|  | /* | 
|  | * QTest testcase for the MC146818 real-time clock | 
|  | * | 
|  | * Copyright IBM, Corp. 2012 | 
|  | * | 
|  | * Authors: | 
|  | *  Anthony Liguori   <aliguori@us.ibm.com> | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2 or later. | 
|  | * See the COPYING file in the top-level directory. | 
|  | * | 
|  | */ | 
|  | #include "libqtest.h" | 
|  | #include "hw/mc146818rtc_regs.h" | 
|  |  | 
|  | #include <glib.h> | 
|  | #include <stdio.h> | 
|  | #include <string.h> | 
|  | #include <stdlib.h> | 
|  | #include <unistd.h> | 
|  |  | 
|  | static uint8_t base = 0x70; | 
|  |  | 
|  | static int bcd2dec(int value) | 
|  | { | 
|  | return (((value >> 4) & 0x0F) * 10) + (value & 0x0F); | 
|  | } | 
|  |  | 
|  | static int dec2bcd(int value) | 
|  | { | 
|  | return ((value / 10) << 4) | (value % 10); | 
|  | } | 
|  |  | 
|  | static uint8_t cmos_read(uint8_t reg) | 
|  | { | 
|  | outb(base + 0, reg); | 
|  | return inb(base + 1); | 
|  | } | 
|  |  | 
|  | static void cmos_write(uint8_t reg, uint8_t val) | 
|  | { | 
|  | outb(base + 0, reg); | 
|  | outb(base + 1, val); | 
|  | } | 
|  |  | 
|  | static int tm_cmp(struct tm *lhs, struct tm *rhs) | 
|  | { | 
|  | time_t a, b; | 
|  | struct tm d1, d2; | 
|  |  | 
|  | memcpy(&d1, lhs, sizeof(d1)); | 
|  | memcpy(&d2, rhs, sizeof(d2)); | 
|  |  | 
|  | a = mktime(&d1); | 
|  | b = mktime(&d2); | 
|  |  | 
|  | if (a < b) { | 
|  | return -1; | 
|  | } else if (a > b) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | static void print_tm(struct tm *tm) | 
|  | { | 
|  | printf("%04d-%02d-%02d %02d:%02d:%02d\n", | 
|  | tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, | 
|  | tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void cmos_get_date_time(struct tm *date) | 
|  | { | 
|  | int base_year = 2000, hour_offset; | 
|  | int sec, min, hour, mday, mon, year; | 
|  | time_t ts; | 
|  | struct tm dummy; | 
|  |  | 
|  | sec = cmos_read(RTC_SECONDS); | 
|  | min = cmos_read(RTC_MINUTES); | 
|  | hour = cmos_read(RTC_HOURS); | 
|  | mday = cmos_read(RTC_DAY_OF_MONTH); | 
|  | mon = cmos_read(RTC_MONTH); | 
|  | year = cmos_read(RTC_YEAR); | 
|  |  | 
|  | if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) { | 
|  | sec = bcd2dec(sec); | 
|  | min = bcd2dec(min); | 
|  | hour = bcd2dec(hour); | 
|  | mday = bcd2dec(mday); | 
|  | mon = bcd2dec(mon); | 
|  | year = bcd2dec(year); | 
|  | hour_offset = 80; | 
|  | } else { | 
|  | hour_offset = 0x80; | 
|  | } | 
|  |  | 
|  | if ((cmos_read(0x0B) & REG_B_24H) == 0) { | 
|  | if (hour >= hour_offset) { | 
|  | hour -= hour_offset; | 
|  | hour += 12; | 
|  | } | 
|  | } | 
|  |  | 
|  | ts = time(NULL); | 
|  | localtime_r(&ts, &dummy); | 
|  |  | 
|  | date->tm_isdst = dummy.tm_isdst; | 
|  | date->tm_sec = sec; | 
|  | date->tm_min = min; | 
|  | date->tm_hour = hour; | 
|  | date->tm_mday = mday; | 
|  | date->tm_mon = mon - 1; | 
|  | date->tm_year = base_year + year - 1900; | 
|  | date->tm_gmtoff = 0; | 
|  |  | 
|  | ts = mktime(date); | 
|  | } | 
|  |  | 
|  | static void check_time(int wiggle) | 
|  | { | 
|  | struct tm start, date[4], end; | 
|  | struct tm *datep; | 
|  | time_t ts; | 
|  |  | 
|  | /* | 
|  | * This check assumes a few things.  First, we cannot guarantee that we get | 
|  | * a consistent reading from the wall clock because we may hit an edge of | 
|  | * the clock while reading.  To work around this, we read four clock readings | 
|  | * such that at least two of them should match.  We need to assume that one | 
|  | * reading is corrupt so we need four readings to ensure that we have at | 
|  | * least two consecutive identical readings | 
|  | * | 
|  | * It's also possible that we'll cross an edge reading the host clock so | 
|  | * simply check to make sure that the clock reading is within the period of | 
|  | * when we expect it to be. | 
