |
| }, |
| /* TimerValue views: a 32 bit downcounting view of the underlying state */ |
| { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, |
| .secure = ARM_CP_SECSTATE_NS, |
| .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
| .accessfn = gt_ptimer_access, |
| .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, |
| }, |
| { .name = "CNTP_TVAL(S)", |
| .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, |
| .secure = ARM_CP_SECSTATE_S, |
| .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
| .accessfn = gt_ptimer_access, |
| .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, |
| }, |
| { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, |
| .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
| .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, |
| .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, |
| }, |
| { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, |
| .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
| .accessfn = gt_vtimer_access, |
| .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, |
| }, |
| { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, |
| .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, |
| .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, |
| .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, |
| }, |
| /* The counter itself */ |
| { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, |
| .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
| .accessfn = gt_pct_access, |
| .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, |
| }, |
| { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, |
| .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
| .accessfn = gt_pct_access, .readfn = gt_cnt_read, |
| }, |
| { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, |
| .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, |
| .accessfn = gt_vct_access, |
| .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, |
| }, |
| { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, |
| .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, |
| .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, |
| }, |
| /* Comparison value, indicating when the timer goes off */ |
| { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, |
| .secure = ARM_CP_SECSTATE_NS, |
| .access = PL1_RW | PL0_R, |
| .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), |
| .accessfn = gt_ptimer_access, |
| .writefn = gt_phys_cval_write, .raw_writefn = raw_write, |
| }, |
| { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2, |
| .secure = ARM_CP_SECSTATE_S, |
| .access = PL1_RW | PL0_R, |
| .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), |
| .accessfn = gt_ptimer_access, |
| .writefn = gt_sec_cval_write, .raw_writefn = raw_write, |
| }, |
| { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, |
| .access = PL1_RW | PL0_R, |
| .type = ARM_CP_IO, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), |
| .resetvalue = 0, .accessfn = gt_ptimer_access, |
| .writefn = gt_phys_cval_write, .raw_writefn = raw_write, |
| }, |
| { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, |
| .access = PL1_RW | PL0_R, |
| .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), |
| .accessfn = gt_vtimer_access, |
| .writefn = gt_virt_cval_write, .raw_writefn = raw_write, |
| }, |
| { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, |
| .access = PL1_RW | PL0_R, |
| .type = ARM_CP_IO, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), |
| .resetvalue = 0, .accessfn = gt_vtimer_access, |
| .writefn = gt_virt_cval_write, .raw_writefn = raw_write, |
| }, |
| /* Secure timer -- this is actually restricted to only EL3 |
| * and configurably Secure-EL1 via the accessfn. |
| */ |
| { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, |
| .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, |
| .accessfn = gt_stimer_access, |
| .readfn = gt_sec_tval_read, |
| .writefn = gt_sec_tval_write, |
| .resetfn = gt_sec_timer_reset, |
| }, |
| { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, |
| .type = ARM_CP_IO, .access = PL1_RW, |
| .accessfn = gt_stimer_access, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), |
| .resetvalue = 0, |
| .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, |
| }, |
| { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, |
| .type = ARM_CP_IO, .access = PL1_RW, |
| .accessfn = gt_stimer_access, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), |
| .writefn = gt_sec_cval_write, .raw_writefn = raw_write, |
| }, |
| REGINFO_SENTINEL |
| }; |
| |
| #else |
| /* In user-mode none of the generic timer registers are accessible, |
| * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, |
| * so instead just don't register any of them. |
| */ |
| static const ARMCPRegInfo generic_timer_cp_reginfo[] = { |
| REGINFO_SENTINEL |
| }; |
| |
| #endif |
| |
| static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| { |
| if (arm_feature(env, ARM_FEATURE_LPAE)) { |
| raw_write(env, ri, value); |
| } else if (arm_feature(env, ARM_FEATURE_V7)) { |
| raw_write(env, ri, value & 0xfffff6ff); |
| } else { |
| raw_write(env, ri, value & 0xfffff1ff); |
| } |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| /* get_phys_addr() isn't present for user-mode-only targets */ |
| |
| static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| if (ri->opc2 & 4) { |
| /* The ATS12NSO* operations must trap to EL3 if executed in |
| * Secure EL1 (which can only happen if EL3 is AArch64). |
| * They are simply UNDEF if executed from NS EL1. |
| * They function normally from EL2 or EL3. |
| */ |
| if (arm_current_el(env) == 1) { |
| if (arm_is_secure_below_el3(env)) { |
| return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; |
| } |
| return CP_ACCESS_TRAP_UNCATEGORIZED; |
| } |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static uint64_t do_ats_write(CPUARMState *env, uint64_t value, |
| int access_type, ARMMMUIdx mmu_idx) |
| { |
| hwaddr phys_addr; |
| target_ulong page_size; |
| int prot; |
| uint32_t fsr; |
| bool ret; |
| uint64_t par64; |
| MemTxAttrs attrs = {}; |
| ARMMMUFaultInfo fi = {}; |
| |
| ret = get_phys_addr(env, value, access_type, mmu_idx, |
| &phys_addr, &attrs, &prot, &page_size, &fsr, &fi); |
| if (extended_addresses_enabled(env)) { |
| /* fsr is a DFSR/IFSR value for the long descriptor |
| * translation table format, but with WnR always clear. |
| * Convert it to a 64-bit PAR. |
| */ |
| par64 = (1 << 11); /* LPAE bit always set */ |
| if (!ret) { |
| par64 |= phys_addr & ~0xfffULL; |
| if (!attrs.secure) { |
| par64 |= (1 << 9); /* NS */ |
| } |
| /* We don't set the ATTR or SH fields in the PAR. */ |
| } else { |
| par64 |= 1; /* F */ |
| par64 |= (fsr & 0x3f) << 1; /* FS */ |
| /* Note that S2WLK and FSTAGE are always zero, because we don't |
| * implement virtualization and therefore there can't be a stage 2 |
| * fault. |
| */ |
| } |
| } else { |
| /* fsr is a DFSR/IFSR value for the short descriptor |
| * translation table format (with WnR always clear). |
| * Convert it to a 32-bit PAR. |
| */ |
| if (!ret) { |
| /* We do not set any attribute bits in the PAR */ |
| if (page_size == (1 << 24) |
| && arm_feature(env, ARM_FEATURE_V7)) { |
| par64 = (phys_addr & 0xff000000) | (1 << 1); |
| } else { |
| par64 = phys_addr & 0xfffff000; |
| } |
| if (!attrs.secure) { |
| par64 |= (1 << 9); /* NS */ |
| } |
| } else { |
| par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | |
| ((fsr & 0xf) << 1) | 1; |
| } |
| } |
| return par64; |
| } |
| |
| static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| { |
| int access_type = ri->opc2 & 1; |
| uint64_t par64; |
| ARMMMUIdx mmu_idx; |
| int el = arm_current_el(env); |
| bool secure = arm_is_secure_below_el3(env); |
| |
| switch (ri->opc2 & 6) { |
| case 0: |
| /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ |
| switch (el) { |
| case 3: |
| mmu_idx = ARMMMUIdx_S1E3; |
| break; |
| case 2: |
| mmu_idx = ARMMMUIdx_S1NSE1; |
| break; |
| case 1: |
| mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| break; |
| case 2: |
| /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ |
| switch (el) { |
| case 3: |
| mmu_idx = ARMMMUIdx_S1SE0; |
| break; |
| case 2: |
| mmu_idx = ARMMMUIdx_S1NSE0; |
| break; |
| case 1: |
| mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| break; |
| case 4: |
| /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ |
| mmu_idx = ARMMMUIdx_S12NSE1; |
| break; |
| case 6: |
| /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ |
| mmu_idx = ARMMMUIdx_S12NSE0; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| par64 = do_ats_write(env, value, access_type, mmu_idx); |
| |
| A32_BANKED_CURRENT_REG_SET(env, par, par64); |
| } |
| |
| static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| int access_type = ri->opc2 & 1; |
| uint64_t par64; |
| |
| par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); |
| |
| A32_BANKED_CURRENT_REG_SET(env, par, par64); |
| } |
| |
| static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { |
| return CP_ACCESS_TRAP; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| int access_type = ri->opc2 & 1; |
| ARMMMUIdx mmu_idx; |
| int secure = arm_is_secure_below_el3(env); |
| |
| switch (ri->opc2 & 6) { |
| case 0: |
| switch (ri->opc1) { |
| case 0: /* AT S1E1R, AT S1E1W */ |
| mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; |
| break; |
| case 4: /* AT S1E2R, AT S1E2W */ |
| mmu_idx = ARMMMUIdx_S1E2; |
| break; |
| case 6: /* AT S1E3R, AT S1E3W */ |
| mmu_idx = ARMMMUIdx_S1E3; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| break; |
| case 2: /* AT S1E0R, AT S1E0W */ |
| mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; |
| break; |
| case 4: /* AT S12E1R, AT S12E1W */ |
| mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; |
| break; |
| case 6: /* AT S12E0R, AT S12E0W */ |
| mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); |
| } |
| #endif |
| |
| static const ARMCPRegInfo vapa_cp_reginfo[] = { |
| { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .resetvalue = 0, |
| .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), |
| offsetoflow32(CPUARMState, cp15.par_ns) }, |
| .writefn = par_write }, |
| #ifndef CONFIG_USER_ONLY |
| /* This underdecoding is safe because the reginfo is NO_RAW. */ |
| { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_W, .accessfn = ats_access, |
| .writefn = ats_write, .type = ARM_CP_NO_RAW }, |
| #endif |
| REGINFO_SENTINEL |
| }; |
| |
| /* Return basic MPU access permission bits. */ |
| static uint32_t simple_mpu_ap_bits(uint32_t val) |
| { |
| uint32_t ret; |
| uint32_t mask; |
| int i; |
| ret = 0; |
| mask = 3; |
| for (i = 0; i < 16; i += 2) { |
| ret |= (val >> i) & mask; |
| mask <<= 2; |
| } |
| return ret; |
| } |
| |
| /* Pad basic MPU access permission bits to extended format. */ |
| static uint32_t extended_mpu_ap_bits(uint32_t val) |
| { |
| uint32_t ret; |
| uint32_t mask; |
| int i; |
| ret = 0; |
| mask = 3; |
| for (i = 0; i < 16; i += 2) { |
| ret |= (val & mask) << i; |
| mask <<= 2; |
| } |
| return ret; |
| } |
| |
| static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); |
| } |
| |
| static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); |
| } |
| |
| static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); |
| } |
| |
| static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); |
| } |
| |
| static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); |
| |
| if (!u32p) { |
| return 0; |
| } |
| |
| u32p += env->cp15.c6_rgnr; |
| return *u32p; |
| } |
| |
| static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); |
| |
| if (!u32p) { |
| return; |
| } |
| |
| u32p += env->cp15.c6_rgnr; |
| tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */ |
| *u32p = value; |
| } |
| |
| static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); |
| |
| if (!u32p) { |
| return; |
| } |
| |
| memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion); |
| } |
| |
| static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| uint32_t nrgs = cpu->pmsav7_dregion; |
| |
| if (value >= nrgs) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "PMSAv7 RGNR write >= # supported regions, %" PRIu32 |
| " > %" PRIu32 "\n", (uint32_t)value, nrgs); |
| return; |
| } |
| |
| raw_write(env, ri, value); |
| } |
| |
| static const ARMCPRegInfo pmsav7_cp_reginfo[] = { |
| { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, |
| .access = PL1_RW, .type = ARM_CP_NO_RAW, |
| .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), |
| .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, |
| { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, |
| .access = PL1_RW, .type = ARM_CP_NO_RAW, |
| .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), |
| .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, |
| { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, |
| .access = PL1_RW, .type = ARM_CP_NO_RAW, |
| .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), |
| .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset }, |
| { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr), |
| .writefn = pmsav7_rgnr_write }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo pmsav5_cp_reginfo[] = { |
| { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .type = ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
| .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, |
| { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, .type = ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
| .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, |
| { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), |
| .resetvalue = 0, }, |
| { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), |
| .resetvalue = 0, }, |
| { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, |
| { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, |
| /* Protection region base and size registers */ |
| { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, |
| .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, |
| { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, |
| .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, |
| { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, |
| .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, |
| { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, |
| .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, |
| { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, |
| .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, |
| { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, |
| .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, |
| { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, |
| .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, |
| { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, |
| .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, |
| REGINFO_SENTINEL |
| }; |
| |
| static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| TCR *tcr = raw_ptr(env, ri); |
| int maskshift = extract32(value, 0, 3); |
| |
| if (!arm_feature(env, ARM_FEATURE_V8)) { |
| if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { |
| /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when |
| * using Long-desciptor translation table format */ |
| value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); |
| } else if (arm_feature(env, ARM_FEATURE_EL3)) { |
| /* In an implementation that includes the Security Extensions |
| * TTBCR has additional fields PD0 [4] and PD1 [5] for |
| * Short-descriptor translation table format. |
| */ |
| value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; |
| } else { |
| value &= TTBCR_N; |
| } |
| } |
| |
| /* Update the masks corresponding to the TCR bank being written |
| * Note that we always calculate mask and base_mask, but |
| * they are only used for short-descriptor tables (ie if EAE is 0); |
| * for long-descriptor tables the TCR fields are used differently |
| * and the mask and base_mask values are meaningless. |
| */ |
| tcr->raw_tcr = value; |
| tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); |
| tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); |
| } |
| |
| static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| if (arm_feature(env, ARM_FEATURE_LPAE)) { |
| /* With LPAE the TTBCR could result in a change of ASID |
| * via the TTBCR.A1 bit, so do a TLB flush. |
| */ |
| tlb_flush(CPU(cpu), 1); |
| } |
| vmsa_ttbcr_raw_write(env, ri, value); |
| } |
| |
| static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| TCR *tcr = raw_ptr(env, ri); |
| |
| /* Reset both the TCR as well as the masks corresponding to the bank of |
| * the TCR being reset. |
| */ |
| tcr->raw_tcr = 0; |
| tcr->mask = 0; |
| tcr->base_mask = 0xffffc000u; |
| } |
| |
| static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| TCR *tcr = raw_ptr(env, ri); |
| |
| /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ |
| tlb_flush(CPU(cpu), 1); |
| tcr->raw_tcr = value; |
| } |
| |
| static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* 64 bit accesses to the TTBRs can change the ASID and so we |
| * must flush the TLB. |
| */ |
| if (cpreg_field_is_64bit(ri)) { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| tlb_flush(CPU(cpu), 1); |
| } |
| raw_write(env, ri, value); |
| } |
| |
| static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| CPUState *cs = CPU(cpu); |
| |
| /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ |
| if (raw_read(env, ri) != value) { |
| tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, |
| ARMMMUIdx_S2NS, -1); |
| raw_write(env, ri, value); |
| } |
| } |
| |
| static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { |
| { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .type = ARM_CP_ALIAS, |
| .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), |
| offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, |
| { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, .resetvalue = 0, |
| .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), |
| offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, |
| { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, |
| .access = PL1_RW, .resetvalue = 0, |
| .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), |
| offsetof(CPUARMState, cp15.dfar_ns) } }, |
| { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), |
| .resetvalue = 0, }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo vmsa_cp_reginfo[] = { |
| { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, |
| { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, |
| .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, |
| .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), |
| offsetof(CPUARMState, cp15.ttbr0_ns) } }, |
| { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, |
| .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, |
| .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), |
| offsetof(CPUARMState, cp15.ttbr1_ns) } }, |
| { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
| .access = PL1_RW, .writefn = vmsa_tcr_el1_write, |
| .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, |
| .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, |
| { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, |
| .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, |
| .raw_writefn = vmsa_ttbcr_raw_write, |
| .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), |
| offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, |
| REGINFO_SENTINEL |
| }; |
| |
| static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c15_ticonfig = value & 0xe7; |
| /* The OS_TYPE bit in this register changes the reported CPUID! */ |
| env->cp15.c0_cpuid = (value & (1 << 5)) ? |
| ARM_CPUID_TI915T : ARM_CPUID_TI925T; |
| } |
| |
| static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c15_threadid = value & 0xffff; |
| } |
| |
| static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Wait-for-interrupt (deprecated) */ |
| cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); |
| } |
| |
| static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* On OMAP there are registers indicating the max/min index of dcache lines |
| * containing a dirty line; cache flush operations have to reset these. |
| */ |
| env->cp15.c15_i_max = 0x000; |
| env->cp15.c15_i_min = 0xff0; |
| } |
| |
| static const ARMCPRegInfo omap_cp_reginfo[] = { |
| { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, |
| .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, |
| .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), |
| .resetvalue = 0, }, |
| { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .type = ARM_CP_NOP }, |
| { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, |
| .writefn = omap_ticonfig_write }, |
| { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, |
| { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .resetvalue = 0xff0, |
| .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, |
| { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, |
| .writefn = omap_threadid_write }, |
| { .name = "TI925T_STATUS", .cp = 15, .crn = 15, |
| .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, |
| .type = ARM_CP_NO_RAW, |
| .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, |
| /* TODO: Peripheral port remap register: |
| * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller |
| * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), |
| * when MMU is off. |
| */ |
| { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, |
| .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, |
| .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, |
| .writefn = omap_cachemaint_write }, |
| { .name = "C9", .cp = 15, .crn = 9, |
| .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, |
| .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.c15_cpar = value & 0x3fff; |
| } |
| |
| static const ARMCPRegInfo xscale_cp_reginfo[] = { |
| { .name = "XSCALE_CPAR", |
| .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, |
| .writefn = xscale_cpar_write, }, |
| { .name = "XSCALE_AUXCR", |
| .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), |
| .resetvalue = 0, }, |
| /* XScale specific cache-lockdown: since we have no cache we NOP these |
| * and hope the guest does not really rely on cache behaviour. |
| */ |
| { .name = "XSCALE_LOCK_ICACHE_LINE", |
| .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, |
| .access = PL1_W, .type = ARM_CP_NOP }, |
| { .name = "XSCALE_UNLOCK_ICACHE", |
| .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, |
| .access = PL1_W, .type = ARM_CP_NOP }, |
| { .name = "XSCALE_DCACHE_LOCK", |
| .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, |
| .access = PL1_RW, .type = ARM_CP_NOP }, |
| { .name = "XSCALE_UNLOCK_DCACHE", |
| .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, |
| .access = PL1_W, .type = ARM_CP_NOP }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { |
| /* RAZ/WI the whole crn=15 space, when we don't have a more specific |
| * implementation of this implementation-defined space. |
| * Ideally this should eventually disappear in favour of actually |
| * implementing the correct behaviour for all cores. |
| */ |
| { .name = "C15_IMPDEF", .cp = 15, .crn = 15, |
| .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, |
| .access = PL1_RW, |
| .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, |
| .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { |
| /* Cache status: RAZ because we have no cache so it's always clean */ |
| { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, |
| .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
| .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { |
| /* We never have a a block transfer operation in progress */ |
| { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, |
| .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
| .resetvalue = 0 }, |
| /* The cache ops themselves: these all NOP for QEMU */ |
| { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, |
| .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, |
| .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, |
| .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, |
| .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, |
| .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, |
| .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { |
| /* The cache test-and-clean instructions always return (1 << 30) |
| * to indicate that there are no dirty cache lines. |
| */ |
| { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, |
| .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
| .resetvalue = (1 << 30) }, |
| { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, |
| .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, |
| .resetvalue = (1 << 30) }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo strongarm_cp_reginfo[] = { |
| /* Ignore ReadBuffer accesses */ |
| { .name = "C9_READBUFFER", .cp = 15, .crn = 9, |
| .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, |
| .access = PL1_RW, .resetvalue = 0, |
| .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, |
| REGINFO_SENTINEL |
| }; |
| |
| static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| unsigned int cur_el = arm_current_el(env); |
| bool secure = arm_is_secure(env); |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { |
| return env->cp15.vpidr_el2; |
| } |
| return raw_read(env, ri); |
| } |
| |
| static uint64_t mpidr_read_val(CPUARMState *env) |
| { |
| ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); |
| uint64_t mpidr = cpu->mp_affinity; |
| |
| if (arm_feature(env, ARM_FEATURE_V7MP)) { |
| mpidr |= (1U << 31); |
| /* Cores which are uniprocessor (non-coherent) |
| * but still implement the MP extensions set |
| * bit 30. (For instance, Cortex-R5). |
| */ |
| if (cpu->mp_is_up) { |
| mpidr |= (1u << 30); |
| } |
| } |
| return mpidr; |
| } |
| |
| static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| unsigned int cur_el = arm_current_el(env); |
| bool secure = arm_is_secure(env); |
| |
| if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { |
| return env->cp15.vmpidr_el2; |
| } |
| return mpidr_read_val(env); |
| } |
| |
| static const ARMCPRegInfo mpidr_cp_reginfo[] = { |
| { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, |
| .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo lpae_cp_reginfo[] = { |
| /* NOP AMAIR0/1 */ |
| { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, |
| .access = PL1_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ |
| { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, |
| .access = PL1_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, |
| .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, |
| .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), |
| offsetof(CPUARMState, cp15.par_ns)} }, |
| { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, |
| .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
| .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), |
| offsetof(CPUARMState, cp15.ttbr0_ns) }, |
| .writefn = vmsa_ttbr_write, }, |
| { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, |
| .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
| .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), |
| offsetof(CPUARMState, cp15.ttbr1_ns) }, |
| .writefn = vmsa_ttbr_write, }, |
| REGINFO_SENTINEL |
| }; |
| |
| static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return vfp_get_fpcr(env); |
| } |
| |
| static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| vfp_set_fpcr(env, value); |
| } |
| |
| static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return vfp_get_fpsr(env); |
| } |
| |
| static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| vfp_set_fpsr(env, value); |
| } |
| |
| static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { |
| return CP_ACCESS_TRAP; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->daif = value & PSTATE_DAIF; |
| } |
| |
| static CPAccessResult aa64_cacheop_access(CPUARMState *env, |
| const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless |
| * SCTLR_EL1.UCI is set. |
| */ |
| if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { |
| return CP_ACCESS_TRAP; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions |
| * Page D4-1736 (DDI0487A.b) |
| */ |
| |
| static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| CPUState *cs = CPU(cpu); |
| |
| if (arm_is_secure_below_el3(env)) { |
| tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); |
| } else { |
| tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1); |
| } |
| } |
| |
| static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| bool sec = arm_is_secure_below_el3(env); |
| CPUState *other_cs; |
| |
| CPU_FOREACH(other_cs) { |
| if (sec) { |
| tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); |
| } else { |
| tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, |
| ARMMMUIdx_S12NSE0, -1); |
| } |
| } |
| } |
| |
| static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Note that the 'ALL' scope must invalidate both stage 1 and |
| * stage 2 translations, whereas most other scopes only invalidate |
| * stage 1 translations. |
| */ |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| CPUState *cs = CPU(cpu); |
| |
| if (arm_is_secure_below_el3(env)) { |
| tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); |
| } else { |
| if (arm_feature(env, ARM_FEATURE_EL2)) { |
| tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, |
| ARMMMUIdx_S2NS, -1); |
| } else { |
| tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1); |
| } |
| } |
| } |
| |
| static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| CPUState *cs = CPU(cpu); |
| |
| tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1); |
| } |
| |
| static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| CPUState *cs = CPU(cpu); |
| |
| tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1); |
| } |
| |
| static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Note that the 'ALL' scope must invalidate both stage 1 and |
| * stage 2 translations, whereas most other scopes only invalidate |
| * stage 1 translations. |
| */ |
| bool sec = arm_is_secure_below_el3(env); |
| bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); |
| CPUState *other_cs; |
| |
| CPU_FOREACH(other_cs) { |
| if (sec) { |
| tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1); |
| } else if (has_el2) { |
| tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, |
| ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1); |
| } else { |
| tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1, |
| ARMMMUIdx_S12NSE0, -1); |
| } |
| } |
| } |
| |
| static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *other_cs; |
| |
| CPU_FOREACH(other_cs) { |
| tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1); |
| } |
| } |
| |
| static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *other_cs; |
| |
| CPU_FOREACH(other_cs) { |
| tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1); |
| } |
| } |
| |
| static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Invalidate by VA, EL1&0 (AArch64 version). |
| * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, |
| * since we don't support flush-for-specific-ASID-only or |
| * flush-last-level-only. |
| */ |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| CPUState *cs = CPU(cpu); |
| uint64_t pageaddr = sextract64(value << 12, 0, 56); |
| |
| if (arm_is_secure_below_el3(env)) { |
| tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1, |
| ARMMMUIdx_S1SE0, -1); |
| } else { |
| tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1, |
| ARMMMUIdx_S12NSE0, -1); |
| } |
| } |
| |
| static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Invalidate by VA, EL2 |
| * Currently handles both VAE2 and VALE2, since we don't support |
| * flush-last-level-only. |
| */ |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| CPUState *cs = CPU(cpu); |
| uint64_t pageaddr = sextract64(value << 12, 0, 56); |
| |
| tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1); |
| } |
| |
| static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Invalidate by VA, EL3 |
| * Currently handles both VAE3 and VALE3, since we don't support |
| * flush-last-level-only. |
| */ |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| CPUState *cs = CPU(cpu); |
| uint64_t pageaddr = sextract64(value << 12, 0, 56); |
| |
| tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1); |
| } |
| |
| static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| bool sec = arm_is_secure_below_el3(env); |
| CPUState *other_cs; |
| uint64_t pageaddr = sextract64(value << 12, 0, 56); |
| |
| CPU_FOREACH(other_cs) { |
| if (sec) { |
| tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1, |
| ARMMMUIdx_S1SE0, -1); |
| } else { |
| tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1, |
| ARMMMUIdx_S12NSE0, -1); |
| } |
| } |
| } |
| |
| static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *other_cs; |
| uint64_t pageaddr = sextract64(value << 12, 0, 56); |
| |
| CPU_FOREACH(other_cs) { |
| tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1); |
| } |
| } |
| |
| static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *other_cs; |
| uint64_t pageaddr = sextract64(value << 12, 0, 56); |
| |
| CPU_FOREACH(other_cs) { |
| tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1); |
| } |
| } |
| |
| static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Invalidate by IPA. This has to invalidate any structures that |
| * contain only stage 2 translation information, but does not need |
| * to apply to structures that contain combined stage 1 and stage 2 |
| * translation information. |
| * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. |
| */ |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| CPUState *cs = CPU(cpu); |
| uint64_t pageaddr; |
| |
| if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { |
| return; |
| } |
| |
| pageaddr = sextract64(value << 12, 0, 48); |
| |
| tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1); |
| } |
| |
| static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| CPUState *other_cs; |
| uint64_t pageaddr; |
| |
| if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { |
| return; |
| } |
| |
| pageaddr = sextract64(value << 12, 0, 48); |
| |
| CPU_FOREACH(other_cs) { |
| tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1); |
| } |
| } |
| |
| static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| /* We don't implement EL2, so the only control on DC ZVA is the |
| * bit in the SCTLR which can prohibit access for EL0. |
| */ |
| if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { |
| return CP_ACCESS_TRAP; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| int dzp_bit = 1 << 4; |
| |
| /* DZP indicates whether DC ZVA access is allowed */ |
| if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { |
| dzp_bit = 0; |
| } |
| return cpu->dcz_blocksize | dzp_bit; |
| } |
| |
| static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| if (!(env->pstate & PSTATE_SP)) { |
| /* Access to SP_EL0 is undefined if it's being used as |
| * the stack pointer. |
| */ |
| return CP_ACCESS_TRAP_UNCATEGORIZED; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| return env->pstate & PSTATE_SP; |
| } |
| |
| static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) |
| { |
| update_spsel(env, val); |
| } |
| |
| static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| if (raw_read(env, ri) == value) { |
| /* Skip the TLB flush if nothing actually changed; Linux likes |
| * to do a lot of pointless SCTLR writes. |
| */ |
| return; |
| } |
| |
| raw_write(env, ri, value); |
| /* ??? Lots of these bits are not implemented. */ |
| /* This may enable/disable the MMU, so do a TLB flush. */ |
| tlb_flush(CPU(cpu), 1); |
| } |
| |
| static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { |
| return CP_ACCESS_TRAP_FP_EL2; |
| } |
| if (env->cp15.cptr_el[3] & CPTR_TFP) { |
| return CP_ACCESS_TRAP_FP_EL3; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; |
| } |
| |
| static const ARMCPRegInfo v8_cp_reginfo[] = { |
| /* Minimal set of EL0-visible registers. This will need to be expanded |
| * significantly for system emulation of AArch64 CPUs. |
| */ |
| { .name = "NZCV", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, |
| .access = PL0_RW, .type = ARM_CP_NZCV }, |
| { .name = "DAIF", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, |
| .type = ARM_CP_NO_RAW, |
| .access = PL0_RW, .accessfn = aa64_daif_access, |
| .fieldoffset = offsetof(CPUARMState, daif), |
| .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, |
| { .name = "FPCR", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, |
| .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, |
| { .name = "FPSR", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, |
| .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, |
| { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, |
| .access = PL0_R, .type = ARM_CP_NO_RAW, |
| .readfn = aa64_dczid_read }, |
| { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, |
| .access = PL0_W, .type = ARM_CP_DC_ZVA, |
| #ifndef CONFIG_USER_ONLY |
| /* Avoid overhead of an access check that always passes in user-mode */ |
| .accessfn = aa64_zva_access, |
| #endif |
| }, |
| { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, |
| .access = PL1_R, .type = ARM_CP_CURRENTEL }, |
| /* Cache ops: all NOPs since we don't emulate caches */ |
| { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, |
| .access = PL1_W, .type = ARM_CP_NOP }, |
| { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, |
| .access = PL1_W, .type = ARM_CP_NOP }, |
| { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, |
| .access = PL0_W, .type = ARM_CP_NOP, |
| .accessfn = aa64_cacheop_access }, |
| { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, |
| .access = PL1_W, .type = ARM_CP_NOP }, |
| { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, |
| .access = PL1_W, .type = ARM_CP_NOP }, |
| { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, |
| .access = PL0_W, .type = ARM_CP_NOP, |
| .accessfn = aa64_cacheop_access }, |
| { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, |
| .access = PL1_W, .type = ARM_CP_NOP }, |
| { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, |
| .access = PL0_W, .type = ARM_CP_NOP, |
| .accessfn = aa64_cacheop_access }, |
| { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, |
| .access = PL0_W, .type = ARM_CP_NOP, |
| .accessfn = aa64_cacheop_access }, |
| { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, |
| .access = PL1_W, .type = ARM_CP_NOP }, |
| /* TLBI operations */ |
| { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vmalle1is_write }, |
| { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae1is_write }, |
| { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vmalle1is_write }, |
| { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae1is_write }, |
| { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae1is_write }, |
| { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae1is_write }, |
| { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vmalle1_write }, |
| { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae1_write }, |
| { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vmalle1_write }, |
| { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae1_write }, |
| { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae1_write }, |
| { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae1_write }, |
| { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_ipas2e1is_write }, |
| { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_ipas2e1is_write }, |
| { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_alle1is_write }, |
| { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_alle1is_write }, |
| { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_ipas2e1_write }, |
| { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_ipas2e1_write }, |
| { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_alle1_write }, |
| { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_alle1is_write }, |
| #ifndef CONFIG_USER_ONLY |
| /* 64 bit address translation operations */ |
| { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
| { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
| { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
| { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
| { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
| { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
| { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
| { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
| /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ |
| { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, |
| .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
| { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, |
| .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
| { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, |
| .type = ARM_CP_ALIAS, |
| .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, |
| .access = PL1_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), |
| .writefn = par_write }, |
| #endif |
| /* TLB invalidate last level of translation table walk */ |
| { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, |
| { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, |
| .writefn = tlbimvaa_is_write }, |
| { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, |
| { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, |
| .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, |
| { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbimva_hyp_write }, |
| { .name = "TLBIMVALHIS", |
| .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbimva_hyp_is_write }, |
| { .name = "TLBIIPAS2", |
| .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbiipas2_write }, |
| { .name = "TLBIIPAS2IS", |
| .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbiipas2_is_write }, |
| { .name = "TLBIIPAS2L", |
| .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbiipas2_write }, |
| { .name = "TLBIIPAS2LIS", |
| .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbiipas2_is_write }, |
| /* 32 bit cache operations */ |
| { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, |
| .type = ARM_CP_NOP, .access = PL1_W }, |
| { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, |
| .type = ARM_CP_NOP, .access = PL1_W }, |
| { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, |
| .type = ARM_CP_NOP, .access = PL1_W }, |
| { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, |
| .type = ARM_CP_NOP, .access = PL1_W }, |
| { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, |
| .type = ARM_CP_NOP, .access = PL1_W }, |
| { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, |
| .type = ARM_CP_NOP, .access = PL1_W }, |
| { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, |
| .type = ARM_CP_NOP, .access = PL1_W }, |
| { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, |
| .type = ARM_CP_NOP, .access = PL1_W }, |
| { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, |
| .type = ARM_CP_NOP, .access = PL1_W }, |
| { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, |
| .type = ARM_CP_NOP, .access = PL1_W }, |
| { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, |
| .type = ARM_CP_NOP, .access = PL1_W }, |
| { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, |
| .type = ARM_CP_NOP, .access = PL1_W }, |
| { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, |
| .type = ARM_CP_NOP, .access = PL1_W }, |
| /* MMU Domain access control / MPU write buffer control */ |
| { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, |
| .access = PL1_RW, .resetvalue = 0, |
| .writefn = dacr_write, .raw_writefn = raw_write, |
| .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), |
| offsetoflow32(CPUARMState, cp15.dacr_ns) } }, |
| { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, |
| .type = ARM_CP_ALIAS, |
| .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, |
| { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, |
| .type = ARM_CP_ALIAS, |
| .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, |
| /* We rely on the access checks not allowing the guest to write to the |
| * state field when SPSel indicates that it's being used as the stack |
| * pointer. |
| */ |
| { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, |
| .access = PL1_RW, .accessfn = sp_el0_access, |
| .type = ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, |
| { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, |
| .access = PL2_RW, .type = ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, |
| { .name = "SPSel", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, |
| .type = ARM_CP_NO_RAW, |
| .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, |
| { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, |
| .type = ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), |
| .access = PL2_RW, .accessfn = fpexc32_access }, |
| { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, |
| .access = PL2_RW, .resetvalue = 0, |
| .writefn = dacr_write, .raw_writefn = raw_write, |
| .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, |
| { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, |
| .access = PL2_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, |
| { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, |
| .type = ARM_CP_ALIAS, |
| .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, |
| .access = PL2_RW, |
| .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, |
| { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, |
| .type = ARM_CP_ALIAS, |
| .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, |
| .access = PL2_RW, |
| .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, |
| { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, |
| .type = ARM_CP_ALIAS, |
| .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, |
| .access = PL2_RW, |
| .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, |
| { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, |
| .type = ARM_CP_ALIAS, |
| .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, |
| .access = PL2_RW, |
| .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, |
| { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, |
| .resetvalue = 0, |
| .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, |
| { .name = "SDCR", .type = ARM_CP_ALIAS, |
| .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, |
| .access = PL1_RW, .accessfn = access_trap_aa32s_el1, |
| .writefn = sdcr_write, |
| .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, |
| REGINFO_SENTINEL |
| }; |
| |
| /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ |
| static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { |
| { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, |
| .access = PL2_RW, |
| .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, |
| { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
| .type = ARM_CP_NO_RAW, |
| .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, |
| .access = PL2_RW, |
| .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, |
| { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, |
| .access = PL2_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, |
| .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, |
| .access = PL2_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, |
| .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, |
| .access = PL2_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, |
| .access = PL2_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, |
| .access = PL2_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, |
| .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, |
| .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "VTTBR", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 6, .crm = 2, |
| .access = PL2_RW, .accessfn = access_el3_aa32ns, |
| .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, |
| { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, |
| .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, |
| .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, |
| .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, |
| .access = PL2_RW, .accessfn = access_tda, |
| .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, |
| .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, |
| .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, |
| .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| uint64_t valid_mask = HCR_MASK; |
| |
| if (arm_feature(env, ARM_FEATURE_EL3)) { |
| valid_mask &= ~HCR_HCD; |
| } else { |
| valid_mask &= ~HCR_TSC; |
| } |
| |
| /* Clear RES0 bits. */ |
| value &= valid_mask; |
| |
| /* These bits change the MMU setup: |
| * HCR_VM enables stage 2 translation |
| * HCR_PTW forbids certain page-table setups |
| * HCR_DC Disables stage1 and enables stage2 translation |
| */ |
| if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { |
| tlb_flush(CPU(cpu), 1); |
| } |
| raw_write(env, ri, value); |
| } |
| |
| static const ARMCPRegInfo el2_cp_reginfo[] = { |
| { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, |
| .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), |
| .writefn = hcr_write }, |
| { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, |
| .type = ARM_CP_ALIAS, |
| .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, |
| .access = PL2_RW, |
| .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, |
| { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, |
| .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, |
| { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, |
| .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, |
| { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, |
| .type = ARM_CP_ALIAS, |
| .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, |
| .access = PL2_RW, |
| .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, |
| { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, |
| .access = PL2_RW, .writefn = vbar_write, |
| .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), |
| .resetvalue = 0 }, |
| { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, |
| .access = PL3_RW, .type = ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, |
| { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, |
| .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, |
| { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, |
| .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), |
| .resetvalue = 0 }, |
| { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, |
| .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, |
| .access = PL2_RW, .type = ARM_CP_ALIAS, |
| .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, |
| { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, |
| .access = PL2_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ |
| { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, |
| .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, |
| .access = PL2_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, |
| .access = PL2_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, |
| .access = PL2_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, |
| .access = PL2_RW, |
| /* no .writefn needed as this can't cause an ASID change; |
| * no .raw_writefn or .resetfn needed as we never use mask/base_mask |
| */ |
| .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, |
| { .name = "VTCR", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, |
| .type = ARM_CP_ALIAS, |
| .access = PL2_RW, .accessfn = access_el3_aa32ns, |
| .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, |
| { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, |
| .access = PL2_RW, |
| /* no .writefn needed as this can't cause an ASID change; |
| * no .raw_writefn or .resetfn needed as we never use mask/base_mask |
| */ |
| .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, |
| { .name = "VTTBR", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 6, .crm = 2, |
| .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
| .access = PL2_RW, .accessfn = access_el3_aa32ns, |
| .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), |
| .writefn = vttbr_write }, |
| { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, |
| .access = PL2_RW, .writefn = vttbr_write, |
| .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, |
| { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, |
| .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, |
| .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, |
| { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, |
| .access = PL2_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, |
| { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, |
| .access = PL2_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, |
| { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, |
| .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, |
| .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, |
| { .name = "TLBIALLNSNH", |
| .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbiall_nsnh_write }, |
| { .name = "TLBIALLNSNHIS", |
| .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbiall_nsnh_is_write }, |
| { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbiall_hyp_write }, |
| { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbiall_hyp_is_write }, |
| { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbimva_hyp_write }, |
| { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbimva_hyp_is_write }, |
| { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbi_aa64_alle2_write }, |
| { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbi_aa64_vae2_write }, |
| { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae2_write }, |
| { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_alle2is_write }, |
| { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, |
| .type = ARM_CP_NO_RAW, .access = PL2_W, |
| .writefn = tlbi_aa64_vae2is_write }, |
| { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, |
| .access = PL2_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae2is_write }, |
| #ifndef CONFIG_USER_ONLY |
| /* Unlike the other EL2-related AT operations, these must |
| * UNDEF from EL3 if EL2 is not implemented, which is why we |
| * define them here rather than with the rest of the AT ops. |
| */ |
| { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, |
| .access = PL2_W, .accessfn = at_s1e2_access, |
| .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
| { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, |
| .access = PL2_W, .accessfn = at_s1e2_access, |
| .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, |
| /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE |
| * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 |
| * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose |
| * to behave as if SCR.NS was 1. |
| */ |
| { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, |
| .access = PL2_W, |
| .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, |
| { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, |
| .access = PL2_W, |
| .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, |
| { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, |
| /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the |
| * reset values as IMPDEF. We choose to reset to 3 to comply with |
| * both ARMv7 and ARMv8. |
| */ |
| .access = PL2_RW, .resetvalue = 3, |
| .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, |
| { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, |
| .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, |
| .writefn = gt_cntvoff_write, |
| .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, |
| { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, |
| .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, |
| .writefn = gt_cntvoff_write, |
| .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, |
| { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), |
| .type = ARM_CP_IO, .access = PL2_RW, |
| .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, |
| { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), |
| .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, |
| .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, |
| { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, |
| .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, |
| .resetfn = gt_hyp_timer_reset, |
| .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, |
| { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, |
| .type = ARM_CP_IO, |
| .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, |
| .access = PL2_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), |
| .resetvalue = 0, |
| .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, |
| #endif |
| /* The only field of MDCR_EL2 that has a defined architectural reset value |
| * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we |
| * don't impelment any PMU event counters, so using zero as a reset |
| * value for MDCR_EL2 is okay |
| */ |
| { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, |
| .access = PL2_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, |
| { .name = "HPFAR", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, |
| .access = PL2_RW, .accessfn = access_el3_aa32ns, |
| .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, |
| { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, |
| .access = PL2_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, |
| { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, |
| .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, |
| .access = PL2_RW, |
| .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, |
| REGINFO_SENTINEL |
| }; |
| |
| static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. |
| * At Secure EL1 it traps to EL3. |
| */ |
| if (arm_current_el(env) == 3) { |
| return CP_ACCESS_OK; |
| } |
| if (arm_is_secure_below_el3(env)) { |
| return CP_ACCESS_TRAP_EL3; |
| } |
| /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ |
| if (isread) { |
| return CP_ACCESS_OK; |
| } |
| return CP_ACCESS_TRAP_UNCATEGORIZED; |
| } |
| |
| static const ARMCPRegInfo el3_cp_reginfo[] = { |
| { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, |
| .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), |
| .resetvalue = 0, .writefn = scr_write }, |
| { .name = "SCR", .type = ARM_CP_ALIAS, |
| .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, |
| .access = PL1_RW, .accessfn = access_trap_aa32s_el1, |
| .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), |
| .writefn = scr_write }, |
| { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, |
| .access = PL3_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.sder) }, |
| { .name = "SDER", |
| .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, |
| .access = PL3_RW, .resetvalue = 0, |
| .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, |
| { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, |
| .access = PL1_RW, .accessfn = access_trap_aa32s_el1, |
| .writefn = vbar_write, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, |
| { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, |
| .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, |
| { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, |
| .access = PL3_RW, |
| /* no .writefn needed as this can't cause an ASID change; |
| * we must provide a .raw_writefn and .resetfn because we handle |
| * reset and migration for the AArch32 TTBCR(S), which might be |
| * using mask and base_mask. |
| */ |
| .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, |
| .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, |
| { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, |
| .type = ARM_CP_ALIAS, |
| .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, |
| .access = PL3_RW, |
| .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, |
| { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, |
| .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, |
| { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, |
| .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, |
| { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, |
| .type = ARM_CP_ALIAS, |
| .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, |
| .access = PL3_RW, |
| .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, |
| { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, |
| .access = PL3_RW, .writefn = vbar_write, |
| .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), |
| .resetvalue = 0 }, |
| { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, |
| .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, |
| { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, |
| .access = PL3_RW, .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, |
| { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, |
| .access = PL3_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, |
| .access = PL3_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, |
| .access = PL3_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, |
| .access = PL3_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_alle3is_write }, |
| { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, |
| .access = PL3_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae3is_write }, |
| { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, |
| .access = PL3_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae3is_write }, |
| { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, |
| .access = PL3_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_alle3_write }, |
| { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, |
| .access = PL3_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae3_write }, |
| { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, |
| .access = PL3_W, .type = ARM_CP_NO_RAW, |
| .writefn = tlbi_aa64_vae3_write }, |
| REGINFO_SENTINEL |
| }; |
| |
| static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, |
| bool isread) |
| { |
| /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, |
| * but the AArch32 CTR has its own reginfo struct) |
| */ |
| if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { |
| return CP_ACCESS_TRAP; |
| } |
| return CP_ACCESS_OK; |
| } |
| |
| static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Writes to OSLAR_EL1 may update the OS lock status, which can be |
| * read via a bit in OSLSR_EL1. |
| */ |
| int oslock; |
| |
| if (ri->state == ARM_CP_STATE_AA32) { |
| oslock = (value == 0xC5ACCE55); |
| } else { |
| oslock = value & 1; |
| } |
| |
| env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); |
| } |
| |
| static const ARMCPRegInfo debug_cp_reginfo[] = { |
| /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped |
| * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; |
| * unlike DBGDRAR it is never accessible from EL0. |
| * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 |
| * accessor. |
| */ |
| { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL0_R, .accessfn = access_tdra, |
| .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, |
| .access = PL1_R, .accessfn = access_tdra, |
| .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL0_R, .accessfn = access_tdra, |
| .type = ARM_CP_CONST, .resetvalue = 0 }, |
| /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ |
| { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, |
| .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, |
| .access = PL1_RW, .accessfn = access_tda, |
| .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), |
| .resetvalue = 0 }, |
| /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. |
| * We don't implement the configurable EL0 access. |
| */ |
| { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, |
| .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, |
| .type = ARM_CP_ALIAS, |
| .access = PL1_R, .accessfn = access_tda, |
| .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, |
| { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, |
| .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, |
| .access = PL1_W, .type = ARM_CP_NO_RAW, |
| .accessfn = access_tdosa, |
| .writefn = oslar_write }, |
| { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, |
| .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, |
| .access = PL1_R, .resetvalue = 10, |
| .accessfn = access_tdosa, |
| .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, |
| /* Dummy OSDLR_EL1: 32-bit Linux will read this */ |
| { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, |
| .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, |
| .access = PL1_RW, .accessfn = access_tdosa, |
| .type = ARM_CP_NOP }, |
| /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't |
| * implement vector catch debug events yet. |
| */ |
| { .name = "DBGVCR", |
| .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, |
| .access = PL1_RW, .accessfn = access_tda, |
| .type = ARM_CP_NOP }, |
| REGINFO_SENTINEL |
| }; |
| |
| static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { |
| /* 64 bit access versions of the (dummy) debug registers */ |
| { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, |
| .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, |
| { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, |
| .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| |
| void hw_watchpoint_update(ARMCPU *cpu, int n) |
| { |
| CPUARMState *env = &cpu->env; |
| vaddr len = 0; |
| vaddr wvr = env->cp15.dbgwvr[n]; |
| uint64_t wcr = env->cp15.dbgwcr[n]; |
| int mask; |
| int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; |
| |
| if (env->cpu_watchpoint[n]) { |
| cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); |
| env->cpu_watchpoint[n] = NULL; |
| } |
| |
| if (!extract64(wcr, 0, 1)) { |
| /* E bit clear : watchpoint disabled */ |
| return; |
| } |
| |
| switch (extract64(wcr, 3, 2)) { |
| case 0: |
| /* LSC 00 is reserved and must behave as if the wp is disabled */ |
| return; |
| case 1: |
| flags |= BP_MEM_READ; |
| break; |
| case 2: |
| flags |= BP_MEM_WRITE; |
| break; |
| case 3: |
| flags |= BP_MEM_ACCESS; |
| break; |
| } |
| |
| /* Attempts to use both MASK and BAS fields simultaneously are |
| * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, |
| * thus generating a watchpoint for every byte in the masked region. |
| */ |
| mask = extract64(wcr, 24, 4); |
| if (mask == 1 || mask == 2) { |
| /* Reserved values of MASK; we must act as if the mask value was |
| * some non-reserved value, or as if the watchpoint were disabled. |
| * We choose the latter. |
| */ |
| return; |
| } else if (mask) { |
| /* Watchpoint covers an aligned area up to 2GB in size */ |
| len = 1ULL << mask; |
| /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE |
| * whether the watchpoint fires when the unmasked bits match; we opt |
| * to generate the exceptions. |
| */ |
| wvr &= ~(len - 1); |
| } else { |
| /* Watchpoint covers bytes defined by the byte address select bits */ |
| int bas = extract64(wcr, 5, 8); |
| int basstart; |
| |
| if (bas == 0) { |
| /* This must act as if the watchpoint is disabled */ |
| return; |
| } |
| |
| if (extract64(wvr, 2, 1)) { |
| /* Deprecated case of an only 4-aligned address. BAS[7:4] are |
| * ignored, and BAS[3:0] define which bytes to watch. |
| */ |
| bas &= 0xf; |
| } |
| /* The BAS bits are supposed to be programmed to indicate a contiguous |
| * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether |
| * we fire for each byte in the word/doubleword addressed by the WVR. |
| * We choose to ignore any non-zero bits after the first range of 1s. |
| */ |
| basstart = ctz32(bas); |
| len = cto32(bas >> basstart); |
| wvr += basstart; |
| } |
| |
| cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, |
| &env->cpu_watchpoint[n]); |
| } |
| |
| void hw_watchpoint_update_all(ARMCPU *cpu) |
| { |
| int i; |
| CPUARMState *env = &cpu->env; |
| |
| /* Completely clear out existing QEMU watchpoints and our array, to |
| * avoid possible stale entries following migration load. |
| */ |
| cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); |
| memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); |
| |
| for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { |
| hw_watchpoint_update(cpu, i); |
| } |
| } |
| |
| static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| int i = ri->crm; |
| |
| /* Bits [63:49] are hardwired to the value of bit [48]; that is, the |
| * register reads and behaves as if values written are sign extended. |
| * Bits [1:0] are RES0. |
| */ |
| value = sextract64(value, 0, 49) & ~3ULL; |
| |
| raw_write(env, ri, value); |
| hw_watchpoint_update(cpu, i); |
| } |
| |
| static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| int i = ri->crm; |
| |
| raw_write(env, ri, value); |
| hw_watchpoint_update(cpu, i); |
| } |
| |
| void hw_breakpoint_update(ARMCPU *cpu, int n) |
| { |
| CPUARMState *env = &cpu->env; |
| uint64_t bvr = env->cp15.dbgbvr[n]; |
| uint64_t bcr = env->cp15.dbgbcr[n]; |
| vaddr addr; |
| int bt; |
| int flags = BP_CPU; |
| |
| if (env->cpu_breakpoint[n]) { |
| cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); |
| env->cpu_breakpoint[n] = NULL; |
| } |
| |
| if (!extract64(bcr, 0, 1)) { |
| /* E bit clear : watchpoint disabled */ |
| return; |
| } |
| |
| bt = extract64(bcr, 20, 4); |
| |
| switch (bt) { |
| case 4: /* unlinked address mismatch (reserved if AArch64) */ |
| case 5: /* linked address mismatch (reserved if AArch64) */ |
| qemu_log_mask(LOG_UNIMP, |
| "arm: address mismatch breakpoint types not implemented"); |
| return; |
| case 0: /* unlinked address match */ |
| case 1: /* linked address match */ |
| { |
| /* Bits [63:49] are hardwired to the value of bit [48]; that is, |
| * we behave as if the register was sign extended. Bits [1:0] are |
| * RES0. The BAS field is used to allow setting breakpoints on 16 |
| * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether |
| * a bp will fire if the addresses covered by the bp and the addresses |
| * covered by the insn overlap but the insn doesn't start at the |
| * start of the bp address range. We choose to require the insn and |
| * the bp to have the same address. The constraints on writing to |
| * BAS enforced in dbgbcr_write mean we have only four cases: |
| * 0b0000 => no breakpoint |
| * 0b0011 => breakpoint on addr |
| * 0b1100 => breakpoint on addr + 2 |
| * 0b1111 => breakpoint on addr |
| * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). |
| */ |
| int bas = extract64(bcr, 5, 4); |
| addr = sextract64(bvr, 0, 49) & ~3ULL; |
| if (bas == 0) { |
| return; |
| } |
| if (bas == 0xc) { |
| addr += 2; |
| } |
| break; |
| } |
| case 2: /* unlinked context ID match */ |
| case 8: /* unlinked VMID match (reserved if no EL2) */ |
| case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ |
| qemu_log_mask(LOG_UNIMP, |
| "arm: unlinked context breakpoint types not implemented"); |
| return; |
| case 9: /* linked VMID match (reserved if no EL2) */ |
| case 11: /* linked context ID and VMID match (reserved if no EL2) */ |
| case 3: /* linked context ID match */ |
| default: |
| /* We must generate no events for Linked context matches (unless |
| * they are linked to by some other bp/wp, which is handled in |
| * updates for the linking bp/wp). We choose to also generate no events |
| * for reserved values. |
| */ |
| return; |
| } |
| |
| cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); |
| } |
| |
| void hw_breakpoint_update_all(ARMCPU *cpu) |
| { |
| int i; |
| CPUARMState *env = &cpu->env; |
| |
| /* Completely clear out existing QEMU breakpoints and our array, to |
| * avoid possible stale entries following migration load. |
| */ |
| cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); |
| memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); |
| |
| for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { |
| hw_breakpoint_update(cpu, i); |
| } |
| } |
| |
| static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| int i = ri->crm; |
| |
| raw_write(env, ri, value); |
| hw_breakpoint_update(cpu, i); |
| } |
| |
| static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| int i = ri->crm; |
| |
| /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only |
| * copy of BAS[0]. |
| */ |
| value = deposit64(value, 6, 1, extract64(value, 5, 1)); |
| value = deposit64(value, 8, 1, extract64(value, 7, 1)); |
| |
| raw_write(env, ri, value); |
| hw_breakpoint_update(cpu, i); |
| } |
| |
| static void define_debug_regs(ARMCPU *cpu) |
| { |
| /* Define v7 and v8 architectural debug registers. |
| * These are just dummy implementations for now. |
| */ |
| int i; |
| int wrps, brps, ctx_cmps; |
| ARMCPRegInfo dbgdidr = { |
| .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, |
| .access = PL0_R, .accessfn = access_tda, |
| .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, |
| }; |
| |
| /* Note that all these register fields hold "number of Xs minus 1". */ |
| brps = extract32(cpu->dbgdidr, 24, 4); |
| wrps = extract32(cpu->dbgdidr, 28, 4); |
| ctx_cmps = extract32(cpu->dbgdidr, 20, 4); |
| |
| assert(ctx_cmps <= brps); |
| (void)ctx_cmps; |
| |
| /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties |
| * of the debug registers such as number of breakpoints; |
| * check that if they both exist then they agree. |
| */ |
| if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { |
| assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); |
| assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); |
| assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); |
| } |
| |
| define_one_arm_cp_reg(cpu, &dbgdidr); |
| define_arm_cp_regs(cpu, debug_cp_reginfo); |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { |
| define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); |
| } |
| |
| for (i = 0; i < brps + 1; i++) { |
| ARMCPRegInfo dbgregs[] = { |
| { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, |
| .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, |
| .access = PL1_RW, .accessfn = access_tda, |
| .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), |
| .writefn = dbgbvr_write, .raw_writefn = raw_write |
| }, |
| { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, |
| .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, |
| .access = PL1_RW, .accessfn = access_tda, |
| .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), |
| .writefn = dbgbcr_write, .raw_writefn = raw_write |
| }, |
| REGINFO_SENTINEL |
| }; |
| define_arm_cp_regs(cpu, dbgregs); |
| } |
| |
| for (i = 0; i < wrps + 1; i++) { |
| ARMCPRegInfo dbgregs[] = { |
| { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, |
| .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, |
| .access = PL1_RW, .accessfn = access_tda, |
| .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), |
| .writefn = dbgwvr_write, .raw_writefn = raw_write |
| }, |
| { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, |
| .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, |
| .access = PL1_RW, .accessfn = access_tda, |
| .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), |
| .writefn = dbgwcr_write, .raw_writefn = raw_write |
| }, |
| REGINFO_SENTINEL |
| }; |
| define_arm_cp_regs(cpu, dbgregs); |
| } |
| } |
| |
| void register_cp_regs_for_features(ARMCPU *cpu) |
| { |
| /* Register all the coprocessor registers based on feature bits */ |
| CPUARMState *env = &cpu->env; |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| /* M profile has no coprocessor registers */ |
| return; |
| } |
| |
| define_arm_cp_regs(cpu, cp_reginfo); |
| if (!arm_feature(env, ARM_FEATURE_V8)) { |
| /* Must go early as it is full of wildcards that may be |
| * overridden by later definitions. |
| */ |
| define_arm_cp_regs(cpu, not_v8_cp_reginfo); |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_V6)) { |
| /* The ID registers all have impdef reset values */ |
| ARMCPRegInfo v6_idregs[] = { |
| { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_pfr0 }, |
| { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_pfr1 }, |
| { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_dfr0 }, |
| { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_afr0 }, |
| { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_mmfr0 }, |
| { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_mmfr1 }, |
| { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_mmfr2 }, |
| { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_mmfr3 }, |
| { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_isar0 }, |
| { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_isar1 }, |
| { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_isar2 }, |
| { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_isar3 }, |
| { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_isar4 }, |
| { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_isar5 }, |
| { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_mmfr4 }, |
| /* 7 is as yet unallocated and must RAZ */ |
| { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| define_arm_cp_regs(cpu, v6_idregs); |
| define_arm_cp_regs(cpu, v6_cp_reginfo); |
| } else { |
| define_arm_cp_regs(cpu, not_v6_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_V6K)) { |
| define_arm_cp_regs(cpu, v6k_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_V7MP) && |
| !arm_feature(env, ARM_FEATURE_MPU)) { |
| define_arm_cp_regs(cpu, v7mp_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_V7)) { |
| /* v7 performance monitor control register: same implementor |
| * field as main ID register, and we implement only the cycle |
| * count register. |
| */ |
| #ifndef CONFIG_USER_ONLY |
| ARMCPRegInfo pmcr = { |
| .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, |
| .access = PL0_RW, |
| .type = ARM_CP_IO | ARM_CP_ALIAS, |
| .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), |
| .accessfn = pmreg_access, .writefn = pmcr_write, |
| .raw_writefn = raw_write, |
| }; |
| ARMCPRegInfo pmcr64 = { |
| .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, |
| .access = PL0_RW, .accessfn = pmreg_access, |
| .type = ARM_CP_IO, |
| .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), |
| .resetvalue = cpu->midr & 0xff000000, |
| .writefn = pmcr_write, .raw_writefn = raw_write, |
| }; |
| define_one_arm_cp_reg(cpu, &pmcr); |
| define_one_arm_cp_reg(cpu, &pmcr64); |
| #endif |
| ARMCPRegInfo clidr = { |
| .name = "CLIDR", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr |
| }; |
| define_one_arm_cp_reg(cpu, &clidr); |
| define_arm_cp_regs(cpu, v7_cp_reginfo); |
| define_debug_regs(cpu); |
| } else { |
| define_arm_cp_regs(cpu, not_v7_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| /* AArch64 ID registers, which all have impdef reset values. |
| * Note that within the ID register ranges the unused slots |
| * must all RAZ, not UNDEF; future architecture versions may |
| * define new registers here. |
| */ |
| ARMCPRegInfo v8_idregs[] = { |
| { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_aa64pfr0 }, |
| { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_aa64pfr1}, |
| { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| /* We mask out the PMUVer field, because we don't currently |
| * implement the PMU. Not advertising it prevents the guest |
| * from trying to use it and getting UNDEFs on registers we |
| * don't implement. |
| */ |
| .resetvalue = cpu->id_aa64dfr0 & ~0xf00 }, |
| { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_aa64dfr1 }, |
| { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_aa64afr0 }, |
| { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_aa64afr1 }, |
| { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_aa64isar0 }, |
| { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_aa64isar1 }, |
| { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_aa64mmfr0 }, |
| { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->id_aa64mmfr1 }, |
| { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->mvfr0 }, |
| { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->mvfr1 }, |
| { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->mvfr2 }, |
| { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, |
| .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, |
| .resetvalue = cpu->pmceid0 }, |
| { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, |
| .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, |
| .resetvalue = cpu->pmceid0 }, |
| { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, |
| .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, |
| .resetvalue = cpu->pmceid1 }, |
| { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, |
| .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, |
| .resetvalue = cpu->pmceid1 }, |
| REGINFO_SENTINEL |
| }; |
| /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ |
| if (!arm_feature(env, ARM_FEATURE_EL3) && |
| !arm_feature(env, ARM_FEATURE_EL2)) { |
| ARMCPRegInfo rvbar = { |
| .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, |
| .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar |
| }; |
| define_one_arm_cp_reg(cpu, &rvbar); |
| } |
| define_arm_cp_regs(cpu, v8_idregs); |
| define_arm_cp_regs(cpu, v8_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_EL2)) { |
| uint64_t vmpidr_def = mpidr_read_val(env); |
| ARMCPRegInfo vpidr_regs[] = { |
| { .name = "VPIDR", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, |
| .access = PL2_RW, .accessfn = access_el3_aa32ns, |
| .resetvalue = cpu->midr, |
| .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, |
| { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, |
| .access = PL2_RW, .resetvalue = cpu->midr, |
| .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, |
| { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, |
| .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, |
| .access = PL2_RW, .accessfn = access_el3_aa32ns, |
| .resetvalue = vmpidr_def, |
| .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, |
| { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, |
| .access = PL2_RW, |
| .resetvalue = vmpidr_def, |
| .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, |
| REGINFO_SENTINEL |
| }; |
| define_arm_cp_regs(cpu, vpidr_regs); |
| define_arm_cp_regs(cpu, el2_cp_reginfo); |
| /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ |
| if (!arm_feature(env, ARM_FEATURE_EL3)) { |
| ARMCPRegInfo rvbar = { |
| .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, |
| .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar |
| }; |
| define_one_arm_cp_reg(cpu, &rvbar); |
| } |
| } else { |
| /* If EL2 is missing but higher ELs are enabled, we need to |
| * register the no_el2 reginfos. |
| */ |
| if (arm_feature(env, ARM_FEATURE_EL3)) { |
| /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value |
| * of MIDR_EL1 and MPIDR_EL1. |
| */ |
| ARMCPRegInfo vpidr_regs[] = { |
| { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, |
| .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, |
| .type = ARM_CP_CONST, .resetvalue = cpu->midr, |
| .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, |
| { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, |
| .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, |
| .type = ARM_CP_NO_RAW, |
| .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, |
| REGINFO_SENTINEL |
| }; |
| define_arm_cp_regs(cpu, vpidr_regs); |
| define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); |
| } |
| } |
| if (arm_feature(env, ARM_FEATURE_EL3)) { |
| define_arm_cp_regs(cpu, el3_cp_reginfo); |
| ARMCPRegInfo el3_regs[] = { |
| { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, |
| .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, |
| { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, |
| .access = PL3_RW, |
| .raw_writefn = raw_write, .writefn = sctlr_write, |
| .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), |
| .resetvalue = cpu->reset_sctlr }, |
| REGINFO_SENTINEL |
| }; |
| |
| define_arm_cp_regs(cpu, el3_regs); |
| } |
| /* The behaviour of NSACR is sufficiently various that we don't |
| * try to describe it in a single reginfo: |
| * if EL3 is 64 bit, then trap to EL3 from S EL1, |
| * reads as constant 0xc00 from NS EL1 and NS EL2 |
| * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 |
| * if v7 without EL3, register doesn't exist |
| * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 |
| */ |
| if (arm_feature(env, ARM_FEATURE_EL3)) { |
| if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
| ARMCPRegInfo nsacr = { |
| .name = "NSACR", .type = ARM_CP_CONST, |
| .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, |
| .access = PL1_RW, .accessfn = nsacr_access, |
| .resetvalue = 0xc00 |
| }; |
| define_one_arm_cp_reg(cpu, &nsacr); |
| } else { |
| ARMCPRegInfo nsacr = { |
| .name = "NSACR", |
| .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, |
| .access = PL3_RW | PL1_R, |
| .resetvalue = 0, |
| .fieldoffset = offsetof(CPUARMState, cp15.nsacr) |
| }; |
| define_one_arm_cp_reg(cpu, &nsacr); |
| } |
| } else { |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| ARMCPRegInfo nsacr = { |
| .name = "NSACR", .type = ARM_CP_CONST, |
| .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, |
| .access = PL1_R, |
| .resetvalue = 0xc00 |
| }; |
| define_one_arm_cp_reg(cpu, &nsacr); |
| } |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_MPU)) { |
| if (arm_feature(env, ARM_FEATURE_V6)) { |
| /* PMSAv6 not implemented */ |
| assert(arm_feature(env, ARM_FEATURE_V7)); |
| define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); |
| define_arm_cp_regs(cpu, pmsav7_cp_reginfo); |
| } else { |
| define_arm_cp_regs(cpu, pmsav5_cp_reginfo); |
| } |
| } else { |
| define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); |
| define_arm_cp_regs(cpu, vmsa_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { |
| define_arm_cp_regs(cpu, t2ee_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
| define_arm_cp_regs(cpu, generic_timer_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_VAPA)) { |
| define_arm_cp_regs(cpu, vapa_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { |
| define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { |
| define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { |
| define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_OMAPCP)) { |
| define_arm_cp_regs(cpu, omap_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_STRONGARM)) { |
| define_arm_cp_regs(cpu, strongarm_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
| define_arm_cp_regs(cpu, xscale_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { |
| define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); |
| } |
| if (arm_feature(env, ARM_FEATURE_LPAE)) { |
| define_arm_cp_regs(cpu, lpae_cp_reginfo); |
| } |
| /* Slightly awkwardly, the OMAP and StrongARM cores need all of |
| * cp15 crn=0 to be writes-ignored, whereas for other cores they should |
| * be read-only (ie write causes UNDEF exception). |
| */ |
| { |
| ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { |
| /* Pre-v8 MIDR space. |
| * Note that the MIDR isn't a simple constant register because |
| * of the TI925 behaviour where writes to another register can |
| * cause the MIDR value to change. |
| * |
| * Unimplemented registers in the c15 0 0 0 space default to |
| * MIDR. Define MIDR first as this entire space, then CTR, TCMTR |
| * and friends override accordingly. |
| */ |
| { .name = "MIDR", |
| .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_R, .resetvalue = cpu->midr, |
| .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, |
| .readfn = midr_read, |
| .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
| .type = ARM_CP_OVERRIDE }, |
| /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ |
| { .name = "DUMMY", |
| .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "DUMMY", |
| .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "DUMMY", |
| .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "DUMMY", |
| .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| { .name = "DUMMY", |
| .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| ARMCPRegInfo id_v8_midr_cp_reginfo[] = { |
| { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, |
| .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, |
| .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), |
| .readfn = midr_read }, |
| /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ |
| { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, |
| .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, |
| .access = PL1_R, .resetvalue = cpu->midr }, |
| { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, |
| .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, |
| .access = PL1_R, .resetvalue = cpu->midr }, |
| { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, |
| REGINFO_SENTINEL |
| }; |
| ARMCPRegInfo id_cp_reginfo[] = { |
| /* These are common to v8 and pre-v8 */ |
| { .name = "CTR", |
| .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, |
| { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, |
| .access = PL0_R, .accessfn = ctr_el0_access, |
| .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, |
| /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ |
| { .name = "TCMTR", |
| .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| /* TLBTR is specific to VMSA */ |
| ARMCPRegInfo id_tlbtr_reginfo = { |
| .name = "TLBTR", |
| .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, |
| .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, |
| }; |
| /* MPUIR is specific to PMSA V6+ */ |
| ARMCPRegInfo id_mpuir_reginfo = { |
| .name = "MPUIR", |
| .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, |
| .access = PL1_R, .type = ARM_CP_CONST, |
| .resetvalue = cpu->pmsav7_dregion << 8 |
| }; |
| ARMCPRegInfo crn0_wi_reginfo = { |
| .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, |
| .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, |
| .type = ARM_CP_NOP | ARM_CP_OVERRIDE |
| }; |
| if (arm_feature(env, ARM_FEATURE_OMAPCP) || |
| arm_feature(env, ARM_FEATURE_STRONGARM)) { |
| ARMCPRegInfo *r; |
| /* Register the blanket "writes ignored" value first to cover the |
| * whole space. Then update the specific ID registers to allow write |
| * access, so that they ignore writes rather than causing them to |
| * UNDEF. |
| */ |
| define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); |
| for (r = id_pre_v8_midr_cp_reginfo; |
| r->type != ARM_CP_SENTINEL; r++) { |
| r->access = PL1_RW; |
| } |
| for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { |
| r->access = PL1_RW; |
| } |
| id_tlbtr_reginfo.access = PL1_RW; |
| id_tlbtr_reginfo.access = PL1_RW; |
| } |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); |
| } else { |
| define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); |
| } |
| define_arm_cp_regs(cpu, id_cp_reginfo); |
| if (!arm_feature(env, ARM_FEATURE_MPU)) { |
| define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); |
| } else if (arm_feature(env, ARM_FEATURE_V7)) { |
| define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); |
| } |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_MPIDR)) { |
| define_arm_cp_regs(cpu, mpidr_cp_reginfo); |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_AUXCR)) { |
| ARMCPRegInfo auxcr_reginfo[] = { |
| { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, |
| .access = PL1_RW, .type = ARM_CP_CONST, |
| .resetvalue = cpu->reset_auxcr }, |
| { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, |
| .access = PL2_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, |
| .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, |
| .access = PL3_RW, .type = ARM_CP_CONST, |
| .resetvalue = 0 }, |
| REGINFO_SENTINEL |
| }; |
| define_arm_cp_regs(cpu, auxcr_reginfo); |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_CBAR)) { |
| if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
| /* 32 bit view is [31:18] 0...0 [43:32]. */ |
| uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) |
| | extract64(cpu->reset_cbar, 32, 12); |
| ARMCPRegInfo cbar_reginfo[] = { |
| { .name = "CBAR", |
| .type = ARM_CP_CONST, |
| .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, |
| .access = PL1_R, .resetvalue = cpu->reset_cbar }, |
| { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, |
| .type = ARM_CP_CONST, |
| .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, |
| .access = PL1_R, .resetvalue = cbar32 }, |
| REGINFO_SENTINEL |
| }; |
| /* We don't implement a r/w 64 bit CBAR currently */ |
| assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); |
| define_arm_cp_regs(cpu, cbar_reginfo); |
| } else { |
| ARMCPRegInfo cbar = { |
| .name = "CBAR", |
| .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, |
| .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, |
| .fieldoffset = offsetof(CPUARMState, |
| cp15.c15_config_base_address) |
| }; |
| if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { |
| cbar.access = PL1_R; |
| cbar.fieldoffset = 0; |
| cbar.type = ARM_CP_CONST; |
| } |
| define_one_arm_cp_reg(cpu, &cbar); |
| } |
| } |
| |
| /* Generic registers whose values depend on the implementation */ |
| { |
| ARMCPRegInfo sctlr = { |
| .name = "SCTLR", .state = ARM_CP_STATE_BOTH, |
| .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, |
| .access = PL1_RW, |
| .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), |
| offsetof(CPUARMState, cp15.sctlr_ns) }, |
| .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, |
| .raw_writefn = raw_write, |
| }; |
| if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
| /* Normally we would always end the TB on an SCTLR write, but Linux |
| * arch/arm/mach-pxa/sleep.S expects two instructions following |
| * an MMU enable to execute from cache. Imitate this behaviour. |
| */ |
| sctlr.type |= ARM_CP_SUPPRESS_TB_END; |
| } |
| define_one_arm_cp_reg(cpu, &sctlr); |
| } |
| } |
| |
| ARMCPU *cpu_arm_init(const char *cpu_model) |
| { |
| return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model)); |
| } |
| |
| void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUARMState *env = &cpu->env; |
| |
| if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
| gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, |
| aarch64_fpu_gdb_set_reg, |
| 34, "aarch64-fpu.xml", 0); |
| } else if (arm_feature(env, ARM_FEATURE_NEON)) { |
| gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
| 51, "arm-neon.xml", 0); |
| } else if (arm_feature(env, ARM_FEATURE_VFP3)) { |
| gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
| 35, "arm-vfp3.xml", 0); |
| } else if (arm_feature(env, ARM_FEATURE_VFP)) { |
| gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, |
| 19, "arm-vfp.xml", 0); |
| } |
| } |
| |
| /* Sort alphabetically by type name, except for "any". */ |
| static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) |
| { |
| ObjectClass *class_a = (ObjectClass *)a; |
| ObjectClass *class_b = (ObjectClass *)b; |
| const char *name_a, *name_b; |
| |
| name_a = object_class_get_name(class_a); |
| name_b = object_class_get_name(class_b); |
| if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { |
| return 1; |
| } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { |
| return -1; |
| } else { |
| return strcmp(name_a, name_b); |
| } |
| } |
| |
| static void arm_cpu_list_entry(gpointer data, gpointer user_data) |
| { |
| ObjectClass *oc = data; |
| CPUListState *s = user_data; |
| const char *typename; |
| char *name; |
| |
| typename = object_class_get_name(oc); |
| name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); |
| (*s->cpu_fprintf)(s->file, " %s\n", |
| name); |
| g_free(name); |
| } |
| |
| void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) |
| { |
| CPUListState s = { |
| .file = f, |
| .cpu_fprintf = cpu_fprintf, |
| }; |
| GSList *list; |
| |
| list = object_class_get_list(TYPE_ARM_CPU, false); |
| list = g_slist_sort(list, arm_cpu_list_compare); |
| (*cpu_fprintf)(f, "Available CPUs:\n"); |
| g_slist_foreach(list, arm_cpu_list_entry, &s); |
| g_slist_free(list); |
| #ifdef CONFIG_KVM |
| /* The 'host' CPU type is dynamically registered only if KVM is |
| * enabled, so we have to special-case it here: |
| */ |
| (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); |
| #endif |
| } |
| |
| static void arm_cpu_add_definition(gpointer data, gpointer user_data) |
| { |
| ObjectClass *oc = data; |
| CpuDefinitionInfoList **cpu_list = user_data; |
| CpuDefinitionInfoList *entry; |
| CpuDefinitionInfo *info; |
| const char *typename; |
| |
| typename = object_class_get_name(oc); |
| info = g_malloc0(sizeof(*info)); |
| info->name = g_strndup(typename, |
| strlen(typename) - strlen("-" TYPE_ARM_CPU)); |
| |
| entry = g_malloc0(sizeof(*entry)); |
| entry->value = info; |
| entry->next = *cpu_list; |
| *cpu_list = entry; |
| } |
| |
| CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) |
| { |
| CpuDefinitionInfoList *cpu_list = NULL; |
| GSList *list; |
| |
| list = object_class_get_list(TYPE_ARM_CPU, false); |
| g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); |
| g_slist_free(list); |
| |
| return cpu_list; |
| } |
| |
| static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, |
| void *opaque, int state, int secstate, |
| int crm, int opc1, int opc2) |
| { |
| /* Private utility function for define_one_arm_cp_reg_with_opaque(): |
| * add a single reginfo struct to the hash table. |
| */ |
| uint32_t *key = g_new(uint32_t, 1); |
| ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); |
| int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; |
| int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; |
| |
| /* Reset the secure state to the specific incoming state. This is |
| * necessary as the register may have been defined with both states. |
| */ |
| r2->secure = secstate; |
| |
| if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { |
| /* Register is banked (using both entries in array). |
| * Overwriting fieldoffset as the array is only used to define |
| * banked registers but later only fieldoffset is used. |
| */ |
| r2->fieldoffset = r->bank_fieldoffsets[ns]; |
| } |
| |
| if (state == ARM_CP_STATE_AA32) { |
| if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { |
| /* If the register is banked then we don't need to migrate or |
| * reset the 32-bit instance in certain cases: |
| * |
| * 1) If the register has both 32-bit and 64-bit instances then we |
| * can count on the 64-bit instance taking care of the |
| * non-secure bank. |
| * 2) If ARMv8 is enabled then we can count on a 64-bit version |
| * taking care of the secure bank. This requires that separate |
| * 32 and 64-bit definitions are provided. |
| */ |
| if ((r->state == ARM_CP_STATE_BOTH && ns) || |
| (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { |
| r2->type |= ARM_CP_ALIAS; |
| } |
| } else if ((secstate != r->secure) && !ns) { |
| /* The register is not banked so we only want to allow migration of |
| * the non-secure instance. |
| */ |
| r2->type |= ARM_CP_ALIAS; |
| } |
| |
| if (r->state == ARM_CP_STATE_BOTH) { |
| /* We assume it is a cp15 register if the .cp field is left unset. |
| */ |
| if (r2->cp == 0) { |
| r2->cp = 15; |
| } |
| |
| #ifdef HOST_WORDS_BIGENDIAN |
| if (r2->fieldoffset) { |
| r2->fieldoffset += sizeof(uint32_t); |
| } |
| #endif |
| } |
| } |
| if (state == ARM_CP_STATE_AA64) { |
| /* To allow abbreviation of ARMCPRegInfo |
| * definitions, we treat cp == 0 as equivalent to |
| * the value for "standard guest-visible sysreg". |
| * STATE_BOTH definitions are also always "standard |
| * sysreg" in their AArch64 view (the .cp value may |
| * be non-zero for the benefit of the AArch32 view). |
| */ |
| if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { |
| r2->cp = CP_REG_ARM64_SYSREG_CP; |
| } |
| *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, |
| r2->opc0, opc1, opc2); |
| } else { |
| *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); |
| } |
| if (opaque) { |
| r2->opaque = opaque; |
| } |
| /* reginfo passed to helpers is correct for the actual access, |
| * and is never ARM_CP_STATE_BOTH: |
| */ |
| r2->state = state; |
| /* Make sure reginfo passed to helpers for wildcarded regs |
| * has the correct crm/opc1/opc2 for this reg, not CP_ANY: |
| */ |
| r2->crm = crm; |
| r2->opc1 = opc1; |
| r2->opc2 = opc2; |
| /* By convention, for wildcarded registers only the first |
| * entry is used for migration; the others are marked as |
| * ALIAS so we don't try to transfer the register |
| * multiple times. Special registers (ie NOP/WFI) are |
| * never migratable and not even raw-accessible. |
| */ |
| if ((r->type & ARM_CP_SPECIAL)) { |
| r2->type |= ARM_CP_NO_RAW; |
| } |
| if (((r->crm == CP_ANY) && crm != 0) || |
| ((r->opc1 == CP_ANY) && opc1 != 0) || |
| ((r->opc2 == CP_ANY) && opc2 != 0)) { |
| r2->type |= ARM_CP_ALIAS; |
| } |
| |
| /* Check that raw accesses are either forbidden or handled. Note that |
| * we can't assert this earlier because the setup of fieldoffset for |
| * banked registers has to be done first. |
| */ |
| if (!(r2->type & ARM_CP_NO_RAW)) { |
| assert(!raw_accessors_invalid(r2)); |
| } |
| |
| /* Overriding of an existing definition must be explicitly |
| * requested. |
| */ |
| if (!(r->type & ARM_CP_OVERRIDE)) { |
| ARMCPRegInfo *oldreg; |
| oldreg = g_hash_table_lookup(cpu->cp_regs, key); |
| if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { |
| fprintf(stderr, "Register redefined: cp=%d %d bit " |
| "crn=%d crm=%d opc1=%d opc2=%d, " |
| "was %s, now %s\n", r2->cp, 32 + 32 * is64, |
| r2->crn, r2->crm, r2->opc1, r2->opc2, |
| oldreg->name, r2->name); |
| g_assert_not_reached(); |
| } |
| } |
| g_hash_table_insert(cpu->cp_regs, key, r2); |
| } |
| |
| |
| void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, |
| const ARMCPRegInfo *r, void *opaque) |
| { |
| /* Define implementations of coprocessor registers. |
| * We store these in a hashtable because typically |
| * there are less than 150 registers in a space which |
| * is 16*16*16*8*8 = 262144 in size. |
| * Wildcarding is supported for the crm, opc1 and opc2 fields. |
| * If a register is defined twice then the second definition is |
| * used, so this can be used to define some generic registers and |
| * then override them with implementation specific variations. |
| * At least one of the original and the second definition should |
| * include ARM_CP_OVERRIDE in its type bits -- this is just a guard |
| * against accidental use. |
| * |
| * The state field defines whether the register is to be |
| * visible in the AArch32 or AArch64 execution state. If the |
| * state is set to ARM_CP_STATE_BOTH then we synthesise a |
| * reginfo structure for the AArch32 view, which sees the lower |
| * 32 bits of the 64 bit register. |
| * |
| * Only registers visible in AArch64 may set r->opc0; opc0 cannot |
| * be wildcarded. AArch64 registers are always considered to be 64 |
| * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of |
| * the register, if any. |
| */ |
| int crm, opc1, opc2, state; |
| int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; |
| int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; |
| int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; |
| int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; |
| int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; |
| int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; |
| /* 64 bit registers have only CRm and Opc1 fields */ |
| assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); |
| /* op0 only exists in the AArch64 encodings */ |
| assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); |
| /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ |
| assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); |
| /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 |
| * encodes a minimum access level for the register. We roll this |
| * runtime check into our general permission check code, so check |
| * here that the reginfo's specified permissions are strict enough |
| * to encompass the generic architectural permission check. |
| */ |
| if (r->state != ARM_CP_STATE_AA32) { |
| int mask = 0; |
| switch (r->opc1) { |
| case 0: case 1: case 2: |
| /* min_EL EL1 */ |
| mask = PL1_RW; |
| break; |
| case 3: |
| /* min_EL EL0 */ |
| mask = PL0_RW; |
| break; |
| case 4: |
| /* min_EL EL2 */ |
| mask = PL2_RW; |
| break; |
| case 5: |
| /* unallocated encoding, so not possible */ |
| assert(false); |
| break; |
| case 6: |
| /* min_EL EL3 */ |
| mask = PL3_RW; |
| break; |
| case 7: |
| /* min_EL EL1, secure mode only (we don't check the latter) */ |
| mask = PL1_RW; |
| break; |
| default: |
| /* broken reginfo with out-of-range opc1 */ |
| assert(false); |
| break; |
| } |
| /* assert our permissions are not too lax (stricter is fine) */ |
| assert((r->access & ~mask) == 0); |
| (void)mask; |
| } |
| |
| /* Check that the register definition has enough info to handle |
| * reads and writes if they are permitted. |
| */ |
| if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { |
| if (r->access & PL3_R) { |
| assert((r->fieldoffset || |
| (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || |
| r->readfn); |
| } |
| if (r->access & PL3_W) { |
| assert((r->fieldoffset || |
| (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || |
| r->writefn); |
| } |
| } |
| /* Bad type field probably means missing sentinel at end of reg list */ |
| assert(cptype_valid(r->type)); |
| for (crm = crmmin; crm <= crmmax; crm++) { |
| for (opc1 = opc1min; opc1 <= opc1max; opc1++) { |
| for (opc2 = opc2min; opc2 <= opc2max; opc2++) { |
| for (state = ARM_CP_STATE_AA32; |
| state <= ARM_CP_STATE_AA64; state++) { |
| if (r->state != state && r->state != ARM_CP_STATE_BOTH) { |
| continue; |
| } |
| if (state == ARM_CP_STATE_AA32) { |
| /* Under AArch32 CP registers can be common |
| * (same for secure and non-secure world) or banked. |
| */ |
| switch (r->secure) { |
| case ARM_CP_SECSTATE_S: |
| case ARM_CP_SECSTATE_NS: |
| add_cpreg_to_hashtable(cpu, r, opaque, state, |
| r->secure, crm, opc1, opc2); |
| break; |
| default: |
| add_cpreg_to_hashtable(cpu, r, opaque, state, |
| ARM_CP_SECSTATE_S, |
| crm, opc1, opc2); |
| add_cpreg_to_hashtable(cpu, r, opaque, state, |
| ARM_CP_SECSTATE_NS, |
| crm, opc1, opc2); |
| break; |
| } |
| } else { |
| /* AArch64 registers get mapped to non-secure instance |
| * of AArch32 */ |
| add_cpreg_to_hashtable(cpu, r, opaque, state, |
| ARM_CP_SECSTATE_NS, |
| crm, opc1, opc2); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void define_arm_cp_regs_with_opaque(ARMCPU *cpu, |
| const ARMCPRegInfo *regs, void *opaque) |
| { |
| /* Define a whole list of registers */ |
| const ARMCPRegInfo *r; |
| for (r = regs; r->type != ARM_CP_SENTINEL; r++) { |
| define_one_arm_cp_reg_with_opaque(cpu, r, opaque); |
| } |
| } |
| |
| const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) |
| { |
| return g_hash_table_lookup(cpregs, &encoded_cp); |
| } |
| |
| void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, |
| uint64_t value) |
| { |
| /* Helper coprocessor write function for write-ignore registers */ |
| } |
| |
| uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) |
| { |
| /* Helper coprocessor write function for read-as-zero registers */ |
| return 0; |
| } |
| |
| void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) |
| { |
| /* Helper coprocessor reset function for do-nothing-on-reset registers */ |
| } |
| |
| static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) |
| { |
| /* Return true if it is not valid for us to switch to |
| * this CPU mode (ie all the UNPREDICTABLE cases in |
| * the ARM ARM CPSRWriteByInstr pseudocode). |
| */ |
| |
| /* Changes to or from Hyp via MSR and CPS are illegal. */ |
| if (write_type == CPSRWriteByInstr && |
| ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || |
| mode == ARM_CPU_MODE_HYP)) { |
| return 1; |
| } |
| |
| switch (mode) { |
| case ARM_CPU_MODE_USR: |
| return 0; |
| case ARM_CPU_MODE_SYS: |
| case ARM_CPU_MODE_SVC: |
| case ARM_CPU_MODE_ABT: |
| case ARM_CPU_MODE_UND: |
| case ARM_CPU_MODE_IRQ: |
| case ARM_CPU_MODE_FIQ: |
| /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 |
| * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) |
| */ |
| /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR |
| * and CPS are treated as illegal mode changes. |
| */ |
| if (write_type == CPSRWriteByInstr && |
| (env->cp15.hcr_el2 & HCR_TGE) && |
| (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && |
| !arm_is_secure_below_el3(env)) { |
| return 1; |
| } |
| return 0; |
| case ARM_CPU_MODE_HYP: |
| return !arm_feature(env, ARM_FEATURE_EL2) |
| || arm_current_el(env) < 2 || arm_is_secure(env); |
| case ARM_CPU_MODE_MON: |
| return arm_current_el(env) < 3; |
| default: |
| return 1; |
| } |
| } |
| |
| uint32_t cpsr_read(CPUARMState *env) |
| { |
| int ZF; |
| ZF = (env->ZF == 0); |
| return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | |
| (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) |
| | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) |
| | ((env->condexec_bits & 0xfc) << 8) |
| | (env->GE << 16) | (env->daif & CPSR_AIF); |
| } |
| |
| void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, |
| CPSRWriteType write_type) |
| { |
| uint32_t changed_daif; |
| |
| if (mask & CPSR_NZCV) { |
| env->ZF = (~val) & CPSR_Z; |
| env->NF = val; |
| env->CF = (val >> 29) & 1; |
| env->VF = (val << 3) & 0x80000000; |
| } |
| if (mask & CPSR_Q) |
| env->QF = ((val & CPSR_Q) != 0); |
| if (mask & CPSR_T) |
| env->thumb = ((val & CPSR_T) != 0); |
| if (mask & CPSR_IT_0_1) { |
| env->condexec_bits &= ~3; |
| env->condexec_bits |= (val >> 25) & 3; |
| } |
| if (mask & CPSR_IT_2_7) { |
| env->condexec_bits &= 3; |
| env->condexec_bits |= (val >> 8) & 0xfc; |
| } |
| if (mask & CPSR_GE) { |
| env->GE = (val >> 16) & 0xf; |
| } |
| |
| /* In a V7 implementation that includes the security extensions but does |
| * not include Virtualization Extensions the SCR.FW and SCR.AW bits control |
| * whether non-secure software is allowed to change the CPSR_F and CPSR_A |
| * bits respectively. |
| * |
| * In a V8 implementation, it is permitted for privileged software to |
| * change the CPSR A/F bits regardless of the SCR.AW/FW bits. |
| */ |
| if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && |
| arm_feature(env, ARM_FEATURE_EL3) && |
| !arm_feature(env, ARM_FEATURE_EL2) && |
| !arm_is_secure(env)) { |
| |
| changed_daif = (env->daif ^ val) & mask; |
| |
| if (changed_daif & CPSR_A) { |
| /* Check to see if we are allowed to change the masking of async |
| * abort exceptions from a non-secure state. |
| */ |
| if (!(env->cp15.scr_el3 & SCR_AW)) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "Ignoring attempt to switch CPSR_A flag from " |
| "non-secure world with SCR.AW bit clear\n"); |
| mask &= ~CPSR_A; |
| } |
| } |
| |
| if (changed_daif & CPSR_F) { |
| /* Check to see if we are allowed to change the masking of FIQ |
| * exceptions from a non-secure state. |
| */ |
| if (!(env->cp15.scr_el3 & SCR_FW)) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "Ignoring attempt to switch CPSR_F flag from " |
| "non-secure world with SCR.FW bit clear\n"); |
| mask &= ~CPSR_F; |
| } |
| |
| /* Check whether non-maskable FIQ (NMFI) support is enabled. |
| * If this bit is set software is not allowed to mask |
| * FIQs, but is allowed to set CPSR_F to 0. |
| */ |
| if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && |
| (val & CPSR_F)) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "Ignoring attempt to enable CPSR_F flag " |
| "(non-maskable FIQ [NMFI] support enabled)\n"); |
| mask &= ~CPSR_F; |
| } |
| } |
| } |
| |
| env->daif &= ~(CPSR_AIF & mask); |
| env->daif |= val & CPSR_AIF & mask; |
| |
| if (write_type != CPSRWriteRaw && |
| ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { |
| if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { |
| /* Note that we can only get here in USR mode if this is a |
| * gdb stub write; for this case we follow the architectural |
| * behaviour for guest writes in USR mode of ignoring an attempt |
| * to switch mode. (Those are caught by translate.c for writes |
| * triggered by guest instructions.) |
| */ |
| mask &= ~CPSR_M; |
| } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { |
| /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in |
| * v7, and has defined behaviour in v8: |
| * + leave CPSR.M untouched |
| * + allow changes to the other CPSR fields |
| * + set PSTATE.IL |
| * For user changes via the GDB stub, we don't set PSTATE.IL, |
| * as this would be unnecessarily harsh for a user error. |
| */ |
| mask &= ~CPSR_M; |
| if (write_type != CPSRWriteByGDBStub && |
| arm_feature(env, ARM_FEATURE_V8)) { |
| mask |= CPSR_IL; |
| val |= CPSR_IL; |
| } |
| } else { |
| switch_mode(env, val & CPSR_M); |
| } |
| } |
| mask &= ~CACHED_CPSR_BITS; |
| env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); |
| } |
| |
| /* Sign/zero extend */ |
| uint32_t HELPER(sxtb16)(uint32_t x) |
| { |
| uint32_t res; |
| res = (uint16_t)(int8_t)x; |
| res |= (uint32_t)(int8_t)(x >> 16) << 16; |
| return res; |
| } |
| |
| uint32_t HELPER(uxtb16)(uint32_t x) |
| { |
| uint32_t res; |
| res = (uint16_t)(uint8_t)x; |
| res |= (uint32_t)(uint8_t)(x >> 16) << 16; |
| return res; |
| } |
| |
| uint32_t HELPER(clz)(uint32_t x) |
| { |
| return clz32(x); |
| } |
| |
| int32_t HELPER(sdiv)(int32_t num, int32_t den) |
| { |
| if (den == 0) |
| return 0; |
| if (num == INT_MIN && den == -1) |
| return INT_MIN; |
| return num / den; |
| } |
| |
| uint32_t HELPER(udiv)(uint32_t num, uint32_t den) |
| { |
| if (den == 0) |
| return 0; |
| return num / den; |
| } |
| |
| uint32_t HELPER(rbit)(uint32_t x) |
| { |
| return revbit32(x); |
| } |
| |
| #if defined(CONFIG_USER_ONLY) |
| |
| /* These should probably raise undefined insn exceptions. */ |
| void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); |
| } |
| |
| uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); |
| return 0; |
| } |
| |
| void switch_mode(CPUARMState *env, int mode) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| if (mode != ARM_CPU_MODE_USR) { |
| cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); |
| } |
| } |
| |
| uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
| uint32_t cur_el, bool secure) |
| { |
| return 1; |
| } |
| |
| void aarch64_sync_64_to_32(CPUARMState *env) |
| { |
| g_assert_not_reached(); |
| } |
| |
| #else |
| |
| void switch_mode(CPUARMState *env, int mode) |
| { |
| int old_mode; |
| int i; |
| |
| old_mode = env->uncached_cpsr & CPSR_M; |
| if (mode == old_mode) |
| return; |
| |
| if (old_mode == ARM_CPU_MODE_FIQ) { |
| memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); |
| memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); |
| } else if (mode == ARM_CPU_MODE_FIQ) { |
| memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); |
| memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); |
| } |
| |
| i = bank_number(old_mode); |
| env->banked_r13[i] = env->regs[13]; |
| env->banked_r14[i] = env->regs[14]; |
| env->banked_spsr[i] = env->spsr; |
| |
| i = bank_number(mode); |
| env->regs[13] = env->banked_r13[i]; |
| env->regs[14] = env->banked_r14[i]; |
| env->spsr = env->banked_spsr[i]; |
| } |
| |
| /* Physical Interrupt Target EL Lookup Table |
| * |
| * [ From ARM ARM section G1.13.4 (Table G1-15) ] |
| * |
| * The below multi-dimensional table is used for looking up the target |
| * exception level given numerous condition criteria. Specifically, the |
| * target EL is based on SCR and HCR routing controls as well as the |
| * currently executing EL and secure state. |
| * |
| * Dimensions: |
| * target_el_table[2][2][2][2][2][4] |
| * | | | | | +--- Current EL |
| * | | | | +------ Non-secure(0)/Secure(1) |
| * | | | +--------- HCR mask override |
| * | | +------------ SCR exec state control |
| * | +--------------- SCR mask override |
| * +------------------ 32-bit(0)/64-bit(1) EL3 |
| * |
| * The table values are as such: |
| * 0-3 = EL0-EL3 |
| * -1 = Cannot occur |
| * |
| * The ARM ARM target EL table includes entries indicating that an "exception |
| * is not taken". The two cases where this is applicable are: |
| * 1) An exception is taken from EL3 but the SCR does not have the exception |
| * routed to EL3. |
| * 2) An exception is taken from EL2 but the HCR does not have the exception |
| * routed to EL2. |
| * In these two cases, the below table contain a target of EL1. This value is |
| * returned as it is expected that the consumer of the table data will check |
| * for "target EL >= current EL" to ensure the exception is not taken. |
| * |
| * SCR HCR |
| * 64 EA AMO From |
| * BIT IRQ IMO Non-secure Secure |
| * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 |
| */ |
| static const int8_t target_el_table[2][2][2][2][2][4] = { |
| {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, |
| {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, |
| {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, |
| {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, |
| {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, |
| {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, |
| {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, |
| {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, |
| {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, |
| {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, |
| {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, |
| {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, |
| {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, |
| {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, |
| {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, |
| {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, |
| }; |
| |
| /* |
| * Determine the target EL for physical exceptions |
| */ |
| uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, |
| uint32_t cur_el, bool secure) |
| { |
| CPUARMState *env = cs->env_ptr; |
| int rw; |
| int scr; |
| int hcr; |
| int target_el; |
| /* Is the highest EL AArch64? */ |
| int is64 = arm_feature(env, ARM_FEATURE_AARCH64); |
| |
| if (arm_feature(env, ARM_FEATURE_EL3)) { |
| rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); |
| } else { |
| /* Either EL2 is the highest EL (and so the EL2 register width |
| * is given by is64); or there is no EL2 or EL3, in which case |
| * the value of 'rw' does not affect the table lookup anyway. |
| */ |
| rw = is64; |
| } |
| |
| switch (excp_idx) { |
| case EXCP_IRQ: |
| scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); |
| hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); |
| break; |
| case EXCP_FIQ: |
| scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); |
| hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); |
| break; |
| default: |
| scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); |
| hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); |
| break; |
| }; |
| |
| /* If HCR.TGE is set then HCR is treated as being 1 */ |
| hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); |
| |
| /* Perform a table-lookup for the target EL given the current state */ |
| target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; |
| |
| assert(target_el > 0); |
| |
| return target_el; |
| } |
| |
| static void v7m_push(CPUARMState *env, uint32_t val) |
| { |
| CPUState *cs = CPU(arm_env_get_cpu(env)); |
| |
| env->regs[13] -= 4; |
| stl_phys(cs->as, env->regs[13], val); |
| } |
| |
| static uint32_t v7m_pop(CPUARMState *env) |
| { |
| CPUState *cs = CPU(arm_env_get_cpu(env)); |
| uint32_t val; |
| |
| val = ldl_phys(cs->as, env->regs[13]); |
| env->regs[13] += 4; |
| return val; |
| } |
| |
| /* Switch to V7M main or process stack pointer. */ |
| static void switch_v7m_sp(CPUARMState *env, int process) |
| { |
| uint32_t tmp; |
| if (env->v7m.current_sp != process) { |
| tmp = env->v7m.other_sp; |
| env->v7m.other_sp = env->regs[13]; |
| env->regs[13] = tmp; |
| env->v7m.current_sp = process; |
| } |
| } |
| |
| static void do_v7m_exception_exit(CPUARMState *env) |
| { |
| uint32_t type; |
| uint32_t xpsr; |
| |
| type = env->regs[15]; |
| if (env->v7m.exception != 0) |
| armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); |
| |
| /* Switch to the target stack. */ |
| switch_v7m_sp(env, (type & 4) != 0); |
| /* Pop registers. */ |
| env->regs[0] = v7m_pop(env); |
| env->regs[1] = v7m_pop(env); |
| env->regs[2] = v7m_pop(env); |
| env->regs[3] = v7m_pop(env); |
| env->regs[12] = v7m_pop(env); |
| env->regs[14] = v7m_pop(env); |
| env->regs[15] = v7m_pop(env); |
| if (env->regs[15] & 1) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "M profile return from interrupt with misaligned " |
| "PC is UNPREDICTABLE\n"); |
| /* Actual hardware seems to ignore the lsbit, and there are several |
| * RTOSes out there which incorrectly assume the r15 in the stack |
| * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value. |
| */ |
| env->regs[15] &= ~1U; |
| } |
| xpsr = v7m_pop(env); |
| xpsr_write(env, xpsr, 0xfffffdff); |
| /* Undo stack alignment. */ |
| if (xpsr & 0x200) |
| env->regs[13] |= 4; |
| /* ??? The exception return type specifies Thread/Handler mode. However |
| this is also implied by the xPSR value. Not sure what to do |
| if there is a mismatch. */ |
| /* ??? Likewise for mismatches between the CONTROL register and the stack |
| pointer. */ |
| } |
| |
| static void arm_log_exception(int idx) |
| { |
| if (qemu_loglevel_mask(CPU_LOG_INT)) { |
| const char *exc = NULL; |
| |
| if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { |
| exc = excnames[idx]; |
| } |
| if (!exc) { |
| exc = "unknown"; |
| } |
| qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); |
| } |
| } |
| |
| void arm_v7m_cpu_do_interrupt(CPUState *cs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| uint32_t xpsr = xpsr_read(env); |
| uint32_t lr; |
| uint32_t addr; |
| |
| arm_log_exception(cs->exception_index); |
| |
| lr = 0xfffffff1; |
| if (env->v7m.current_sp) |
| lr |= 4; |
| if (env->v7m.exception == 0) |
| lr |= 8; |
| |
| /* For exceptions we just mark as pending on the NVIC, and let that |
| handle it. */ |
| /* TODO: Need to escalate if the current priority is higher than the |
| one we're raising. */ |
| switch (cs->exception_index) { |
| case EXCP_UDEF: |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); |
| return; |
| case EXCP_SWI: |
| /* The PC already points to the next instruction. */ |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); |
| return; |
| case EXCP_PREFETCH_ABORT: |
| case EXCP_DATA_ABORT: |
| /* TODO: if we implemented the MPU registers, this is where we |
| * should set the MMFAR, etc from exception.fsr and exception.vaddress. |
| */ |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); |
| return; |
| case EXCP_BKPT: |
| if (semihosting_enabled()) { |
| int nr; |
| nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; |
| if (nr == 0xab) { |
| env->regs[15] += 2; |
| qemu_log_mask(CPU_LOG_INT, |
| "...handling as semihosting call 0x%x\n", |
| env->regs[0]); |
| env->regs[0] = do_arm_semihosting(env); |
| return; |
| } |
| } |
| armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); |
| return; |
| case EXCP_IRQ: |
| env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); |
| break; |
| case EXCP_EXCEPTION_EXIT: |
| do_v7m_exception_exit(env); |
| return; |
| default: |
| cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
| return; /* Never happens. Keep compiler happy. */ |
| } |
| |
| /* Align stack pointer. */ |
| /* ??? Should only do this if Configuration Control Register |
| STACKALIGN bit is set. */ |
| if (env->regs[13] & 4) { |
| env->regs[13] -= 4; |
| xpsr |= 0x200; |
| } |
| /* Switch to the handler mode. */ |
| v7m_push(env, xpsr); |
| v7m_push(env, env->regs[15]); |
| v7m_push(env, env->regs[14]); |
| v7m_push(env, env->regs[12]); |
| v7m_push(env, env->regs[3]); |
| v7m_push(env, env->regs[2]); |
| v7m_push(env, env->regs[1]); |
| v7m_push(env, env->regs[0]); |
| switch_v7m_sp(env, 0); |
| /* Clear IT bits */ |
| env->condexec_bits = 0; |
| env->regs[14] = lr; |
| addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4); |
| env->regs[15] = addr & 0xfffffffe; |
| env->thumb = addr & 1; |
| } |
| |
| /* Function used to synchronize QEMU's AArch64 register set with AArch32 |
| * register set. This is necessary when switching between AArch32 and AArch64 |
| * execution state. |
| */ |
| void aarch64_sync_32_to_64(CPUARMState *env) |
| { |
| int i; |
| uint32_t mode = env->uncached_cpsr & CPSR_M; |
| |
| /* We can blanket copy R[0:7] to X[0:7] */ |
| for (i = 0; i < 8; i++) { |
| env->xregs[i] = env->regs[i]; |
| } |
| |
| /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. |
| * Otherwise, they come from the banked user regs. |
| */ |
| if (mode == ARM_CPU_MODE_FIQ) { |
| for (i = 8; i < 13; i++) { |
| env->xregs[i] = env->usr_regs[i - 8]; |
| } |
| } else { |
| for (i = 8; i < 13; i++) { |
| env->xregs[i] = env->regs[i]; |
| } |
| } |
| |
| /* Registers x13-x23 are the various mode SP and FP registers. Registers |
| * r13 and r14 are only copied if we are in that mode, otherwise we copy |
| * from the mode banked register. |
| */ |
| if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { |
| env->xregs[13] = env->regs[13]; |
| env->xregs[14] = env->regs[14]; |
| } else { |
| env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; |
| /* HYP is an exception in that it is copied from r14 */ |
| if (mode == ARM_CPU_MODE_HYP) { |
| env->xregs[14] = env->regs[14]; |
| } else { |
| env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; |
| } |
| } |
| |
| if (mode == ARM_CPU_MODE_HYP) { |
| env->xregs[15] = env->regs[13]; |
| } else { |
| env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; |
| } |
| |
| if (mode == ARM_CPU_MODE_IRQ) { |
| env->xregs[16] = env->regs[14]; |
| env->xregs[17] = env->regs[13]; |
| } else { |
| env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; |
| env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; |
| } |
| |
| if (mode == ARM_CPU_MODE_SVC) { |
| env->xregs[18] = env->regs[14]; |
| env->xregs[19] = env->regs[13]; |
| } else { |
| env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; |
| env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; |
| } |
| |
| if (mode == ARM_CPU_MODE_ABT) { |
| env->xregs[20] = env->regs[14]; |
| env->xregs[21] = env->regs[13]; |
| } else { |
| env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; |
| env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; |
| } |
| |
| if (mode == ARM_CPU_MODE_UND) { |
| env->xregs[22] = env->regs[14]; |
| env->xregs[23] = env->regs[13]; |
| } else { |
| env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; |
| env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; |
| } |
| |
| /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ |
| * mode, then we can copy from r8-r14. Otherwise, we copy from the |
| * FIQ bank for r8-r14. |
| */ |
| if (mode == ARM_CPU_MODE_FIQ) { |
| for (i = 24; i < 31; i++) { |
| env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ |
| } |
| } else { |
| for (i = 24; i < 29; i++) { |
| env->xregs[i] = env->fiq_regs[i - 24]; |
| } |
| env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; |
| env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; |
| } |
| |
| env->pc = env->regs[15]; |
| } |
| |
| /* Function used to synchronize QEMU's AArch32 register set with AArch64 |
| * register set. This is necessary when switching between AArch32 and AArch64 |
| * execution state. |
| */ |
| void aarch64_sync_64_to_32(CPUARMState *env) |
| { |
| int i; |
| uint32_t mode = env->uncached_cpsr & CPSR_M; |
| |
| /* We can blanket copy X[0:7] to R[0:7] */ |
| for (i = 0; i < 8; i++) { |
| env->regs[i] = env->xregs[i]; |
| } |
| |
| /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. |
| * Otherwise, we copy x8-x12 into the banked user regs. |
| */ |
| if (mode == ARM_CPU_MODE_FIQ) { |
| for (i = 8; i < 13; i++) { |
| env->usr_regs[i - 8] = env->xregs[i]; |
| } |
| } else { |
| for (i = 8; i < 13; i++) { |
| env->regs[i] = env->xregs[i]; |
| } |
| } |
| |
| /* Registers r13 & r14 depend on the current mode. |
| * If we are in a given mode, we copy the corresponding x registers to r13 |
| * and r14. Otherwise, we copy the x register to the banked r13 and r14 |
| * for the mode. |
| */ |
| if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { |
| env->regs[13] = env->xregs[13]; |
| env->regs[14] = env->xregs[14]; |
| } else { |
| env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; |
| |
| /* HYP is an exception in that it does not have its own banked r14 but |
| * shares the USR r14 |
| */ |
| if (mode == ARM_CPU_MODE_HYP) { |
| env->regs[14] = env->xregs[14]; |
| } else { |
| env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; |
| } |
| } |
| |
| if (mode == ARM_CPU_MODE_HYP) { |
| env->regs[13] = env->xregs[15]; |
| } else { |
| env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; |
| } |
| |
| if (mode == ARM_CPU_MODE_IRQ) { |
| env->regs[14] = env->xregs[16]; |
| env->regs[13] = env->xregs[17]; |
| } else { |
| env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; |
| env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; |
| } |
| |
| if (mode == ARM_CPU_MODE_SVC) { |
| env->regs[14] = env->xregs[18]; |
| env->regs[13] = env->xregs[19]; |
| } else { |
| env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; |
| env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; |
| } |
| |
| if (mode == ARM_CPU_MODE_ABT) { |
| env->regs[14] = env->xregs[20]; |
| env->regs[13] = env->xregs[21]; |
| } else { |
| env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; |
| env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; |
| } |
| |
| if (mode == ARM_CPU_MODE_UND) { |
| env->regs[14] = env->xregs[22]; |
| env->regs[13] = env->xregs[23]; |
| } else { |
| env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; |
| env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; |
| } |
| |
| /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ |
| * mode, then we can copy to r8-r14. Otherwise, we copy to the |
| * FIQ bank for r8-r14. |
| */ |
| if (mode == ARM_CPU_MODE_FIQ) { |
| for (i = 24; i < 31; i++) { |
| env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ |
| } |
| } else { |
| for (i = 24; i < 29; i++) { |
| env->fiq_regs[i - 24] = env->xregs[i]; |
| } |
| env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; |
| env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; |
| } |
| |
| env->regs[15] = env->pc; |
| } |
| |
| static void arm_cpu_do_interrupt_aarch32(CPUState *cs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| uint32_t addr; |
| uint32_t mask; |
| int new_mode; |
| uint32_t offset; |
| uint32_t moe; |
| |
| /* If this is a debug exception we must update the DBGDSCR.MOE bits */ |
| switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { |
| case EC_BREAKPOINT: |
| case EC_BREAKPOINT_SAME_EL: |
| moe = 1; |
| break; |
| case EC_WATCHPOINT: |
| case EC_WATCHPOINT_SAME_EL: |
| moe = 10; |
| break; |
| case EC_AA32_BKPT: |
| moe = 3; |
| break; |
| case EC_VECTORCATCH: |
| moe = 5; |
| break; |
| default: |
| moe = 0; |
| break; |
| } |
| |
| if (moe) { |
| env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); |
| } |
| |
| /* TODO: Vectored interrupt controller. */ |
| switch (cs->exception_index) { |
| case EXCP_UDEF: |
| new_mode = ARM_CPU_MODE_UND; |
| addr = 0x04; |
| mask = CPSR_I; |
| if (env->thumb) |
| offset = 2; |
| else |
| offset = 4; |
| break; |
| case EXCP_SWI: |
| new_mode = ARM_CPU_MODE_SVC; |
| addr = 0x08; |
| mask = CPSR_I; |
| /* The PC already points to the next instruction. */ |
| offset = 0; |
| break; |
| case EXCP_BKPT: |
| env->exception.fsr = 2; |
| /* Fall through to prefetch abort. */ |
| case EXCP_PREFETCH_ABORT: |
| A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); |
| A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); |
| qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", |
| env->exception.fsr, (uint32_t)env->exception.vaddress); |
| new_mode = ARM_CPU_MODE_ABT; |
| addr = 0x0c; |
| mask = CPSR_A | CPSR_I; |
| offset = 4; |
| break; |
| case EXCP_DATA_ABORT: |
| A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); |
| A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); |
| qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", |
| env->exception.fsr, |
| (uint32_t)env->exception.vaddress); |
| new_mode = ARM_CPU_MODE_ABT; |
| addr = 0x10; |
| mask = CPSR_A | CPSR_I; |
| offset = 8; |
| break; |
| case EXCP_IRQ: |
| new_mode = ARM_CPU_MODE_IRQ; |
| addr = 0x18; |
| /* Disable IRQ and imprecise data aborts. */ |
| mask = CPSR_A | CPSR_I; |
| offset = 4; |
| if (env->cp15.scr_el3 & SCR_IRQ) { |
| /* IRQ routed to monitor mode */ |
| new_mode = ARM_CPU_MODE_MON; |
| mask |= CPSR_F; |
| } |
| break; |
| case EXCP_FIQ: |
| new_mode = ARM_CPU_MODE_FIQ; |
| addr = 0x1c; |
| /* Disable FIQ, IRQ and imprecise data aborts. */ |
| mask = CPSR_A | CPSR_I | CPSR_F; |
| if (env->cp15.scr_el3 & SCR_FIQ) { |
| /* FIQ routed to monitor mode */ |
| new_mode = ARM_CPU_MODE_MON; |
| } |
| offset = 4; |
| break; |
| case EXCP_SMC: |
| new_mode = ARM_CPU_MODE_MON; |
| addr = 0x08; |
| mask = CPSR_A | CPSR_I | CPSR_F; |
| offset = 0; |
| break; |
| default: |
| cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
| return; /* Never happens. Keep compiler happy. */ |
| } |
| |
| if (new_mode == ARM_CPU_MODE_MON) { |
| addr += env->cp15.mvbar; |
| } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { |
| /* High vectors. When enabled, base address cannot be remapped. */ |
| addr += 0xffff0000; |
| } else { |
| /* ARM v7 architectures provide a vector base address register to remap |
| * the interrupt vector table. |
| * This register is only followed in non-monitor mode, and is banked. |
| * Note: only bits 31:5 are valid. |
| */ |
| addr += A32_BANKED_CURRENT_REG_GET(env, vbar); |
| } |
| |
| if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { |
| env->cp15.scr_el3 &= ~SCR_NS; |
| } |
| |
| switch_mode (env, new_mode); |
| /* For exceptions taken to AArch32 we must clear the SS bit in both |
| * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. |
| */ |
| env->uncached_cpsr &= ~PSTATE_SS; |
| env->spsr = cpsr_read(env); |
| /* Clear IT bits. */ |
| env->condexec_bits = 0; |
| /* Switch to the new mode, and to the correct instruction set. */ |
| env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; |
| /* Set new mode endianness */ |
| env->uncached_cpsr &= ~CPSR_E; |
| if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { |
| env->uncached_cpsr |= ~CPSR_E; |
| } |
| env->daif |= mask; |
| /* this is a lie, as the was no c1_sys on V4T/V5, but who cares |
| * and we should just guard the thumb mode on V4 */ |
| if (arm_feature(env, ARM_FEATURE_V4T)) { |
| env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; |
| } |
| env->regs[14] = env->regs[15] + offset; |
| env->regs[15] = addr; |
| } |
| |
| /* Handle exception entry to a target EL which is using AArch64 */ |
| static void arm_cpu_do_interrupt_aarch64(CPUState *cs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| unsigned int new_el = env->exception.target_el; |
| target_ulong addr = env->cp15.vbar_el[new_el]; |
| unsigned int new_mode = aarch64_pstate_mode(new_el, true); |
| |
| if (arm_current_el(env) < new_el) { |
| /* Entry vector offset depends on whether the implemented EL |
| * immediately lower than the target level is using AArch32 or AArch64 |
| */ |
| bool is_aa64; |
| |
| switch (new_el) { |
| case 3: |
| is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; |
| break; |
| case 2: |
| is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; |
| break; |
| case 1: |
| is_aa64 = is_a64(env); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (is_aa64) { |
| addr += 0x400; |
| } else { |
| addr += 0x600; |
| } |
| } else if (pstate_read(env) & PSTATE_SP) { |
| addr += 0x200; |
| } |
| |
| switch (cs->exception_index) { |
| case EXCP_PREFETCH_ABORT: |
| case EXCP_DATA_ABORT: |
| env->cp15.far_el[new_el] = env->exception.vaddress; |
| qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", |
| env->cp15.far_el[new_el]); |
| /* fall through */ |
| case EXCP_BKPT: |
| case EXCP_UDEF: |
| case EXCP_SWI: |
| case EXCP_HVC: |
| case EXCP_HYP_TRAP: |
| case EXCP_SMC: |
| env->cp15.esr_el[new_el] = env->exception.syndrome; |
| break; |
| case EXCP_IRQ: |
| case EXCP_VIRQ: |
| addr += 0x80; |
| break; |
| case EXCP_FIQ: |
| case EXCP_VFIQ: |
| addr += 0x100; |
| break; |
| case EXCP_SEMIHOST: |
| qemu_log_mask(CPU_LOG_INT, |
| "...handling as semihosting call 0x%" PRIx64 "\n", |
| env->xregs[0]); |
| env->xregs[0] = do_arm_semihosting(env); |
| return; |
| default: |
| cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
| } |
| |
| if (is_a64(env)) { |
| env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); |
| aarch64_save_sp(env, arm_current_el(env)); |
| env->elr_el[new_el] = env->pc; |
| } else { |
| env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); |
| env->elr_el[new_el] = env->regs[15]; |
| |
| aarch64_sync_32_to_64(env); |
| |
| env->condexec_bits = 0; |
| } |
| qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", |
| env->elr_el[new_el]); |
| |
| pstate_write(env, PSTATE_DAIF | new_mode); |
| env->aarch64 = 1; |
| aarch64_restore_sp(env, new_el); |
| |
| env->pc = addr; |
| |
| qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", |
| new_el, env->pc, pstate_read(env)); |
| } |
| |
| static inline bool check_for_semihosting(CPUState *cs) |
| { |
| /* Check whether this exception is a semihosting call; if so |
| * then handle it and return true; otherwise return false. |
| */ |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| |
| if (is_a64(env)) { |
| if (cs->exception_index == EXCP_SEMIHOST) { |
| /* This is always the 64-bit semihosting exception. |
| * The "is this usermode" and "is semihosting enabled" |
| * checks have been done at translate time. |
| */ |
| qemu_log_mask(CPU_LOG_INT, |
| "...handling as semihosting call 0x%" PRIx64 "\n", |
| env->xregs[0]); |
| env->xregs[0] = do_arm_semihosting(env); |
| return true; |
| } |
| return false; |
| } else { |
| uint32_t imm; |
| |
| /* Only intercept calls from privileged modes, to provide some |
| * semblance of security. |
| */ |
| if (!semihosting_enabled() || |
| ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR)) { |
| return false; |
| } |
| |
| switch (cs->exception_index) { |
| case EXCP_SWI: |
| /* Check for semihosting interrupt. */ |
| if (env->thumb) { |
| imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) |
| & 0xff; |
| if (imm == 0xab) { |
| break; |
| } |
| } else { |
| imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) |
| & 0xffffff; |
| if (imm == 0x123456) { |
| break; |
| } |
| } |
| return false; |
| case EXCP_BKPT: |
| /* See if this is a semihosting syscall. */ |
| if (env->thumb) { |
| imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) |
| & 0xff; |
| if (imm == 0xab) { |
| env->regs[15] += 2; |
| break; |
| } |
| } |
| return false; |
| default: |
| return false; |
| } |
| |
| qemu_log_mask(CPU_LOG_INT, |
| "...handling as semihosting call 0x%x\n", |
| env->regs[0]); |
| env->regs[0] = do_arm_semihosting(env); |
| return true; |
| } |
| } |
| |
| /* Handle a CPU exception for A and R profile CPUs. |
| * Do any appropriate logging, handle PSCI calls, and then hand off |
| * to the AArch64-entry or AArch32-entry function depending on the |
| * target exception level's register width. |
| */ |
| void arm_cpu_do_interrupt(CPUState *cs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| unsigned int new_el = env->exception.target_el; |
| |
| assert(!IS_M(env)); |
| |
| arm_log_exception(cs->exception_index); |
| qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), |
| new_el); |
| if (qemu_loglevel_mask(CPU_LOG_INT) |
| && !excp_is_internal(cs->exception_index)) { |
| qemu_log_mask(CPU_LOG_INT, "...with ESR %x/0x%" PRIx32 "\n", |
| env->exception.syndrome >> ARM_EL_EC_SHIFT, |
| env->exception.syndrome); |
| } |
| |
| if (arm_is_psci_call(cpu, cs->exception_index)) { |
| arm_handle_psci_call(cpu); |
| qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); |
| return; |
| } |
| |
| /* Semihosting semantics depend on the register width of the |
| * code that caused the exception, not the target exception level, |
| * so must be handled here. |
| */ |
| if (check_for_semihosting(cs)) { |
| return; |
| } |
| |
| assert(!excp_is_internal(cs->exception_index)); |
| if (arm_el_is_aa64(env, new_el)) { |
| arm_cpu_do_interrupt_aarch64(cs); |
| } else { |
| arm_cpu_do_interrupt_aarch32(cs); |
| } |
| |
| arm_call_el_change_hook(cpu); |
| |
| if (!kvm_enabled()) { |
| cs->interrupt_request |= CPU_INTERRUPT_EXITTB; |
| } |
| } |
| |
| /* Return the exception level which controls this address translation regime */ |
| static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) |
| { |
| switch (mmu_idx) { |
| case ARMMMUIdx_S2NS: |
| case ARMMMUIdx_S1E2: |
| return 2; |
| case ARMMMUIdx_S1E3: |
| return 3; |
| case ARMMMUIdx_S1SE0: |
| return arm_el_is_aa64(env, 3) ? 1 : 3; |
| case ARMMMUIdx_S1SE1: |
| case ARMMMUIdx_S1NSE0: |
| case ARMMMUIdx_S1NSE1: |
| return 1; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* Return true if this address translation regime is secure */ |
| static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx) |
| { |
| switch (mmu_idx) { |
| case ARMMMUIdx_S12NSE0: |
| case ARMMMUIdx_S12NSE1: |
| case ARMMMUIdx_S1NSE0: |
| case ARMMMUIdx_S1NSE1: |
| case ARMMMUIdx_S1E2: |
| case ARMMMUIdx_S2NS: |
| return false; |
| case ARMMMUIdx_S1E3: |
| case ARMMMUIdx_S1SE0: |
| case ARMMMUIdx_S1SE1: |
| return true; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* Return the SCTLR value which controls this address translation regime */ |
| static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) |
| { |
| return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; |
| } |
| |
| /* Return true if the specified stage of address translation is disabled */ |
| static inline bool regime_translation_disabled(CPUARMState *env, |
| ARMMMUIdx mmu_idx) |
| { |
| if (mmu_idx == ARMMMUIdx_S2NS) { |
| return (env->cp15.hcr_el2 & HCR_VM) == 0; |
| } |
| return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; |
| } |
| |
| static inline bool regime_translation_big_endian(CPUARMState *env, |
| ARMMMUIdx mmu_idx) |
| { |
| return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; |
| } |
| |
| /* Return the TCR controlling this translation regime */ |
| static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) |
| { |
| if (mmu_idx == ARMMMUIdx_S2NS) { |
| return &env->cp15.vtcr_el2; |
| } |
| return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; |
| } |
| |
| /* Return the TTBR associated with this translation regime */ |
| static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, |
| int ttbrn) |
| { |
| if (mmu_idx == ARMMMUIdx_S2NS) { |
| return env->cp15.vttbr_el2; |
| } |
| if (ttbrn == 0) { |
| return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; |
| } else { |
| return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; |
| } |
| } |
| |
| /* Return true if the translation regime is using LPAE format page tables */ |
| static inline bool regime_using_lpae_format(CPUARMState *env, |
| ARMMMUIdx mmu_idx) |
| { |
| int el = regime_el(env, mmu_idx); |
| if (el == 2 || arm_el_is_aa64(env, el)) { |
| return true; |
| } |
| if (arm_feature(env, ARM_FEATURE_LPAE) |
| && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { |
| return true; |
| } |
| return false; |
| } |
| |
| /* Returns true if the stage 1 translation regime is using LPAE format page |
| * tables. Used when raising alignment exceptions, whose FSR changes depending |
| * on whether the long or short descriptor format is in use. */ |
| bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) |
| { |
| if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { |
| mmu_idx += ARMMMUIdx_S1NSE0; |
| } |
| |
| return regime_using_lpae_format(env, mmu_idx); |
| } |
| |
| static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) |
| { |
| switch (mmu_idx) { |
| case ARMMMUIdx_S1SE0: |
| case ARMMMUIdx_S1NSE0: |
| return true; |
| default: |
| return false; |
| case ARMMMUIdx_S12NSE0: |
| case ARMMMUIdx_S12NSE1: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* Translate section/page access permissions to page |
| * R/W protection flags |
| * |
| * @env: CPUARMState |
| * @mmu_idx: MMU index indicating required translation regime |
| * @ap: The 3-bit access permissions (AP[2:0]) |
| * @domain_prot: The 2-bit domain access permissions |
| */ |
| static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, |
| int ap, int domain_prot) |
| { |
| bool is_user = regime_is_user(env, mmu_idx); |
| |
| if (domain_prot == 3) { |
| return PAGE_READ | PAGE_WRITE; |
| } |
| |
| switch (ap) { |
| case 0: |
| if (arm_feature(env, ARM_FEATURE_V7)) { |
| return 0; |
| } |
| switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { |
| case SCTLR_S: |
| return is_user ? 0 : PAGE_READ; |
| case SCTLR_R: |
| return PAGE_READ; |
| default: |
| return 0; |
| } |
| case 1: |
| return is_user ? 0 : PAGE_READ | PAGE_WRITE; |
| case 2: |
| if (is_user) { |
| return PAGE_READ; |
| } else { |
| return PAGE_READ | PAGE_WRITE; |
| } |
| case 3: |
| return PAGE_READ | PAGE_WRITE; |
| case 4: /* Reserved. */ |
| return 0; |
| case 5: |
| return is_user ? 0 : PAGE_READ; |
| case 6: |
| return PAGE_READ; |
| case 7: |
| if (!arm_feature(env, ARM_FEATURE_V6K)) { |
| return 0; |
| } |
| return PAGE_READ; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* Translate section/page access permissions to page |
| * R/W protection flags. |
| * |
| * @ap: The 2-bit simple AP (AP[2:1]) |
| * @is_user: TRUE if accessing from PL0 |
| */ |
| static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) |
| { |
| switch (ap) { |
| case 0: |
| return is_user ? 0 : PAGE_READ | PAGE_WRITE; |
| case 1: |
| return PAGE_READ | PAGE_WRITE; |
| case 2: |
| return is_user ? 0 : PAGE_READ; |
| case 3: |
| return PAGE_READ; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static inline int |
| simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) |
| { |
| return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); |
| } |
| |
| /* Translate S2 section/page access permissions to protection flags |
| * |
| * @env: CPUARMState |
| * @s2ap: The 2-bit stage2 access permissions (S2AP) |
| * @xn: XN (execute-never) bit |
| */ |
| static int get_S2prot(CPUARMState *env, int s2ap, int xn) |
| { |
| int prot = 0; |
| |
| if (s2ap & 1) { |
| prot |= PAGE_READ; |
| } |
| if (s2ap & 2) { |
| prot |= PAGE_WRITE; |
| } |
| if (!xn) { |
| if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { |
| prot |= PAGE_EXEC; |
| } |
| } |
| return prot; |
| } |
| |
| /* Translate section/page access permissions to protection flags |
| * |
| * @env: CPUARMState |
| * @mmu_idx: MMU index indicating required translation regime |
| * @is_aa64: TRUE if AArch64 |
| * @ap: The 2-bit simple AP (AP[2:1]) |
| * @ns: NS (non-secure) bit |
| * @xn: XN (execute-never) bit |
| * @pxn: PXN (privileged execute-never) bit |
| */ |
| static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, |
| int ap, int ns, int xn, int pxn) |
| { |
| bool is_user = regime_is_user(env, mmu_idx); |
| int prot_rw, user_rw; |
| bool have_wxn; |
| int wxn = 0; |
| |
| assert(mmu_idx != ARMMMUIdx_S2NS); |
| |
| user_rw = simple_ap_to_rw_prot_is_user(ap, true); |
| if (is_user) { |
| prot_rw = user_rw; |
| } else { |
| prot_rw = simple_ap_to_rw_prot_is_user(ap, false); |
| } |
| |
| if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { |
| return prot_rw; |
| } |
| |
| /* TODO have_wxn should be replaced with |
| * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) |
| * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE |
| * compatible processors have EL2, which is required for [U]WXN. |
| */ |
| have_wxn = arm_feature(env, ARM_FEATURE_LPAE); |
| |
| if (have_wxn) { |
| wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; |
| } |
| |
| if (is_aa64) { |
| switch (regime_el(env, mmu_idx)) { |
| case 1: |
| if (!is_user) { |
| xn = pxn || (user_rw & PAGE_WRITE); |
| } |
| break; |
| case 2: |
| case 3: |
| break; |
| } |
| } else if (arm_feature(env, ARM_FEATURE_V7)) { |
| switch (regime_el(env, mmu_idx)) { |
| case 1: |
| case 3: |
| if (is_user) { |
| xn = xn || !(user_rw & PAGE_READ); |
| } else { |
| int uwxn = 0; |
| if (have_wxn) { |
| uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; |
| } |
| xn = xn || !(prot_rw & PAGE_READ) || pxn || |
| (uwxn && (user_rw & PAGE_WRITE)); |
| } |
| break; |
| case 2: |
| break; |
| } |
| } else { |
| xn = wxn = 0; |
| } |
| |
| if (xn || (wxn && (prot_rw & PAGE_WRITE))) { |
| return prot_rw; |
| } |
| return prot_rw | PAGE_EXEC; |
| } |
| |
| static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, |
| uint32_t *table, uint32_t address) |
| { |
| /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ |
| TCR *tcr = regime_tcr(env, mmu_idx); |
| |
| if (address & tcr->mask) { |
| if (tcr->raw_tcr & TTBCR_PD1) { |
| /* Translation table walk disabled for TTBR1 */ |
| return false; |
| } |
| *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; |
| } else { |
| if (tcr->raw_tcr & TTBCR_PD0) { |
| /* Translation table walk disabled for TTBR0 */ |
| return false; |
| } |
| *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; |
| } |
| *table |= (address >> 18) & 0x3ffc; |
| return true; |
| } |
| |
| /* Translate a S1 pagetable walk through S2 if needed. */ |
| static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, |
| hwaddr addr, MemTxAttrs txattrs, |
| uint32_t *fsr, |
| ARMMMUFaultInfo *fi) |
| { |
| if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && |
| !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { |
| target_ulong s2size; |
| hwaddr s2pa; |
| int s2prot; |
| int ret; |
| |
| ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, |
| &txattrs, &s2prot, &s2size, fsr, fi); |
| if (ret) { |
| fi->s2addr = addr; |
| fi->stage2 = true; |
| fi->s1ptw = true; |
| return ~0; |
| } |
| addr = s2pa; |
| } |
| return addr; |
| } |
| |
| /* All loads done in the course of a page table walk go through here. |
| * TODO: rather than ignoring errors from physical memory reads (which |
| * are external aborts in ARM terminology) we should propagate this |
| * error out so that we can turn it into a Data Abort if this walk |
| * was being done for a CPU load/store or an address translation instruction |
| * (but not if it was for a debug access). |
| */ |
| static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, |
| ARMMMUIdx mmu_idx, uint32_t *fsr, |
| ARMMMUFaultInfo *fi) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| MemTxAttrs attrs = {}; |
| AddressSpace *as; |
| |
| attrs.secure = is_secure; |
| as = arm_addressspace(cs, attrs); |
| addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi); |
| if (fi->s1ptw) { |
| return 0; |
| } |
| if (regime_translation_big_endian(env, mmu_idx)) { |
| return address_space_ldl_be(as, addr, attrs, NULL); |
| } else { |
| return address_space_ldl_le(as, addr, attrs, NULL); |
| } |
| } |
| |
| static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, |
| ARMMMUIdx mmu_idx, uint32_t *fsr, |
| ARMMMUFaultInfo *fi) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| MemTxAttrs attrs = {}; |
| AddressSpace *as; |
| |
| attrs.secure = is_secure; |
| as = arm_addressspace(cs, attrs); |
| addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi); |
| if (fi->s1ptw) { |
| return 0; |
| } |
| if (regime_translation_big_endian(env, mmu_idx)) { |
| return address_space_ldq_be(as, addr, attrs, NULL); |
| } else { |
| return address_space_ldq_le(as, addr, attrs, NULL); |
| } |
| } |
| |
| static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, |
| int access_type, ARMMMUIdx mmu_idx, |
| hwaddr *phys_ptr, int *prot, |
| target_ulong *page_size, uint32_t *fsr, |
| ARMMMUFaultInfo *fi) |
| { |
| CPUState *cs = CPU(arm_env_get_cpu(env)); |
| int code; |
| uint32_t table; |
| uint32_t desc; |
| int type; |
| int ap; |
| int domain = 0; |
| int domain_prot; |
| hwaddr phys_addr; |
| uint32_t dacr; |
| |
| /* Pagetable walk. */ |
| /* Lookup l1 descriptor. */ |
| if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
| /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
| code = 5; |
| goto do_fault; |
| } |
| desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
| mmu_idx, fsr, fi); |
| type = (desc & 3); |
| domain = (desc >> 5) & 0x0f; |
| if (regime_el(env, mmu_idx) == 1) { |
| dacr = env->cp15.dacr_ns; |
| } else { |
| dacr = env->cp15.dacr_s; |
| } |
| domain_prot = (dacr >> (domain * 2)) & 3; |
| if (type == 0) { |
| /* Section translation fault. */ |
| code = 5; |
| goto do_fault; |
| } |
| if (domain_prot == 0 || domain_prot == 2) { |
| if (type == 2) |
| code = 9; /* Section domain fault. */ |
| else |
| code = 11; /* Page domain fault. */ |
| goto do_fault; |
| } |
| if (type == 2) { |
| /* 1Mb section. */ |
| phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); |
| ap = (desc >> 10) & 3; |
| code = 13; |
| *page_size = 1024 * 1024; |
| } else { |
| /* Lookup l2 entry. */ |
| if (type == 1) { |
| /* Coarse pagetable. */ |
| table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); |
| } else { |
| /* Fine pagetable. */ |
| table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); |
| } |
| desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
| mmu_idx, fsr, fi); |
| switch (desc & 3) { |
| case 0: /* Page translation fault. */ |
| code = 7; |
| goto do_fault; |
| case 1: /* 64k page. */ |
| phys_addr = (desc & 0xffff0000) | (address & 0xffff); |
| ap = (desc >> (4 + ((address >> 13) & 6))) & 3; |
| *page_size = 0x10000; |
| break; |
| case 2: /* 4k page. */ |
| phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
| ap = (desc >> (4 + ((address >> 9) & 6))) & 3; |
| *page_size = 0x1000; |
| break; |
| case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ |
| if (type == 1) { |
| /* ARMv6/XScale extended small page format */ |
| if (arm_feature(env, ARM_FEATURE_XSCALE) |
| || arm_feature(env, ARM_FEATURE_V6)) { |
| phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
| *page_size = 0x1000; |
| } else { |
| /* UNPREDICTABLE in ARMv5; we choose to take a |
| * page translation fault. |
| */ |
| code = 7; |
| goto do_fault; |
| } |
| } else { |
| phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); |
| *page_size = 0x400; |
| } |
| ap = (desc >> 4) & 3; |
| break; |
| default: |
| /* Never happens, but compiler isn't smart enough to tell. */ |
| abort(); |
| } |
| code = 15; |
| } |
| *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); |
| *prot |= *prot ? PAGE_EXEC : 0; |
| if (!(*prot & (1 << access_type))) { |
| /* Access permission fault. */ |
| goto do_fault; |
| } |
| *phys_ptr = phys_addr; |
| return false; |
| do_fault: |
| *fsr = code | (domain << 4); |
| return true; |
| } |
| |
| static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, |
| int access_type, ARMMMUIdx mmu_idx, |
| hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, |
| target_ulong *page_size, uint32_t *fsr, |
| ARMMMUFaultInfo *fi) |
| { |
| CPUState *cs = CPU(arm_env_get_cpu(env)); |
| int code; |
| uint32_t table; |
| uint32_t desc; |
| uint32_t xn; |
| uint32_t pxn = 0; |
| int type; |
| int ap; |
| int domain = 0; |
| int domain_prot; |
| hwaddr phys_addr; |
| uint32_t dacr; |
| bool ns; |
| |
| /* Pagetable walk. */ |
| /* Lookup l1 descriptor. */ |
| if (!get_level1_table_address(env, mmu_idx, &table, address)) { |
| /* Section translation fault if page walk is disabled by PD0 or PD1 */ |
| code = 5; |
| goto do_fault; |
| } |
| desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
| mmu_idx, fsr, fi); |
| type = (desc & 3); |
| if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { |
| /* Section translation fault, or attempt to use the encoding |
| * which is Reserved on implementations without PXN. |
| */ |
| code = 5; |
| goto do_fault; |
| } |
| if ((type == 1) || !(desc & (1 << 18))) { |
| /* Page or Section. */ |
| domain = (desc >> 5) & 0x0f; |
| } |
| if (regime_el(env, mmu_idx) == 1) { |
| dacr = env->cp15.dacr_ns; |
| } else { |
| dacr = env->cp15.dacr_s; |
| } |
| domain_prot = (dacr >> (domain * 2)) & 3; |
| if (domain_prot == 0 || domain_prot == 2) { |
| if (type != 1) { |
| code = 9; /* Section domain fault. */ |
| } else { |
| code = 11; /* Page domain fault. */ |
| } |
| goto do_fault; |
| } |
| if (type != 1) { |
| if (desc & (1 << 18)) { |
| /* Supersection. */ |
| phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); |
| phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; |
| phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; |
| *page_size = 0x1000000; |
| } else { |
| /* Section. */ |
| phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); |
| *page_size = 0x100000; |
| } |
| ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); |
| xn = desc & (1 << 4); |
| pxn = desc & 1; |
| code = 13; |
| ns = extract32(desc, 19, 1); |
| } else { |
| if (arm_feature(env, ARM_FEATURE_PXN)) { |
| pxn = (desc >> 2) & 1; |
| } |
| ns = extract32(desc, 3, 1); |
| /* Lookup l2 entry. */ |
| table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); |
| desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), |
| mmu_idx, fsr, fi); |
| ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); |
| switch (desc & 3) { |
| case 0: /* Page translation fault. */ |
| code = 7; |
| goto do_fault; |
| case 1: /* 64k page. */ |
| phys_addr = (desc & 0xffff0000) | (address & 0xffff); |
| xn = desc & (1 << 15); |
| *page_size = 0x10000; |
| break; |
| case 2: case 3: /* 4k page. */ |
| phys_addr = (desc & 0xfffff000) | (address & 0xfff); |
| xn = desc & 1; |
| *page_size = 0x1000; |
| break; |
| default: |
| /* Never happens, but compiler isn't smart enough to tell. */ |
| abort(); |
| } |
| code = 15; |
| } |
| if (domain_prot == 3) { |
| *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| } else { |
| if (pxn && !regime_is_user(env, mmu_idx)) { |
| xn = 1; |
| } |
| if (xn && access_type == 2) |
| goto do_fault; |
| |
| if (arm_feature(env, ARM_FEATURE_V6K) && |
| (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { |
| /* The simplified model uses AP[0] as an access control bit. */ |
| if ((ap & 1) == 0) { |
| /* Access flag fault. */ |
| code = (code == 15) ? 6 : 3; |
| goto do_fault; |
| } |
| *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); |
| } else { |
| *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); |
| } |
| if (*prot && !xn) { |
| *prot |= PAGE_EXEC; |
| } |
| if (!(*prot & (1 << access_type))) { |
| /* Access permission fault. */ |
| goto do_fault; |
| } |
| } |
| if (ns) { |
| /* The NS bit will (as required by the architecture) have no effect if |
| * the CPU doesn't support TZ or this is a non-secure translation |
| * regime, because the attribute will already be non-secure. |
| */ |
| attrs->secure = false; |
| } |
| *phys_ptr = phys_addr; |
| return false; |
| do_fault: |
| *fsr = code | (domain << 4); |
| return true; |
| } |
| |
| /* Fault type for long-descriptor MMU fault reporting; this corresponds |
| * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. |
| */ |
| typedef enum { |
| translation_fault = 1, |
| access_fault = 2, |
| permission_fault = 3, |
| } MMUFaultType; |
| |
| /* |
| * check_s2_mmu_setup |
| * @cpu: ARMCPU |
| * @is_aa64: True if the translation regime is in AArch64 state |
| * @startlevel: Suggested starting level |
| * @inputsize: Bitsize of IPAs |
| * @stride: Page-table stride (See the ARM ARM) |
| * |
| * Returns true if the suggested S2 translation parameters are OK and |
| * false otherwise. |
| */ |
| static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, |
| int inputsize, int stride) |
| { |
| const int grainsize = stride + 3; |
| int startsizecheck; |
| |
| /* Negative levels are never allowed. */ |
| if (level < 0) { |
| return false; |
| } |
| |
| startsizecheck = inputsize - ((3 - level) * stride + grainsize); |
| if (startsizecheck < 1 || startsizecheck > stride + 4) { |
| return false; |
| } |
| |
| if (is_aa64) { |
| CPUARMState *env = &cpu->env; |
| unsigned int pamax = arm_pamax(cpu); |
| |
| switch (stride) { |
| case 13: /* 64KB Pages. */ |
| if (level == 0 || (level == 1 && pamax <= 42)) { |
| return false; |
| } |
| break; |
| case 11: /* 16KB Pages. */ |
| if (level == 0 || (level == 1 && pamax <= 40)) { |
| return false; |
| } |
| break; |
| case 9: /* 4KB Pages. */ |
| if (level == 0 && pamax <= 42) { |
| return false; |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| /* Inputsize checks. */ |
| if (inputsize > pamax && |
| (arm_el_is_aa64(env, 1) || inputsize > 40)) { |
| /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ |
| return false; |
| } |
| } else { |
| /* AArch32 only supports 4KB pages. Assert on that. */ |
| assert(stride == 9); |
| |
| if (level == 0) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, |
| int access_type, ARMMMUIdx mmu_idx, |
| hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, |
| target_ulong *page_size_ptr, uint32_t *fsr, |
| ARMMMUFaultInfo *fi) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| CPUState *cs = CPU(cpu); |
| /* Read an LPAE long-descriptor translation table. */ |
| MMUFaultType fault_type = translation_fault; |
| uint32_t level; |
| uint32_t epd = 0; |
| int32_t t0sz, t1sz; |
| uint32_t tg; |
| uint64_t ttbr; |
| int ttbr_select; |
| hwaddr descaddr, indexmask, indexmask_grainsize; |
| uint32_t tableattrs; |
| target_ulong page_size; |
| uint32_t attrs; |
| int32_t stride = 9; |
| int32_t addrsize; |
| int inputsize; |
| int32_t tbi = 0; |
| TCR *tcr = regime_tcr(env, mmu_idx); |
| int ap, ns, xn, pxn; |
| uint32_t el = regime_el(env, mmu_idx); |
| bool ttbr1_valid = true; |
| uint64_t descaddrmask; |
| bool aarch64 = arm_el_is_aa64(env, el); |
| |
| /* TODO: |
| * This code does not handle the different format TCR for VTCR_EL2. |
| * This code also does not support shareability levels. |
| * Attribute and permission bit handling should also be checked when adding |
| * support for those page table walks. |
| */ |
| if (aarch64) { |
| level = 0; |
| addrsize = 64; |
| if (el > 1) { |
| if (mmu_idx != ARMMMUIdx_S2NS) { |
| tbi = extract64(tcr->raw_tcr, 20, 1); |
| } |
| } else { |
| if (extract64(address, 55, 1)) { |
| tbi = extract64(tcr->raw_tcr, 38, 1); |
| } else { |
| tbi = extract64(tcr->raw_tcr, 37, 1); |
| } |
| } |
| tbi *= 8; |
| |
| /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it |
| * invalid. |
| */ |
| if (el > 1) { |
| ttbr1_valid = false; |
| } |
| } else { |
| level = 1; |
| addrsize = 32; |
| /* There is no TTBR1 for EL2 */ |
| if (el == 2) { |
| ttbr1_valid = false; |
| } |
| } |
| |
| /* Determine whether this address is in the region controlled by |
| * TTBR0 or TTBR1 (or if it is in neither region and should fault). |
| * This is a Non-secure PL0/1 stage 1 translation, so controlled by |
| * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: |
| */ |
| if (aarch64) { |
| /* AArch64 translation. */ |
| t0sz = extract32(tcr->raw_tcr, 0, 6); |
| t0sz = MIN(t0sz, 39); |
| t0sz = MAX(t0sz, 16); |
| } else if (mmu_idx != ARMMMUIdx_S2NS) { |
| /* AArch32 stage 1 translation. */ |
| t0sz = extract32(tcr->raw_tcr, 0, 3); |
| } else { |
| /* AArch32 stage 2 translation. */ |
| bool sext = extract32(tcr->raw_tcr, 4, 1); |
| bool sign = extract32(tcr->raw_tcr, 3, 1); |
| /* Address size is 40-bit for a stage 2 translation, |
| * and t0sz can be negative (from -8 to 7), |
| * so we need to adjust it to use the TTBR selecting logic below. |
| */ |
| addrsize = 40; |
| t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8; |
| |
| /* If the sign-extend bit is not the same as t0sz[3], the result |
| * is unpredictable. Flag this as a guest error. */ |
| if (sign != sext) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "AArch32: VTCR.S / VTCR.T0SZ[3] missmatch\n"); |
| } |
| } |
| t1sz = extract32(tcr->raw_tcr, 16, 6); |
| if (aarch64) { |
| t1sz = MIN(t1sz, 39); |
| t1sz = MAX(t1sz, 16); |
| } |
| if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) { |
| /* there is a ttbr0 region and we are in it (high bits all zero) */ |
| ttbr_select = 0; |
| } else if (ttbr1_valid && t1sz && |
| !extract64(~address, addrsize - t1sz, t1sz - tbi)) { |
| /* there is a ttbr1 region and we are in it (high bits all one) */ |
| ttbr_select = 1; |
| } else if (!t0sz) { |
| /* ttbr0 region is "everything not in the ttbr1 region" */ |
| ttbr_select = 0; |
| } else if (!t1sz && ttbr1_valid) { |
| /* ttbr1 region is "everything not in the ttbr0 region" */ |
| ttbr_select = 1; |
| } else { |
| /* in the gap between the two regions, this is a Translation fault */ |
| fault_type = translation_fault; |
| goto do_fault; |
| } |
| |
| /* Note that QEMU ignores shareability and cacheability attributes, |
| * so we don't need to do anything with the SH, ORGN, IRGN fields |
| * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the |
| * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently |
| * implement any ASID-like capability so we can ignore it (instead |
| * we will always flush the TLB any time the ASID is changed). |
| */ |
| if (ttbr_select == 0) { |
| ttbr = regime_ttbr(env, mmu_idx, 0); |
| if (el < 2) { |
| epd = extract32(tcr->raw_tcr, 7, 1); |
| } |
| inputsize = addrsize - t0sz; |
| |
| tg = extract32(tcr->raw_tcr, 14, 2); |
| if (tg == 1) { /* 64KB pages */ |
| stride = 13; |
| } |
| if (tg == 2) { /* 16KB pages */ |
| stride = 11; |
| } |
| } else { |
| /* We should only be here if TTBR1 is valid */ |
| assert(ttbr1_valid); |
| |
| ttbr = regime_ttbr(env, mmu_idx, 1); |
| epd = extract32(tcr->raw_tcr, 23, 1); |
| inputsize = addrsize - t1sz; |
| |
| tg = extract32(tcr->raw_tcr, 30, 2); |
| if (tg == 3) { /* 64KB pages */ |
| stride = 13; |
| } |
| if (tg == 1) { /* 16KB pages */ |
| stride = 11; |
| } |
| } |
| |
| /* Here we should have set up all the parameters for the translation: |
| * inputsize, ttbr, epd, stride, tbi |
| */ |
| |
| if (epd) { |
| /* Translation table walk disabled => Translation fault on TLB miss |
| * Note: This is always 0 on 64-bit EL2 and EL3. |
| */ |
| goto do_fault; |
| } |
| |
| if (mmu_idx != ARMMMUIdx_S2NS) { |
| /* The starting level depends on the virtual address size (which can |
| * be up to 48 bits) and the translation granule size. It indicates |
| * the number of strides (stride bits at a time) needed to |
| * consume the bits of the input address. In the pseudocode this is: |
| * level = 4 - RoundUp((inputsize - grainsize) / stride) |
| * where their 'inputsize' is our 'inputsize', 'grainsize' is |
| * our 'stride + 3' and 'stride' is our 'stride'. |
| * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: |
| * = 4 - (inputsize - stride - 3 + stride - 1) / stride |
| * = 4 - (inputsize - 4) / stride; |
| */ |
| level = 4 - (inputsize - 4) / stride; |
| } else { |
| /* For stage 2 translations the starting level is specified by the |
| * VTCR_EL2.SL0 field (whose interpretation depends on the page size) |
| */ |
| uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); |
| uint32_t startlevel; |
| bool ok; |
| |
| if (!aarch64 || stride == 9) { |
| /* AArch32 or 4KB pages */ |
| startlevel = 2 - sl0; |
| } else { |
| /* 16KB or 64KB pages */ |
| startlevel = 3 - sl0; |
| } |
| |
| /* Check that the starting level is valid. */ |
| ok = check_s2_mmu_setup(cpu, aarch64, startlevel, |
| inputsize, stride); |
| if (!ok) { |
| fault_type = translation_fault; |
| goto do_fault; |
| } |
| level = startlevel; |
| } |
| |
| indexmask_grainsize = (1ULL << (stride + 3)) - 1; |
| indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; |
| |
| /* Now we can extract the actual base address from the TTBR */ |
| descaddr = extract64(ttbr, 0, 48); |
| descaddr &= ~indexmask; |
| |
| /* The address field in the descriptor goes up to bit 39 for ARMv7 |
| * but up to bit 47 for ARMv8, but we use the descaddrmask |
| * up to bit 39 for AArch32, because we don't need other bits in that case |
| * to construct next descriptor address (anyway they should be all zeroes). |
| */ |
| descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & |
| ~indexmask_grainsize; |
| |
| /* Secure accesses start with the page table in secure memory and |
| * can be downgraded to non-secure at any step. Non-secure accesses |
| * remain non-secure. We implement this by just ORing in the NSTable/NS |
| * bits at each step. |
| */ |
| tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); |
| for (;;) { |
| uint64_t descriptor; |
| bool nstable; |
| |
| descaddr |= (address >> (stride * (4 - level))) & indexmask; |
| descaddr &= ~7ULL; |
| nstable = extract32(tableattrs, 4, 1); |
| descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi); |
| if (fi->s1ptw) { |
| goto do_fault; |
| } |
| |
| if (!(descriptor & 1) || |
| (!(descriptor & 2) && (level == 3))) { |
| /* Invalid, or the Reserved level 3 encoding */ |
| goto do_fault; |
| } |
| descaddr = descriptor & descaddrmask; |
| |
| if ((descriptor & 2) && (level < 3)) { |
| /* Table entry. The top five bits are attributes which may |
| * propagate down through lower levels of the table (and |
| * which are all arranged so that 0 means "no effect", so |
| * we can gather them up by ORing in the bits at each level). |
| */ |
| tableattrs |= extract64(descriptor, 59, 5); |
| level++; |
| indexmask = indexmask_grainsize; |
| continue; |
| } |
| /* Block entry at level 1 or 2, or page entry at level 3. |
| * These are basically the same thing, although the number |
| * of bits we pull in from the vaddr varies. |
| */ |
| page_size = (1ULL << ((stride * (4 - level)) + 3)); |
| descaddr |= (address & (page_size - 1)); |
| /* Extract attributes from the descriptor */ |
| attrs = extract64(descriptor, 2, 10) |
| | (extract64(descriptor, 52, 12) << 10); |
| |
| if (mmu_idx == ARMMMUIdx_S2NS) { |
| /* Stage 2 table descriptors do not include any attribute fields */ |
| break; |
| } |
| /* Merge in attributes from table descriptors */ |
| attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ |
| attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ |
| /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 |
| * means "force PL1 access only", which means forcing AP[1] to 0. |
| */ |
| if (extract32(tableattrs, 2, 1)) { |
| attrs &= ~(1 << 4); |
| } |
| attrs |= nstable << 3; /* NS */ |
| break; |
| } |
| /* Here descaddr is the final physical address, and attributes |
| * are all in attrs. |
| */ |
| fault_type = access_fault; |
| if ((attrs & (1 << 8)) == 0) { |
| /* Access flag */ |
| goto do_fault; |
| } |
| |
| ap = extract32(attrs, 4, 2); |
| xn = extract32(attrs, 12, 1); |
| |
| if (mmu_idx == ARMMMUIdx_S2NS) { |
| ns = true; |
| *prot = get_S2prot(env, ap, xn); |
| } else { |
| ns = extract32(attrs, 3, 1); |
| pxn = extract32(attrs, 11, 1); |
| *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); |
| } |
| |
| fault_type = permission_fault; |
| if (!(*prot & (1 << access_type))) { |
| goto do_fault; |
| } |
| |
| if (ns) { |
| /* The NS bit will (as required by the architecture) have no effect if |
| * the CPU doesn't support TZ or this is a non-secure translation |
| * regime, because the attribute will already be non-secure. |
| */ |
| txattrs->secure = false; |
| } |
| *phys_ptr = descaddr; |
| *page_size_ptr = page_size; |
| return false; |
| |
| do_fault: |
| /* Long-descriptor format IFSR/DFSR value */ |
| *fsr = (1 << 9) | (fault_type << 2) | level; |
| /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ |
| fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); |
| return true; |
| } |
| |
| static inline void get_phys_addr_pmsav7_default(CPUARMState *env, |
| ARMMMUIdx mmu_idx, |
| int32_t address, int *prot) |
| { |
| *prot = PAGE_READ | PAGE_WRITE; |
| switch (address) { |
| case 0xF0000000 ... 0xFFFFFFFF: |
| if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */ |
| *prot |= PAGE_EXEC; |
| } |
| break; |
| case 0x00000000 ... 0x7FFFFFFF: |
| *prot |= PAGE_EXEC; |
| break; |
| } |
| |
| } |
| |
| static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, |
| int access_type, ARMMMUIdx mmu_idx, |
| hwaddr *phys_ptr, int *prot, uint32_t *fsr) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| int n; |
| bool is_user = regime_is_user(env, mmu_idx); |
| |
| *phys_ptr = address; |
| *prot = 0; |
| |
| if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ |
| get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); |
| } else { /* MPU enabled */ |
| for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { |
| /* region search */ |
| uint32_t base = env->pmsav7.drbar[n]; |
| uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); |
| uint32_t rmask; |
| bool srdis = false; |
| |
| if (!(env->pmsav7.drsr[n] & 0x1)) { |
| continue; |
| } |
| |
| if (!rsize) { |
| qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0"); |
| continue; |
| } |
| rsize++; |
| rmask = (1ull << rsize) - 1; |
| |
| if (base & rmask) { |
| qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned " |
| "to DRSR region size, mask = %" PRIx32, |
| base, rmask); |
| continue; |
| } |
| |
| if (address < base || address > base + rmask) { |
| continue; |
| } |
| |
| /* Region matched */ |
| |
| if (rsize >= 8) { /* no subregions for regions < 256 bytes */ |
| int i, snd; |
| uint32_t srdis_mask; |
| |
| rsize -= 3; /* sub region size (power of 2) */ |
| snd = ((address - base) >> rsize) & 0x7; |
| srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); |
| |
| srdis_mask = srdis ? 0x3 : 0x0; |
| for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { |
| /* This will check in groups of 2, 4 and then 8, whether |
| * the subregion bits are consistent. rsize is incremented |
| * back up to give the region size, considering consistent |
| * adjacent subregions as one region. Stop testing if rsize |
| * is already big enough for an entire QEMU page. |
| */ |
| int snd_rounded = snd & ~(i - 1); |
| uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], |
| snd_rounded + 8, i); |
| if (srdis_mask ^ srdis_multi) { |
| break; |
| } |
| srdis_mask = (srdis_mask << i) | srdis_mask; |
| rsize++; |
| } |
| } |
| if (rsize < TARGET_PAGE_BITS) { |
| qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region" |
| "alignment of %" PRIu32 " bits. Minimum is %d\n", |
| rsize, TARGET_PAGE_BITS); |
| continue; |
| } |
| if (srdis) { |
| continue; |
| } |
| break; |
| } |
| |
| if (n == -1) { /* no hits */ |
| if (cpu->pmsav7_dregion && |
| (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) { |
| /* background fault */ |
| *fsr = 0; |
| return true; |
| } |
| get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); |
| } else { /* a MPU hit! */ |
| uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); |
| |
| if (is_user) { /* User mode AP bit decoding */ |
| switch (ap) { |
| case 0: |
| case 1: |
| case 5: |
| break; /* no access */ |
| case 3: |
| *prot |= PAGE_WRITE; |
| /* fall through */ |
| case 2: |
| case 6: |
| *prot |= PAGE_READ | PAGE_EXEC; |
| break; |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "Bad value for AP bits in DRACR %" |
| PRIx32 "\n", ap); |
| } |
| } else { /* Priv. mode AP bits decoding */ |
| switch (ap) { |
| case 0: |
| break; /* no access */ |
| case 1: |
| case 2: |
| case 3: |
| *prot |= PAGE_WRITE; |
| /* fall through */ |
| case 5: |
| case 6: |
| *prot |= PAGE_READ | PAGE_EXEC; |
| break; |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "Bad value for AP bits in DRACR %" |
| PRIx32 "\n", ap); |
| } |
| } |
| |
| /* execute never */ |
| if (env->pmsav7.dracr[n] & (1 << 12)) { |
| *prot &= ~PAGE_EXEC; |
| } |
| } |
| } |
| |
| *fsr = 0x00d; /* Permission fault */ |
| return !(*prot & (1 << access_type)); |
| } |
| |
| static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, |
| int access_type, ARMMMUIdx mmu_idx, |
| hwaddr *phys_ptr, int *prot, uint32_t *fsr) |
| { |
| int n; |
| uint32_t mask; |
| uint32_t base; |
| bool is_user = regime_is_user(env, mmu_idx); |
| |
| *phys_ptr = address; |
| for (n = 7; n >= 0; n--) { |
| base = env->cp15.c6_region[n]; |
| if ((base & 1) == 0) { |
| continue; |
| } |
| mask = 1 << ((base >> 1) & 0x1f); |
| /* Keep this shift separate from the above to avoid an |
| (undefined) << 32. */ |
| mask = (mask << 1) - 1; |
| if (((base ^ address) & ~mask) == 0) { |
| break; |
| } |
| } |
| if (n < 0) { |
| *fsr = 2; |
| return true; |
| } |
| |
| if (access_type == 2) { |
| mask = env->cp15.pmsav5_insn_ap; |
| } else { |
| mask = env->cp15.pmsav5_data_ap; |
| } |
| mask = (mask >> (n * 4)) & 0xf; |
| switch (mask) { |
| case 0: |
| *fsr = 1; |
| return true; |
| case 1: |
| if (is_user) { |
| *fsr = 1; |
| return true; |
| } |
| *prot = PAGE_READ | PAGE_WRITE; |
| break; |
| case 2: |
| *prot = PAGE_READ; |
| if (!is_user) { |
| *prot |= PAGE_WRITE; |
| } |
| break; |
| case 3: |
| *prot = PAGE_READ | PAGE_WRITE; |
| break; |
| case 5: |
| if (is_user) { |
| *fsr = 1; |
| return true; |
| } |
| *prot = PAGE_READ; |
| break; |
| case 6: |
| *prot = PAGE_READ; |
| break; |
| default: |
| /* Bad permission. */ |
| *fsr = 1; |
| return true; |
| } |
| *prot |= PAGE_EXEC; |
| return false; |
| } |
| |
| /* get_phys_addr - get the physical address for this virtual address |
| * |
| * Find the physical address corresponding to the given virtual address, |
| * by doing a translation table walk on MMU based systems or using the |
| * MPU state on MPU based systems. |
| * |
| * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, |
| * prot and page_size may not be filled in, and the populated fsr value provides |
| * information on why the translation aborted, in the format of a |
| * DFSR/IFSR fault register, with the following caveats: |
| * * we honour the short vs long DFSR format differences. |
| * * the WnR bit is never set (the caller must do this). |
| * * for PSMAv5 based systems we don't bother to return a full FSR format |
| * value. |
| * |
| * @env: CPUARMState |
| * @address: virtual address to get physical address for |
| * @access_type: 0 for read, 1 for write, 2 for execute |
| * @mmu_idx: MMU index indicating required translation regime |
| * @phys_ptr: set to the physical address corresponding to the virtual address |
| * @attrs: set to the memory transaction attributes to use |
| * @prot: set to the permissions for the page containing phys_ptr |
| * @page_size: set to the size of the page containing phys_ptr |
| * @fsr: set to the DFSR/IFSR value on failure |
| */ |
| static bool get_phys_addr(CPUARMState *env, target_ulong address, |
| int access_type, ARMMMUIdx mmu_idx, |
| hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, |
| target_ulong *page_size, uint32_t *fsr, |
| ARMMMUFaultInfo *fi) |
| { |
| if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { |
| /* Call ourselves recursively to do the stage 1 and then stage 2 |
| * translations. |
| */ |
| if (arm_feature(env, ARM_FEATURE_EL2)) { |
| hwaddr ipa; |
| int s2_prot; |
| int ret; |
| |
| ret = get_phys_addr(env, address, access_type, |
| mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs, |
| prot, page_size, fsr, fi); |
| |
| /* If S1 fails or S2 is disabled, return early. */ |
| if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { |
| *phys_ptr = ipa; |
| return ret; |
| } |
| |
| /* S1 is done. Now do S2 translation. */ |
| ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, |
| phys_ptr, attrs, &s2_prot, |
| page_size, fsr, fi); |
| fi->s2addr = ipa; |
| /* Combine the S1 and S2 perms. */ |
| *prot &= s2_prot; |
| return ret; |
| } else { |
| /* |
| * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. |
| */ |
| mmu_idx += ARMMMUIdx_S1NSE0; |
| } |
| } |
| |
| /* The page table entries may downgrade secure to non-secure, but |
| * cannot upgrade an non-secure translation regime's attributes |
| * to secure. |
| */ |
| attrs->secure = regime_is_secure(env, mmu_idx); |
| attrs->user = regime_is_user(env, mmu_idx); |
| |
| /* Fast Context Switch Extension. This doesn't exist at all in v8. |
| * In v7 and earlier it affects all stage 1 translations. |
| */ |
| if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS |
| && !arm_feature(env, ARM_FEATURE_V8)) { |
| if (regime_el(env, mmu_idx) == 3) { |
| address += env->cp15.fcseidr_s; |
| } else { |
| address += env->cp15.fcseidr_ns; |
| } |
| } |
| |
| /* pmsav7 has special handling for when MPU is disabled so call it before |
| * the common MMU/MPU disabled check below. |
| */ |
| if (arm_feature(env, ARM_FEATURE_MPU) && |
| arm_feature(env, ARM_FEATURE_V7)) { |
| *page_size = TARGET_PAGE_SIZE; |
| return get_phys_addr_pmsav7(env, address, access_type, mmu_idx, |
| phys_ptr, prot, fsr); |
| } |
| |
| if (regime_translation_disabled(env, mmu_idx)) { |
| /* MMU/MPU disabled. */ |
| *phys_ptr = address; |
| *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| *page_size = TARGET_PAGE_SIZE; |
| return 0; |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_MPU)) { |
| /* Pre-v7 MPU */ |
| *page_size = TARGET_PAGE_SIZE; |
| return get_phys_addr_pmsav5(env, address, access_type, mmu_idx, |
| phys_ptr, prot, fsr); |
| } |
| |
| if (regime_using_lpae_format(env, mmu_idx)) { |
| return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr, |
| attrs, prot, page_size, fsr, fi); |
| } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { |
| return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr, |
| attrs, prot, page_size, fsr, fi); |
| } else { |
| return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr, |
| prot, page_size, fsr, fi); |
| } |
| } |
| |
| /* Walk the page table and (if the mapping exists) add the page |
| * to the TLB. Return false on success, or true on failure. Populate |
| * fsr with ARM DFSR/IFSR fault register format value on failure. |
| */ |
| bool arm_tlb_fill(CPUState *cs, vaddr address, |
| int access_type, int mmu_idx, uint32_t *fsr, |
| ARMMMUFaultInfo *fi) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| hwaddr phys_addr; |
| target_ulong page_size; |
| int prot; |
| int ret; |
| MemTxAttrs attrs = {}; |
| |
| ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr, |
| &attrs, &prot, &page_size, fsr, fi); |
| if (!ret) { |
| /* Map a single [sub]page. */ |
| phys_addr &= TARGET_PAGE_MASK; |
| address &= TARGET_PAGE_MASK; |
| tlb_set_page_with_attrs(cs, address, phys_addr, attrs, |
| prot, mmu_idx, page_size); |
| return 0; |
| } |
| |
| return ret; |
| } |
| |
| hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, |
| MemTxAttrs *attrs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| hwaddr phys_addr; |
| target_ulong page_size; |
| int prot; |
| bool ret; |
| uint32_t fsr; |
| ARMMMUFaultInfo fi = {}; |
| |
| *attrs = (MemTxAttrs) {}; |
| |
| ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr, |
| attrs, &prot, &page_size, &fsr, &fi); |
| |
| if (ret) { |
| return -1; |
| } |
| return phys_addr; |
| } |
| |
| uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| switch (reg) { |
| case 0: /* APSR */ |
| return xpsr_read(env) & 0xf8000000; |
| case 1: /* IAPSR */ |
| return xpsr_read(env) & 0xf80001ff; |
| case 2: /* EAPSR */ |
| return xpsr_read(env) & 0xff00fc00; |
| case 3: /* xPSR */ |
| return xpsr_read(env) & 0xff00fdff; |
| case 5: /* IPSR */ |
| return xpsr_read(env) & 0x000001ff; |
| case 6: /* EPSR */ |
| return xpsr_read(env) & 0x0700fc00; |
| case 7: /* IEPSR */ |
| return xpsr_read(env) & 0x0700edff; |
| case 8: /* MSP */ |
| return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; |
| case 9: /* PSP */ |
| return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; |
| case 16: /* PRIMASK */ |
| return (env->daif & PSTATE_I) != 0; |
| case 17: /* BASEPRI */ |
| case 18: /* BASEPRI_MAX */ |
| return env->v7m.basepri; |
| case 19: /* FAULTMASK */ |
| return (env->daif & PSTATE_F) != 0; |
| case 20: /* CONTROL */ |
| return env->v7m.control; |
| default: |
| /* ??? For debugging only. */ |
| cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg); |
| return 0; |
| } |
| } |
| |
| void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) |
| { |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| |
| switch (reg) { |
| case 0: /* APSR */ |
| xpsr_write(env, val, 0xf8000000); |
| break; |
| case 1: /* IAPSR */ |
| xpsr_write(env, val, 0xf8000000); |
| break; |
| case 2: /* EAPSR */ |
| xpsr_write(env, val, 0xfe00fc00); |
| break; |
| case 3: /* xPSR */ |
| xpsr_write(env, val, 0xfe00fc00); |
| break; |
| case 5: /* IPSR */ |
| /* IPSR bits are readonly. */ |
| break; |
| case 6: /* EPSR */ |
| xpsr_write(env, val, 0x0600fc00); |
| break; |
| case 7: /* IEPSR */ |
| xpsr_write(env, val, 0x0600fc00); |
| break; |
| case 8: /* MSP */ |
| if (env->v7m.current_sp) |
| env->v7m.other_sp = val; |
| else |
| env->regs[13] = val; |
| break; |
| case 9: /* PSP */ |
| if (env->v7m.current_sp) |
| env->regs[13] = val; |
| else |
| env->v7m.other_sp = val; |
| break; |
| case 16: /* PRIMASK */ |
| if (val & 1) { |
| env->daif |= PSTATE_I; |
| } else { |
| env->daif &= ~PSTATE_I; |
| } |
| break; |
| case 17: /* BASEPRI */ |
| env->v7m.basepri = val & 0xff; |
| break; |
| case 18: /* BASEPRI_MAX */ |
| val &= 0xff; |
| if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) |
| env->v7m.basepri = val; |
| break; |
| case 19: /* FAULTMASK */ |
| if (val & 1) { |
| env->daif |= PSTATE_F; |
| } else { |
| env->daif &= ~PSTATE_F; |
| } |
| break; |
| case 20: /* CONTROL */ |
| env->v7m.control = val & 3; |
| switch_v7m_sp(env, (val & 2) != 0); |
| break; |
| default: |
| /* ??? For debugging only. */ |
| cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg); |
| return; |
| } |
| } |
| |
| #endif |
| |
| void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) |
| { |
| /* Implement DC ZVA, which zeroes a fixed-length block of memory. |
| * Note that we do not implement the (architecturally mandated) |
| * alignment fault for attempts to use this on Device memory |
| * (which matches the usual QEMU behaviour of not implementing either |
| * alignment faults or any memory attribute handling). |
| */ |
| |
| ARMCPU *cpu = arm_env_get_cpu(env); |
| uint64_t blocklen = 4 << cpu->dcz_blocksize; |
| uint64_t vaddr = vaddr_in & ~(blocklen - 1); |
| |
| #ifndef CONFIG_USER_ONLY |
| { |
| /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than |
| * the block size so we might have to do more than one TLB lookup. |
| * We know that in fact for any v8 CPU the page size is at least 4K |
| * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only |
| * 1K as an artefact of legacy v5 subpage support being present in the |
| * same QEMU executable. |
| */ |
| int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); |
| void *hostaddr[maxidx]; |
| int try, i; |
| unsigned mmu_idx = cpu_mmu_index(env, false); |
| TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); |
| |
| for (try = 0; try < 2; try++) { |
| |
| for (i = 0; i < maxidx; i++) { |
| hostaddr[i] = tlb_vaddr_to_host(env, |
| vaddr + TARGET_PAGE_SIZE * i, |
| 1, mmu_idx); |
| if (!hostaddr[i]) { |
| break; |
| } |
| } |
| if (i == maxidx) { |
| /* If it's all in the TLB it's fair game for just writing to; |
| * we know we don't need to update dirty status, etc. |
| */ |
| for (i = 0; i < maxidx - 1; i++) { |
| memset(hostaddr[i], 0, TARGET_PAGE_SIZE); |
| } |
| memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); |
| return; |
| } |
| /* OK, try a store and see if we can populate the tlb. This |
| * might cause an exception if the memory isn't writable, |
| * in which case we will longjmp out of here. We must for |
| * this purpose use the actual register value passed to us |
| * so that we get the fault address right. |
| */ |
| helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA()); |
| /* Now we can populate the other TLB entries, if any */ |
| for (i = 0; i < maxidx; i++) { |
| uint64_t va = vaddr + TARGET_PAGE_SIZE * i; |
| if (va != (vaddr_in & TARGET_PAGE_MASK)) { |
| helper_ret_stb_mmu(env, va, 0, oi, GETRA()); |
| } |
| } |
| } |
| |
| /* Slow path (probably attempt to do this to an I/O device or |
| * similar, or clearing of a block of code we have translations |
| * cached for). Just do a series of byte writes as the architecture |
| * demands. It's not worth trying to use a cpu_physical_memory_map(), |
| * memset(), unmap() sequence here because: |
| * + we'd need to account for the blocksize being larger than a page |
| * + the direct-RAM access case is almost always going to be dealt |
| * with in the fastpath code above, so there's no speed benefit |
| * + we would have to deal with the map returning NULL because the |
| * bounce buffer was in use |
| */ |
| for (i = 0; i < blocklen; i++) { |
| helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA()); |
| } |
| } |
| #else |
| memset(g2h(vaddr), 0, blocklen); |
| #endif |
| } |
| |
| /* Note that signed overflow is undefined in C. The following routines are |
| careful to use unsigned types where modulo arithmetic is required. |
| Failure to do so _will_ break on newer gcc. */ |
| |
| /* Signed saturating arithmetic. */ |
| |
| /* Perform 16-bit signed saturating addition. */ |
| static inline uint16_t add16_sat(uint16_t a, uint16_t b) |
| { |
| uint16_t res; |
| |
| res = a + b; |
| if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { |
| if (a & 0x8000) |
| res = 0x8000; |
| else |
| res = 0x7fff; |
| } |
| return res; |
| } |
| |
| /* Perform 8-bit signed saturating addition. */ |
| static inline uint8_t add8_sat(uint8_t a, uint8_t b) |
| { |
| uint8_t res; |
| |
| res = a + b; |
| if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { |
| if (a & 0x80) |
| res = 0x80; |
| else |
| res = 0x7f; |
| } |
| return res; |
| } |
| |
| /* Perform 16-bit signed saturating subtraction. */ |
| static inline uint16_t sub16_sat(uint16_t a, uint16_t b) |
| { |
| uint16_t res; |
| |
| res = a - b; |
| if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { |
| if (a & 0x8000) |
| res = 0x8000; |
| else |
| res = 0x7fff; |
| } |
| return res; |
| } |
| |
| /* Perform 8-bit signed saturating subtraction. */ |
| static inline uint8_t sub8_sat(uint8_t a, uint8_t b) |
| { |
| uint8_t res; |
| |
| res = a - b; |
| if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { |
| if (a & 0x80) |
| res = 0x80; |
| else |
| res = 0x7f; |
| } |
| return res; |
| } |
| |
| #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); |
| #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); |
| #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); |
| #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); |
| #define PFX q |
| |
| #include "op_addsub.h" |
| |
| /* Unsigned saturating arithmetic. */ |
| static inline uint16_t add16_usat(uint16_t a, uint16_t b) |
| { |
| uint16_t res; |
| res = a + b; |
| if (res < a) |
| res = 0xffff; |
| return res; |
| } |
| |
| static inline uint16_t sub16_usat(uint16_t a, uint16_t b) |
| { |
| if (a > b) |
| return a - b; |
| else |
| return 0; |
| } |
| |
| static inline uint8_t add8_usat(uint8_t a, uint8_t b) |
| { |
| uint8_t res; |
| res = a + b; |
| if (res < a) |
| res = 0xff; |
| return res; |
| } |
| |
| static inline uint8_t sub8_usat(uint8_t a, uint8_t b) |
| { |
| if (a > b) |
| return a - b; |
| else |
| return 0; |
| } |
| |
| #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); |
| #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); |
| #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); |
| #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); |
| #define PFX uq |
| |
| #include "op_addsub.h" |
| |
| /* Signed modulo arithmetic. */ |
| #define SARITH16(a, b, n, op) do { \ |
| int32_t sum; \ |
| sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ |
| RESULT(sum, n, 16); \ |
| if (sum >= 0) \ |
| ge |= 3 << (n * 2); \ |
| } while(0) |
| |
| #define SARITH8(a, b, n, op) do { \ |
| int32_t sum; \ |
| sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ |
| RESULT(sum, n, 8); \ |
| if (sum >= 0) \ |
| ge |= 1 << n; \ |
| } while(0) |
| |
| |
| #define ADD16(a, b, n) SARITH16(a, b, n, +) |
| #define SUB16(a, b, n) SARITH16(a, b, n, -) |
| #define ADD8(a, b, n) SARITH8(a, b, n, +) |
| #define SUB8(a, b, n) SARITH8(a, b, n, -) |
| #define PFX s |
| #define ARITH_GE |
| |
| #include "op_addsub.h" |
| |
| /* Unsigned modulo arithmetic. */ |
| #define ADD16(a, b, n) do { \ |
| uint32_t sum; \ |
| sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ |
| RESULT(sum, n, 16); \ |
| if ((sum >> 16) == 1) \ |
| ge |= 3 << (n * 2); \ |
| } while(0) |
| |
| #define ADD8(a, b, n) do { \ |
| uint32_t sum; \ |
| sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ |
| RESULT(sum, n, 8); \ |
| if ((sum >> 8) == 1) \ |
| ge |= 1 << n; \ |
| } while(0) |
| |
| #define SUB16(a, b, n) do { \ |
| uint32_t sum; \ |
| sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ |
| RESULT(sum, n, 16); \ |
| if ((sum >> 16) == 0) \ |
| ge |= 3 << (n * 2); \ |
| } while(0) |
| |
| #define SUB8(a, b, n) do { \ |
| uint32_t sum; \ |
| sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ |
| RESULT(sum, n, 8); \ |
| if ((sum >> 8) == 0) \ |
| ge |= 1 << n; \ |
| } while(0) |
| |
| #define PFX u |
| #define ARITH_GE |
| |
| #include "op_addsub.h" |
| |
| /* Halved signed arithmetic. */ |
| #define ADD16(a, b, n) \ |
| RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) |
| #define SUB16(a, b, n) \ |
| RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) |
| #define ADD8(a, b, n) \ |
| RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) |
| #define SUB8(a, b, n) \ |
| RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) |
| #define PFX sh |
| |
| #include "op_addsub.h" |
| |
| /* Halved unsigned arithmetic. */ |
| #define ADD16(a, b, n) \ |
| RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) |
| #define SUB16(a, b, n) \ |
| RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) |
| #define ADD8(a, b, n) \ |
| RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) |
| #define SUB8(a, b, n) \ |
| RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) |
| #define PFX uh |
| |
| #include "op_addsub.h" |
| |
| static inline uint8_t do_usad(uint8_t a, uint8_t b) |
| { |
| if (a > b) |
| return a - b; |
| else |
| return b - a; |
| } |
| |
| /* Unsigned sum of absolute byte differences. */ |
| uint32_t HELPER(usad8)(uint32_t a, uint32_t b) |
| { |
| uint32_t sum; |
| sum = do_usad(a, b); |
| sum += do_usad(a >> 8, b >> 8); |
| sum += do_usad(a >> 16, b >>16); |
| sum += do_usad(a >> 24, b >> 24); |
| return sum; |
| } |
| |
| /* For ARMv6 SEL instruction. */ |
| uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) |
| { |
| uint32_t mask; |
| |
| mask = 0; |
| if (flags & 1) |
| mask |= 0xff; |
| if (flags & 2) |
| mask |= 0xff00; |
| if (flags & 4) |
| mask |= 0xff0000; |
| if (flags & 8) |
| mask |= 0xff000000; |
| return (a & mask) | (b & ~mask); |
| } |
| |
| /* VFP support. We follow the convention used for VFP instructions: |
| Single precision routines have a "s" suffix, double precision a |
| "d" suffix. */ |
| |
| /* Convert host exception flags to vfp form. */ |
| static inline int vfp_exceptbits_from_host(int host_bits) |
| { |
| int target_bits = 0; |
| |
| if (host_bits & float_flag_invalid) |
| target_bits |= 1; |
| if (host_bits & float_flag_divbyzero) |
| target_bits |= 2; |
| if (host_bits & float_flag_overflow) |
| target_bits |= 4; |
| if (host_bits & (float_flag_underflow | float_flag_output_denormal)) |
| target_bits |= 8; |
| if (host_bits & float_flag_inexact) |
| target_bits |= 0x10; |
| if (host_bits & float_flag_input_denormal) |
| target_bits |= 0x80; |
| return target_bits; |
| } |
| |
| uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) |
| { |
| int i; |
| uint32_t fpscr; |
| |
| fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) |
| | (env->vfp.vec_len << 16) |
| | (env->vfp.vec_stride << 20); |
| i = get_float_exception_flags(&env->vfp.fp_status); |
| i |= get_float_exception_flags(&env->vfp.standard_fp_status); |
| fpscr |= vfp_exceptbits_from_host(i); |
| return fpscr; |
| } |
| |
| uint32_t vfp_get_fpscr(CPUARMState *env) |
| { |
| return HELPER(vfp_get_fpscr)(env); |
| } |
| |
| /* Convert vfp exception flags to target form. */ |
| static inline int vfp_exceptbits_to_host(int target_bits) |
| { |
| int host_bits = 0; |
| |
| if (target_bits & 1) |
| host_bits |= float_flag_invalid; |
| if (target_bits & 2) |
| host_bits |= float_flag_divbyzero; |
| if (target_bits & 4) |
| host_bits |= float_flag_overflow; |
| if (target_bits & 8) |
| host_bits |= float_flag_underflow; |
| if (target_bits & 0x10) |
| host_bits |= float_flag_inexact; |
| if (target_bits & 0x80) |
| host_bits |= float_flag_input_denormal; |
| return host_bits; |
| } |
| |
| void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) |
| { |
| int i; |
| uint32_t changed; |
| |
| changed = env->vfp.xregs[ARM_VFP_FPSCR]; |
| env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); |
| env->vfp.vec_len = (val >> 16) & 7; |
| env->vfp.vec_stride = (val >> 20) & 3; |
| |
| changed ^= val; |
| if (changed & (3 << 22)) { |
| i = (val >> 22) & 3; |
| switch (i) { |
| case FPROUNDING_TIEEVEN: |
| i = float_round_nearest_even; |
| break; |
| case FPROUNDING_POSINF: |
| i = float_round_up; |
| break; |
| case FPROUNDING_NEGINF: |
| i = float_round_down; |
| break; |
| case FPROUNDING_ZERO: |
| i = float_round_to_zero; |
| break; |
| } |
| set_float_rounding_mode(i, &env->vfp.fp_status); |
| } |
| if (changed & (1 << 24)) { |
| set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
| set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); |
| } |
| if (changed & (1 << 25)) |
| set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); |
| |
| i = vfp_exceptbits_to_host(val); |
| set_float_exception_flags(i, &env->vfp.fp_status); |
| set_float_exception_flags(0, &env->vfp.standard_fp_status); |
| } |
| |
| void vfp_set_fpscr(CPUARMState *env, uint32_t val) |
| { |
| HELPER(vfp_set_fpscr)(env, val); |
| } |
| |
| #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) |
| |
| #define VFP_BINOP(name) \ |
| float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| return float32_ ## name(a, b, fpst); \ |
| } \ |
| float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| return float64_ ## name(a, b, fpst); \ |
| } |
| VFP_BINOP(add) |
| VFP_BINOP(sub) |
| VFP_BINOP(mul) |
| VFP_BINOP(div) |
| VFP_BINOP(min) |
| VFP_BINOP(max) |
| VFP_BINOP(minnum) |
| VFP_BINOP(maxnum) |
| #undef VFP_BINOP |
| |
| float32 VFP_HELPER(neg, s)(float32 a) |
| { |
| return float32_chs(a); |
| } |
| |
| float64 VFP_HELPER(neg, d)(float64 a) |
| { |
| return float64_chs(a); |
| } |
| |
| float32 VFP_HELPER(abs, s)(float32 a) |
| { |
| return float32_abs(a); |
| } |
| |
| float64 VFP_HELPER(abs, d)(float64 a) |
| { |
| return float64_abs(a); |
| } |
| |
| float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) |
| { |
| return float32_sqrt(a, &env->vfp.fp_status); |
| } |
| |
| float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) |
| { |
| return float64_sqrt(a, &env->vfp.fp_status); |
| } |
| |
| /* XXX: check quiet/signaling case */ |
| #define DO_VFP_cmp(p, type) \ |
| void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ |
| { \ |
| uint32_t flags; \ |
| switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ |
| case 0: flags = 0x6; break; \ |
| case -1: flags = 0x8; break; \ |
| case 1: flags = 0x2; break; \ |
| default: case 2: flags = 0x3; break; \ |
| } \ |
| env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ |
| | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ |
| } \ |
| void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ |
| { \ |
| uint32_t flags; \ |
| switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ |
| case 0: flags = 0x6; break; \ |
| case -1: flags = 0x8; break; \ |
| case 1: flags = 0x2; break; \ |
| default: case 2: flags = 0x3; break; \ |
| } \ |
| env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ |
| | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ |
| } |
| DO_VFP_cmp(s, float32) |
| DO_VFP_cmp(d, float64) |
| #undef DO_VFP_cmp |
| |
| /* Integer to float and float to integer conversions */ |
| |
| #define CONV_ITOF(name, fsz, sign) \ |
| float##fsz HELPER(name)(uint32_t x, void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ |
| } |
| |
| #define CONV_FTOI(name, fsz, sign, round) \ |
| uint32_t HELPER(name)(float##fsz x, void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| if (float##fsz##_is_any_nan(x)) { \ |
| float_raise(float_flag_invalid, fpst); \ |
| return 0; \ |
| } \ |
| return float##fsz##_to_##sign##int32##round(x, fpst); \ |
| } |
| |
| #define FLOAT_CONVS(name, p, fsz, sign) \ |
| CONV_ITOF(vfp_##name##to##p, fsz, sign) \ |
| CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ |
| CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) |
| |
| FLOAT_CONVS(si, s, 32, ) |
| FLOAT_CONVS(si, d, 64, ) |
| FLOAT_CONVS(ui, s, 32, u) |
| FLOAT_CONVS(ui, d, 64, u) |
| |
| #undef CONV_ITOF |
| #undef CONV_FTOI |
| #undef FLOAT_CONVS |
| |
| /* floating point conversion */ |
| float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) |
| { |
| float64 r = float32_to_float64(x, &env->vfp.fp_status); |
| /* ARM requires that S<->D conversion of any kind of NaN generates |
| * a quiet NaN by forcing the most significant frac bit to 1. |
| */ |
| return float64_maybe_silence_nan(r, &env->vfp.fp_status); |
| } |
| |
| float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) |
| { |
| float32 r = float64_to_float32(x, &env->vfp.fp_status); |
| /* ARM requires that S<->D conversion of any kind of NaN generates |
| * a quiet NaN by forcing the most significant frac bit to 1. |
| */ |
| return float32_maybe_silence_nan(r, &env->vfp.fp_status); |
| } |
| |
| /* VFP3 fixed point conversion. */ |
| #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
| float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ |
| void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| float##fsz tmp; \ |
| tmp = itype##_to_##float##fsz(x, fpst); \ |
| return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ |
| } |
| |
| /* Notice that we want only input-denormal exception flags from the |
| * scalbn operation: the other possible flags (overflow+inexact if |
| * we overflow to infinity, output-denormal) aren't correct for the |
| * complete scale-and-convert operation. |
| */ |
| #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ |
| uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ |
| uint32_t shift, \ |
| void *fpstp) \ |
| { \ |
| float_status *fpst = fpstp; \ |
| int old_exc_flags = get_float_exception_flags(fpst); \ |
| float##fsz tmp; \ |
| if (float##fsz##_is_any_nan(x)) { \ |
| float_raise(float_flag_invalid, fpst); \ |
| return 0; \ |
| } \ |
| tmp = float##fsz##_scalbn(x, shift, fpst); \ |
| old_exc_flags |= get_float_exception_flags(fpst) \ |
| & float_flag_input_denormal; \ |
| set_float_exception_flags(old_exc_flags, fpst); \ |
| return float##fsz##_to_##itype##round(tmp, fpst); \ |
| } |
| |
| #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ |
| VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
| VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ |
| VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) |
| |
| #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ |
| VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ |
| VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) |
| |
| VFP_CONV_FIX(sh, d, 64, 64, int16) |
| VFP_CONV_FIX(sl, d, 64, 64, int32) |
| VFP_CONV_FIX_A64(sq, d, 64, 64, int64) |
| VFP_CONV_FIX(uh, d, 64, 64, uint16) |
| VFP_CONV_FIX(ul, d, 64, 64, uint32) |
| VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) |
| VFP_CONV_FIX(sh, s, 32, 32, int16) |
| VFP_CONV_FIX(sl, s, 32, 32, int32) |
| VFP_CONV_FIX_A64(sq, s, 32, 64, int64) |
| VFP_CONV_FIX(uh, s, 32, 32, uint16) |
| VFP_CONV_FIX(ul, s, 32, 32, uint32) |
| VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) |
| #undef VFP_CONV_FIX |
| #undef VFP_CONV_FIX_FLOAT |
| #undef VFP_CONV_FLOAT_FIX_ROUND |
| |
| /* Set the current fp rounding mode and return the old one. |
| * The argument is a softfloat float_round_ value. |
| */ |
| uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) |
| { |
| float_status *fp_status = &env->vfp.fp_status; |
| |
| uint32_t prev_rmode = get_float_rounding_mode(fp_status); |
| set_float_rounding_mode(rmode, fp_status); |
| |
| return prev_rmode; |
| } |
| |
| /* Set the current fp rounding mode in the standard fp status and return |
| * the old one. This is for NEON instructions that need to change the |
| * rounding mode but wish to use the standard FPSCR values for everything |
| * else. Always set the rounding mode back to the correct value after |
| * modifying it. |
| * The argument is a softfloat float_round_ value. |
| */ |
| uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) |
| { |
| float_status *fp_status = &env->vfp.standard_fp_status; |
| |
| uint32_t prev_rmode = get_float_rounding_mode(fp_status); |
| set_float_rounding_mode(rmode, fp_status); |
| |
| return prev_rmode; |
| } |
| |
| /* Half precision conversions. */ |
| static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) |
| { |
| int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
| float32 r = float16_to_float32(make_float16(a), ieee, s); |
| if (ieee) { |
| return float32_maybe_silence_nan(r, s); |
| } |
| return r; |
| } |
| |
| static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) |
| { |
| int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
| float16 r = float32_to_float16(a, ieee, s); |
| if (ieee) { |
| r = float16_maybe_silence_nan(r, s); |
| } |
| return float16_val(r); |
| } |
| |
| float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
| { |
| return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); |
| } |
| |
| uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
| { |
| return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); |
| } |
| |
| float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) |
| { |
| return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); |
| } |
| |
| uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) |
| { |
| return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); |
| } |
| |
| float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) |
| { |
| int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
| float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); |
| if (ieee) { |
| return float64_maybe_silence_nan(r, &env->vfp.fp_status); |
| } |
| return r; |
| } |
| |
| uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) |
| { |
| int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; |
| float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); |
| if (ieee) { |
| r = float16_maybe_silence_nan(r, &env->vfp.fp_status); |
| } |
| return float16_val(r); |
| } |
| |
| #define float32_two make_float32(0x40000000) |
| #define float32_three make_float32(0x40400000) |
| #define float32_one_point_five make_float32(0x3fc00000) |
| |
| float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) |
| { |
| float_status *s = &env->vfp.standard_fp_status; |
| if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || |
| (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { |
| if (!(float32_is_zero(a) || float32_is_zero(b))) { |
| float_raise(float_flag_input_denormal, s); |
| } |
| return float32_two; |
| } |
| return float32_sub(float32_two, float32_mul(a, b, s), s); |
| } |
| |
| float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) |
| { |
| float_status *s = &env->vfp.standard_fp_status; |
| float32 product; |
| if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || |
| (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { |
| if (!(float32_is_zero(a) || float32_is_zero(b))) { |
| float_raise(float_flag_input_denormal, s); |
| } |
| return float32_one_point_five; |
| } |
| product = float32_mul(a, b, s); |
| return float32_div(float32_sub(float32_three, product, s), float32_two, s); |
| } |
| |
| /* NEON helpers. */ |
| |
| /* Constants 256 and 512 are used in some helpers; we avoid relying on |
| * int->float conversions at run-time. */ |
| #define float64_256 make_float64(0x4070000000000000LL) |
| #define float64_512 make_float64(0x4080000000000000LL) |
| #define float32_maxnorm make_float32(0x7f7fffff) |
| #define float64_maxnorm make_float64(0x7fefffffffffffffLL) |
| |
| /* Reciprocal functions |
| * |
| * The algorithm that must be used to calculate the estimate |
| * is specified by the ARM ARM, see FPRecipEstimate() |
| */ |
| |
| static float64 recip_estimate(float64 a, float_status *real_fp_status) |
| { |
| /* These calculations mustn't set any fp exception flags, |
| * so we use a local copy of the fp_status. |
| */ |
| float_status dummy_status = *real_fp_status; |
| float_status *s = &dummy_status; |
| /* q = (int)(a * 512.0) */ |
| float64 q = float64_mul(float64_512, a, s); |
| int64_t q_int = float64_to_int64_round_to_zero(q, s); |
| |
| /* r = 1.0 / (((double)q + 0.5) / 512.0) */ |
| q = int64_to_float64(q_int, s); |
| q = float64_add(q, float64_half, s); |
| q = float64_div(q, float64_512, s); |
| q = float64_div(float64_one, q, s); |
| |
| /* s = (int)(256.0 * r + 0.5) */ |
| q = float64_mul(q, float64_256, s); |
| q = float64_add(q, float64_half, s); |
| q_int = float64_to_int64_round_to_zero(q, s); |
| |
| /* return (double)s / 256.0 */ |
| return float64_div(int64_to_float64(q_int, s), float64_256, s); |
| } |
| |
| /* Common wrapper to call recip_estimate */ |
| static float64 call_recip_estimate(float64 num, int off, float_status *fpst) |
| { |
| uint64_t val64 = float64_val(num); |
| uint64_t frac = extract64(val64, 0, 52); |
| int64_t exp = extract64(val64, 52, 11); |
| uint64_t sbit; |
| float64 scaled, estimate; |
| |
| /* Generate the scaled number for the estimate function */ |
| if (exp == 0) { |
| if (extract64(frac, 51, 1) == 0) { |
| exp = -1; |
| frac = extract64(frac, 0, 50) << 2; |
| } else { |
| frac = extract64(frac, 0, 51) << 1; |
| } |
| } |
| |
| /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */ |
| scaled = make_float64((0x3feULL << 52) |
| | extract64(frac, 44, 8) << 44); |
| |
| estimate = recip_estimate(scaled, fpst); |
| |
| /* Build new result */ |
| val64 = float64_val(estimate); |
| sbit = 0x8000000000000000ULL & val64; |
| exp = off - exp; |
| frac = extract64(val64, 0, 52); |
| |
| if (exp == 0) { |
| frac = 1ULL << 51 | extract64(frac, 1, 51); |
| } else if (exp == -1) { |
| frac = 1ULL << 50 | extract64(frac, 2, 50); |
| exp = 0; |
| } |
| |
| return make_float64(sbit | (exp << 52) | frac); |
| } |
| |
| static bool round_to_inf(float_status *fpst, bool sign_bit) |
| { |
| switch (fpst->float_rounding_mode) { |
| case float_round_nearest_even: /* Round to Nearest */ |
| return true; |
| case float_round_up: /* Round to +Inf */ |
| return !sign_bit; |
| case float_round_down: /* Round to -Inf */ |
| return sign_bit; |
| case float_round_to_zero: /* Round to Zero */ |
| return false; |
| } |
| |
| g_assert_not_reached(); |
| } |
| |
| float32 HELPER(recpe_f32)(float32 input, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| float32 f32 = float32_squash_input_denormal(input, fpst); |
| uint32_t f32_val = float32_val(f32); |
| uint32_t f32_sbit = 0x80000000ULL & f32_val; |
| int32_t f32_exp = extract32(f32_val, 23, 8); |
| uint32_t f32_frac = extract32(f32_val, 0, 23); |
| float64 f64, r64; |
| uint64_t r64_val; |
| int64_t r64_exp; |
| uint64_t r64_frac; |
| |
| if (float32_is_any_nan(f32)) { |
| float32 nan = f32; |
| if (float32_is_signaling_nan(f32, fpst)) { |
| float_raise(float_flag_invalid, fpst); |
| nan = float32_maybe_silence_nan(f32, fpst); |
| } |
| if (fpst->default_nan_mode) { |
| nan = float32_default_nan(fpst); |
| } |
| return nan; |
| } else if (float32_is_infinity(f32)) { |
| return float32_set_sign(float32_zero, float32_is_neg(f32)); |
| } else if (float32_is_zero(f32)) { |
| float_raise(float_flag_divbyzero, fpst); |
| return float32_set_sign(float32_infinity, float32_is_neg(f32)); |
| } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) { |
| /* Abs(value) < 2.0^-128 */ |
| float_raise(float_flag_overflow | float_flag_inexact, fpst); |
| if (round_to_inf(fpst, f32_sbit)) { |
| return float32_set_sign(float32_infinity, float32_is_neg(f32)); |
| } else { |
| return float32_set_sign(float32_maxnorm, float32_is_neg(f32)); |
| } |
| } else if (f32_exp >= 253 && fpst->flush_to_zero) { |
| float_raise(float_flag_underflow, fpst); |
| return float32_set_sign(float32_zero, float32_is_neg(f32)); |
| } |
| |
| |
| f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29); |
| r64 = call_recip_estimate(f64, 253, fpst); |
| r64_val = float64_val(r64); |
| r64_exp = extract64(r64_val, 52, 11); |
| r64_frac = extract64(r64_val, 0, 52); |
| |
| /* result = sign : result_exp<7:0> : fraction<51:29>; */ |
| return make_float32(f32_sbit | |
| (r64_exp & 0xff) << 23 | |
| extract64(r64_frac, 29, 24)); |
| } |
| |
| float64 HELPER(recpe_f64)(float64 input, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| float64 f64 = float64_squash_input_denormal(input, fpst); |
| uint64_t f64_val = float64_val(f64); |
| uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; |
| int64_t f64_exp = extract64(f64_val, 52, 11); |
| float64 r64; |
| uint64_t r64_val; |
| int64_t r64_exp; |
| uint64_t r64_frac; |
| |
| /* Deal with any special cases */ |
| if (float64_is_any_nan(f64)) { |
| float64 nan = f64; |
| if (float64_is_signaling_nan(f64, fpst)) { |
| float_raise(float_flag_invalid, fpst); |
| nan = float64_maybe_silence_nan(f64, fpst); |
| } |
| if (fpst->default_nan_mode) { |
| nan = float64_default_nan(fpst); |
| } |
| return nan; |
| } else if (float64_is_infinity(f64)) { |
| return float64_set_sign(float64_zero, float64_is_neg(f64)); |
| } else if (float64_is_zero(f64)) { |
| float_raise(float_flag_divbyzero, fpst); |
| return float64_set_sign(float64_infinity, float64_is_neg(f64)); |
| } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { |
| /* Abs(value) < 2.0^-1024 */ |
| float_raise(float_flag_overflow | float_flag_inexact, fpst); |
| if (round_to_inf(fpst, f64_sbit)) { |
| return float64_set_sign(float64_infinity, float64_is_neg(f64)); |
| } else { |
| return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); |
| } |
| } else if (f64_exp >= 2045 && fpst->flush_to_zero) { |
| float_raise(float_flag_underflow, fpst); |
| return float64_set_sign(float64_zero, float64_is_neg(f64)); |
| } |
| |
| r64 = call_recip_estimate(f64, 2045, fpst); |
| r64_val = float64_val(r64); |
| r64_exp = extract64(r64_val, 52, 11); |
| r64_frac = extract64(r64_val, 0, 52); |
| |
| /* result = sign : result_exp<10:0> : fraction<51:0> */ |
| return make_float64(f64_sbit | |
| ((r64_exp & 0x7ff) << 52) | |
| r64_frac); |
| } |
| |
| /* The algorithm that must be used to calculate the estimate |
| * is specified by the ARM ARM. |
| */ |
| static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status) |
| { |
| /* These calculations mustn't set any fp exception flags, |
| * so we use a local copy of the fp_status. |
| */ |
| float_status dummy_status = *real_fp_status; |
| float_status *s = &dummy_status; |
| float64 q; |
| int64_t q_int; |
| |
| if (float64_lt(a, float64_half, s)) { |
| /* range 0.25 <= a < 0.5 */ |
| |
| /* a in units of 1/512 rounded down */ |
| /* q0 = (int)(a * 512.0); */ |
| q = float64_mul(float64_512, a, s); |
| q_int = float64_to_int64_round_to_zero(q, s); |
| |
| /* reciprocal root r */ |
| /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ |
| q = int64_to_float64(q_int, s); |
| q = float64_add(q, float64_half, s); |
| q = float64_div(q, float64_512, s); |
| q = float64_sqrt(q, s); |
| q = float64_div(float64_one, q, s); |
| } else { |
| /* range 0.5 <= a < 1.0 */ |
| |
| /* a in units of 1/256 rounded down */ |
| /* q1 = (int)(a * 256.0); */ |
| q = float64_mul(float64_256, a, s); |
| int64_t q_int = float64_to_int64_round_to_zero(q, s); |
| |
| /* reciprocal root r */ |
| /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ |
| q = int64_to_float64(q_int, s); |
| q = float64_add(q, float64_half, s); |
| q = float64_div(q, float64_256, s); |
| q = float64_sqrt(q, s); |
| q = float64_div(float64_one, q, s); |
| } |
| /* r in units of 1/256 rounded to nearest */ |
| /* s = (int)(256.0 * r + 0.5); */ |
| |
| q = float64_mul(q, float64_256,s ); |
| q = float64_add(q, float64_half, s); |
| q_int = float64_to_int64_round_to_zero(q, s); |
| |
| /* return (double)s / 256.0;*/ |
| return float64_div(int64_to_float64(q_int, s), float64_256, s); |
| } |
| |
| float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) |
| { |
| float_status *s = fpstp; |
| float32 f32 = float32_squash_input_denormal(input, s); |
| uint32_t val = float32_val(f32); |
| uint32_t f32_sbit = 0x80000000 & val; |
| int32_t f32_exp = extract32(val, 23, 8); |
| uint32_t f32_frac = extract32(val, 0, 23); |
| uint64_t f64_frac; |
| uint64_t val64; |
| int result_exp; |
| float64 f64; |
| |
| if (float32_is_any_nan(f32)) { |
| float32 nan = f32; |
| if (float32_is_signaling_nan(f32, s)) { |
| float_raise(float_flag_invalid, s); |
| nan = float32_maybe_silence_nan(f32, s); |
| } |
| if (s->default_nan_mode) { |
| nan = float32_default_nan(s); |
| } |
| return nan; |
| } else if (float32_is_zero(f32)) { |
| float_raise(float_flag_divbyzero, s); |
| return float32_set_sign(float32_infinity, float32_is_neg(f32)); |
| } else if (float32_is_neg(f32)) { |
| float_raise(float_flag_invalid, s); |
| return float32_default_nan(s); |
| } else if (float32_is_infinity(f32)) { |
| return float32_zero; |
| } |
| |
| /* Scale and normalize to a double-precision value between 0.25 and 1.0, |
| * preserving the parity of the exponent. */ |
| |
| f64_frac = ((uint64_t) f32_frac) << 29; |
| if (f32_exp == 0) { |
| while (extract64(f64_frac, 51, 1) == 0) { |
| f64_frac = f64_frac << 1; |
| f32_exp = f32_exp-1; |
| } |
| f64_frac = extract64(f64_frac, 0, 51) << 1; |
| } |
| |
| if (extract64(f32_exp, 0, 1) == 0) { |
| f64 = make_float64(((uint64_t) f32_sbit) << 32 |
| | (0x3feULL << 52) |
| | f64_frac); |
| } else { |
| f64 = make_float64(((uint64_t) f32_sbit) << 32 |
| | (0x3fdULL << 52) |
| | f64_frac); |
| } |
| |
| result_exp = (380 - f32_exp) / 2; |
| |
| f64 = recip_sqrt_estimate(f64, s); |
| |
| val64 = float64_val(f64); |
| |
| val = ((result_exp & 0xff) << 23) |
| | ((val64 >> 29) & 0x7fffff); |
| return make_float32(val); |
| } |
| |
| float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) |
| { |
| float_status *s = fpstp; |
| float64 f64 = float64_squash_input_denormal(input, s); |
| uint64_t val = float64_val(f64); |
| uint64_t f64_sbit = 0x8000000000000000ULL & val; |
| int64_t f64_exp = extract64(val, 52, 11); |
| uint64_t f64_frac = extract64(val, 0, 52); |
| int64_t result_exp; |
| uint64_t result_frac; |
| |
| if (float64_is_any_nan(f64)) { |
| float64 nan = f64; |
| if (float64_is_signaling_nan(f64, s)) { |
| float_raise(float_flag_invalid, s); |
| nan = float64_maybe_silence_nan(f64, s); |
| } |
| if (s->default_nan_mode) { |
| nan = float64_default_nan(s); |
| } |
| return nan; |
| } else if (float64_is_zero(f64)) { |
| float_raise(float_flag_divbyzero, s); |
| return float64_set_sign(float64_infinity, float64_is_neg(f64)); |
| } else if (float64_is_neg(f64)) { |
| float_raise(float_flag_invalid, s); |
| return float64_default_nan(s); |
| } else if (float64_is_infinity(f64)) { |
| return float64_zero; |
| } |
| |
| /* Scale and normalize to a double-precision value between 0.25 and 1.0, |
| * preserving the parity of the exponent. */ |
| |
| if (f64_exp == 0) { |
| while (extract64(f64_frac, 51, 1) == 0) { |
| f64_frac = f64_frac << 1; |
| f64_exp = f64_exp - 1; |
| } |
| f64_frac = extract64(f64_frac, 0, 51) << 1; |
| } |
| |
| if (extract64(f64_exp, 0, 1) == 0) { |
| f64 = make_float64(f64_sbit |
| | (0x3feULL << 52) |
| | f64_frac); |
| } else { |
| f64 = make_float64(f64_sbit |
| | (0x3fdULL << 52) |
| | f64_frac); |
| } |
| |
| result_exp = (3068 - f64_exp) / 2; |
| |
| f64 = recip_sqrt_estimate(f64, s); |
| |
| result_frac = extract64(float64_val(f64), 0, 52); |
| |
| return make_float64(f64_sbit | |
| ((result_exp & 0x7ff) << 52) | |
| result_frac); |
| } |
| |
| uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) |
| { |
| float_status *s = fpstp; |
| float64 f64; |
| |
| if ((a & 0x80000000) == 0) { |
| return 0xffffffff; |
| } |
| |
| f64 = make_float64((0x3feULL << 52) |
| | ((int64_t)(a & 0x7fffffff) << 21)); |
| |
| f64 = recip_estimate(f64, s); |
| |
| return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); |
| } |
| |
| uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| float64 f64; |
| |
| if ((a & 0xc0000000) == 0) { |
| return 0xffffffff; |
| } |
| |
| if (a & 0x80000000) { |
| f64 = make_float64((0x3feULL << 52) |
| | ((uint64_t)(a & 0x7fffffff) << 21)); |
| } else { /* bits 31-30 == '01' */ |
| f64 = make_float64((0x3fdULL << 52) |
| | ((uint64_t)(a & 0x3fffffff) << 22)); |
| } |
| |
| f64 = recip_sqrt_estimate(f64, fpst); |
| |
| return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); |
| } |
| |
| /* VFPv4 fused multiply-accumulate */ |
| float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| return float32_muladd(a, b, c, 0, fpst); |
| } |
| |
| float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| return float64_muladd(a, b, c, 0, fpst); |
| } |
| |
| /* ARMv8 round to integral */ |
| float32 HELPER(rints_exact)(float32 x, void *fp_status) |
| { |
| return float32_round_to_int(x, fp_status); |
| } |
| |
| float64 HELPER(rintd_exact)(float64 x, void *fp_status) |
| { |
| return float64_round_to_int(x, fp_status); |
| } |
| |
| float32 HELPER(rints)(float32 x, void *fp_status) |
| { |
| int old_flags = get_float_exception_flags(fp_status), new_flags; |
| float32 ret; |
| |
| ret = float32_round_to_int(x, fp_status); |
| |
| /* Suppress any inexact exceptions the conversion produced */ |
| if (!(old_flags & float_flag_inexact)) { |
| new_flags = get_float_exception_flags(fp_status); |
| set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); |
| } |
| |
| return ret; |
| } |
| |
| float64 HELPER(rintd)(float64 x, void *fp_status) |
| { |
| int old_flags = get_float_exception_flags(fp_status), new_flags; |
| float64 ret; |
| |
| ret = float64_round_to_int(x, fp_status); |
| |
| new_flags = get_float_exception_flags(fp_status); |
| |
| /* Suppress any inexact exceptions the conversion produced */ |
| if (!(old_flags & float_flag_inexact)) { |
| new_flags = get_float_exception_flags(fp_status); |
| set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); |
| } |
| |
| return ret; |
| } |
| |
| /* Convert ARM rounding mode to softfloat */ |
| int arm_rmode_to_sf(int rmode) |
| { |
| switch (rmode) { |
| case FPROUNDING_TIEAWAY: |
| rmode = float_round_ties_away; |
| break; |
| case FPROUNDING_ODD: |
| /* FIXME: add support for TIEAWAY and ODD */ |
| qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", |
| rmode); |
| case FPROUNDING_TIEEVEN: |
| default: |
| rmode = float_round_nearest_even; |
| break; |
| case FPROUNDING_POSINF: |
| rmode = float_round_up; |
| break; |
| case FPROUNDING_NEGINF: |
| rmode = float_round_down; |
| break; |
| case FPROUNDING_ZERO: |
| rmode = float_round_to_zero; |
| break; |
| } |
| return rmode; |
| } |
| |
| /* CRC helpers. |
| * The upper bytes of val (above the number specified by 'bytes') must have |
| * been zeroed out by the caller. |
| */ |
| uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) |
| { |
| uint8_t buf[4]; |
| |
| stl_le_p(buf, val); |
| |
| /* zlib crc32 converts the accumulator and output to one's complement. */ |
| return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; |
| } |
| |
| uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) |
| { |
| uint8_t buf[4]; |
| |
| stl_le_p(buf, val); |
| |
| /* Linux crc32c converts the output to one's complement. */ |
| return crc32c(acc, buf, bytes) ^ 0xffffffff; |
| } |