|  | */ | 
|  |  | 
|  | ts = time(NULL); | 
|  | gmtime_r(&ts, &start); | 
|  |  | 
|  | cmos_get_date_time(&date[0]); | 
|  | cmos_get_date_time(&date[1]); | 
|  | cmos_get_date_time(&date[2]); | 
|  | cmos_get_date_time(&date[3]); | 
|  |  | 
|  | ts = time(NULL); | 
|  | gmtime_r(&ts, &end); | 
|  |  | 
|  | if (tm_cmp(&date[0], &date[1]) == 0) { | 
|  | datep = &date[0]; | 
|  | } else if (tm_cmp(&date[1], &date[2]) == 0) { | 
|  | datep = &date[1]; | 
|  | } else if (tm_cmp(&date[2], &date[3]) == 0) { | 
|  | datep = &date[2]; | 
|  | } else { | 
|  | g_assert_not_reached(); | 
|  | } | 
|  |  | 
|  | if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) { | 
|  | long t, s; | 
|  |  | 
|  | start.tm_isdst = datep->tm_isdst; | 
|  |  | 
|  | t = (long)mktime(datep); | 
|  | s = (long)mktime(&start); | 
|  | if (t < s) { | 
|  | g_test_message("RTC is %ld second(s) behind wall-clock\n", (s - t)); | 
|  | } else { | 
|  | g_test_message("RTC is %ld second(s) ahead of wall-clock\n", (t - s)); | 
|  | } | 
|  |  | 
|  | g_assert_cmpint(ABS(t - s), <=, wiggle); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int wiggle = 2; | 
|  |  | 
|  | static void bcd_check_time(void) | 
|  | { | 
|  | /* Set BCD mode */ | 
|  | cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_DM); | 
|  | check_time(wiggle); | 
|  | } | 
|  |  | 
|  | static void dec_check_time(void) | 
|  | { | 
|  | /* Set DEC mode */ | 
|  | cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_DM); | 
|  | check_time(wiggle); | 
|  | } | 
|  |  | 
|  | static void set_alarm_time(struct tm *tm) | 
|  | { | 
|  | int sec; | 
|  |  | 
|  | sec = tm->tm_sec; | 
|  |  | 
|  | if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) { | 
|  | sec = dec2bcd(sec); | 
|  | } | 
|  |  | 
|  | cmos_write(RTC_SECONDS_ALARM, sec); | 
|  | cmos_write(RTC_MINUTES_ALARM, RTC_ALARM_DONT_CARE); | 
|  | cmos_write(RTC_HOURS_ALARM, RTC_ALARM_DONT_CARE); | 
|  | } | 
|  |  | 
|  | static void alarm_time(void) | 
|  | { | 
|  | struct tm now; | 
|  | time_t ts; | 
|  | int i; | 
|  |  | 
|  | ts = time(NULL); | 
|  | gmtime_r(&ts, &now); | 
|  |  | 
|  | /* set DEC mode */ | 
|  | cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_DM); | 
|  |  | 
|  | g_assert(!get_irq(RTC_ISA_IRQ)); | 
|  | cmos_read(RTC_REG_C); | 
|  |  | 
|  | now.tm_sec = (now.tm_sec + 2) % 60; | 
|  | set_alarm_time(&now); | 
|  | cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_AIE); | 
|  |  | 
|  | for (i = 0; i < 2 + wiggle; i++) { | 
|  | if (get_irq(RTC_ISA_IRQ)) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | clock_step(1000000000); | 
|  | } | 
|  |  | 
|  | g_assert(get_irq(RTC_ISA_IRQ)); | 
|  | g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0); | 
|  | g_assert(cmos_read(RTC_REG_C) == 0); | 
|  | } | 
|  |  | 
|  | /* success if no crash or abort */ | 
|  | static void fuzz_registers(void) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < 1000; i++) { | 
|  | uint8_t reg, val; | 
|  |  | 
|  | reg = (uint8_t)g_test_rand_int_range(0, 16); | 
|  | val = (uint8_t)g_test_rand_int_range(0, 256); | 
|  |  | 
|  | cmos_write(reg, val); | 
|  | cmos_read(reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | int main(int argc, char **argv) | 
|  | { | 
|  | QTestState *s = NULL; | 
|  | int ret; | 
|  |  | 
|  | g_test_init(&argc, &argv, NULL); | 
|  |  | 
|  | s = qtest_start("-display none -rtc clock=vm"); | 
|  | qtest_irq_intercept_in(s, "ioapic"); | 
|  |  | 
|  | qtest_add_func("/rtc/bcd/check-time", bcd_check_time); | 
|  | qtest_add_func("/rtc/dec/check-time", dec_check_time); | 
|  | qtest_add_func("/rtc/alarm-time", alarm_time); | 
|  | qtest_add_func("/rtc/fuzz-registers", fuzz_registers); | 
|  | ret = g_test_run(); | 
|  |  | 
|  | if (s) { | 
|  | qtest_quit(s); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } |