|  | /* | 
|  | *  PowerPC integer and vector emulation helpers for QEMU. | 
|  | * | 
|  | *  Copyright (c) 2003-2007 Jocelyn Mayer | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  | #include "cpu.h" | 
|  | #include "host-utils.h" | 
|  | #include "helper.h" | 
|  |  | 
|  | #include "helper_regs.h" | 
|  | /*****************************************************************************/ | 
|  | /* Fixed point operations helpers */ | 
|  | #if defined(TARGET_PPC64) | 
|  |  | 
|  | /* multiply high word */ | 
|  | uint64_t helper_mulhd(uint64_t arg1, uint64_t arg2) | 
|  | { | 
|  | uint64_t tl, th; | 
|  |  | 
|  | muls64(&tl, &th, arg1, arg2); | 
|  | return th; | 
|  | } | 
|  |  | 
|  | /* multiply high word unsigned */ | 
|  | uint64_t helper_mulhdu(uint64_t arg1, uint64_t arg2) | 
|  | { | 
|  | uint64_t tl, th; | 
|  |  | 
|  | mulu64(&tl, &th, arg1, arg2); | 
|  | return th; | 
|  | } | 
|  |  | 
|  | uint64_t helper_mulldo(CPUPPCState *env, uint64_t arg1, uint64_t arg2) | 
|  | { | 
|  | int64_t th; | 
|  | uint64_t tl; | 
|  |  | 
|  | muls64(&tl, (uint64_t *)&th, arg1, arg2); | 
|  | /* If th != 0 && th != -1, then we had an overflow */ | 
|  | if (likely((uint64_t)(th + 1) <= 1)) { | 
|  | env->xer &= ~(1 << XER_OV); | 
|  | } else { | 
|  | env->xer |= (1 << XER_OV) | (1 << XER_SO); | 
|  | } | 
|  | return (int64_t)tl; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | target_ulong helper_cntlzw(target_ulong t) | 
|  | { | 
|  | return clz32(t); | 
|  | } | 
|  |  | 
|  | #if defined(TARGET_PPC64) | 
|  | target_ulong helper_cntlzd(target_ulong t) | 
|  | { | 
|  | return clz64(t); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* shift right arithmetic helper */ | 
|  | target_ulong helper_sraw(CPUPPCState *env, target_ulong value, | 
|  | target_ulong shift) | 
|  | { | 
|  | int32_t ret; | 
|  |  | 
|  | if (likely(!(shift & 0x20))) { | 
|  | if (likely((uint32_t)shift != 0)) { | 
|  | shift &= 0x1f; | 
|  | ret = (int32_t)value >> shift; | 
|  | if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) { | 
|  | env->xer &= ~(1 << XER_CA); | 
|  | } else { | 
|  | env->xer |= (1 << XER_CA); | 
|  | } | 
|  | } else { | 
|  | ret = (int32_t)value; | 
|  | env->xer &= ~(1 << XER_CA); | 
|  | } | 
|  | } else { | 
|  | ret = (int32_t)value >> 31; | 
|  | if (ret) { | 
|  | env->xer |= (1 << XER_CA); | 
|  | } else { | 
|  | env->xer &= ~(1 << XER_CA); | 
|  | } | 
|  | } | 
|  | return (target_long)ret; | 
|  | } | 
|  |  | 
|  | #if defined(TARGET_PPC64) | 
|  | target_ulong helper_srad(CPUPPCState *env, target_ulong value, | 
|  | target_ulong shift) | 
|  | { | 
|  | int64_t ret; | 
|  |  | 
|  | if (likely(!(shift & 0x40))) { | 
|  | if (likely((uint64_t)shift != 0)) { | 
|  | shift &= 0x3f; | 
|  | ret = (int64_t)value >> shift; | 
|  | if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) { | 
|  | env->xer &= ~(1 << XER_CA); | 
|  | } else { | 
|  | env->xer |= (1 << XER_CA); | 
|  | } | 
|  | } else { | 
|  | ret = (int64_t)value; | 
|  | env->xer &= ~(1 << XER_CA); | 
|  | } | 
|  | } else { | 
|  | ret = (int64_t)value >> 63; | 
|  | if (ret) { | 
|  | env->xer |= (1 << XER_CA); | 
|  | } else { | 
|  | env->xer &= ~(1 << XER_CA); | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(TARGET_PPC64) | 
|  | target_ulong helper_popcntb(target_ulong val) | 
|  | { | 
|  | val = (val & 0x5555555555555555ULL) + ((val >>  1) & | 
|  | 0x5555555555555555ULL); | 
|  | val = (val & 0x3333333333333333ULL) + ((val >>  2) & | 
|  | 0x3333333333333333ULL); | 
|  | val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >>  4) & | 
|  | 0x0f0f0f0f0f0f0f0fULL); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | target_ulong helper_popcntw(target_ulong val) | 
|  | { | 
|  | val = (val & 0x5555555555555555ULL) + ((val >>  1) & | 
|  | 0x5555555555555555ULL); | 
|  | val = (val & 0x3333333333333333ULL) + ((val >>  2) & | 
|  | 0x3333333333333333ULL); | 
|  | val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >>  4) & | 
|  | 0x0f0f0f0f0f0f0f0fULL); | 
|  | val = (val & 0x00ff00ff00ff00ffULL) + ((val >>  8) & | 
|  | 0x00ff00ff00ff00ffULL); | 
|  | val = (val & 0x0000ffff0000ffffULL) + ((val >> 16) & | 
|  | 0x0000ffff0000ffffULL); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | target_ulong helper_popcntd(target_ulong val) | 
|  | { | 
|  | return ctpop64(val); | 
|  | } | 
|  | #else | 
|  | target_ulong helper_popcntb(target_ulong val) | 
|  | { | 
|  | val = (val & 0x55555555) + ((val >>  1) & 0x55555555); | 
|  | val = (val & 0x33333333) + ((val >>  2) & 0x33333333); | 
|  | val = (val & 0x0f0f0f0f) + ((val >>  4) & 0x0f0f0f0f); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | target_ulong helper_popcntw(target_ulong val) | 
|  | { | 
|  | val = (val & 0x55555555) + ((val >>  1) & 0x55555555); | 
|  | val = (val & 0x33333333) + ((val >>  2) & 0x33333333); | 
|  | val = (val & 0x0f0f0f0f) + ((val >>  4) & 0x0f0f0f0f); | 
|  | val = (val & 0x00ff00ff) + ((val >>  8) & 0x00ff00ff); | 
|  | val = (val & 0x0000ffff) + ((val >> 16) & 0x0000ffff); | 
|  | return val; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /*****************************************************************************/ | 
|  | /* PowerPC 601 specific instructions (POWER bridge) */ | 
|  | target_ulong helper_div(CPUPPCState *env, target_ulong arg1, target_ulong arg2) | 
|  | { | 
|  | uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ]; | 
|  |  | 
|  | if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || | 
|  | (int32_t)arg2 == 0) { | 
|  | env->spr[SPR_MQ] = 0; | 
|  | return INT32_MIN; | 
|  | } else { | 
|  | env->spr[SPR_MQ] = tmp % arg2; | 
|  | return  tmp / (int32_t)arg2; | 
|  | } | 
|  | } | 
|  |  | 
|  | target_ulong helper_divo(CPUPPCState *env, target_ulong arg1, | 
|  | target_ulong arg2) | 
|  | { | 
|  | uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ]; | 
|  |  | 
|  | if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || | 
|  | (int32_t)arg2 == 0) { | 
|  | env->xer |= (1 << XER_OV) | (1 << XER_SO); | 
|  | env->spr[SPR_MQ] = 0; | 
|  | return INT32_MIN; | 
|  | } else { | 
|  | env->spr[SPR_MQ] = tmp % arg2; | 
|  | tmp /= (int32_t)arg2; | 
|  | if ((int32_t)tmp != tmp) { | 
|  | env->xer |= (1 << XER_OV) | (1 << XER_SO); | 
|  | } else { | 
|  | env->xer &= ~(1 << XER_OV); | 
|  | } | 
|  | return tmp; | 
|  | } | 
|  | } | 
|  |  | 
|  | target_ulong helper_divs(CPUPPCState *env, target_ulong arg1, | 
|  | target_ulong arg2) | 
|  | { | 
|  | if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || | 
|  | (int32_t)arg2 == 0) { | 
|  | env->spr[SPR_MQ] = 0; | 
|  | return INT32_MIN; | 
|  | } else { | 
|  | env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2; | 
|  | return (int32_t)arg1 / (int32_t)arg2; | 
|  | } | 
|  | } | 
|  |  | 
|  | target_ulong helper_divso(CPUPPCState *env, target_ulong arg1, | 
|  | target_ulong arg2) | 
|  | { | 
|  | if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) || | 
|  | (int32_t)arg2 == 0) { | 
|  | env->xer |= (1 << XER_OV) | (1 << XER_SO); | 
|  | env->spr[SPR_MQ] = 0; | 
|  | return INT32_MIN; | 
|  | } else { | 
|  | env->xer &= ~(1 << XER_OV); | 
|  | env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2; | 
|  | return (int32_t)arg1 / (int32_t)arg2; | 
|  | } | 
|  | } | 
|  |  | 
|  | /*****************************************************************************/ | 
|  | /* 602 specific instructions */ | 
|  | /* mfrom is the most crazy instruction ever seen, imho ! */ | 
|  | /* Real implementation uses a ROM table. Do the same */ | 
|  | /* Extremely decomposed: | 
|  | *                      -arg / 256 | 
|  | * return 256 * log10(10           + 1.0) + 0.5 | 
|  | */ | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | target_ulong helper_602_mfrom(target_ulong arg) | 
|  | { | 
|  | if (likely(arg < 602)) { | 
|  | #include "mfrom_table.c" | 
|  | return mfrom_ROM_table[arg]; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /*****************************************************************************/ | 
|  | /* Altivec extension helpers */ | 
|  | #if defined(HOST_WORDS_BIGENDIAN) | 
|  | #define HI_IDX 0 | 
|  | #define LO_IDX 1 | 
|  | #else | 
|  | #define HI_IDX 1 | 
|  | #define LO_IDX 0 | 
|  | #endif | 
|  |  | 
|  | #if defined(HOST_WORDS_BIGENDIAN) | 
|  | #define VECTOR_FOR_INORDER_I(index, element)                    \ | 
|  | for (index = 0; index < ARRAY_SIZE(r->element); index++) | 
|  | #else | 
|  | #define VECTOR_FOR_INORDER_I(index, element)                    \ | 
|  | for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--) | 
|  | #endif | 
|  |  | 
|  | /* If X is a NaN, store the corresponding QNaN into RESULT.  Otherwise, | 
|  | * execute the following block.  */ | 
|  | #define DO_HANDLE_NAN(result, x)                        \ | 
|  | if (float32_is_any_nan(x)) {                        \ | 
|  | CPU_FloatU __f;                                 \ | 
|  | __f.f = x;                                      \ | 
|  | __f.l = __f.l | (1 << 22);  /* Set QNaN bit. */ \ | 
|  | result = __f.f;                                 \ | 
|  | } else | 
|  |  | 
|  | #define HANDLE_NAN1(result, x)                  \ | 
|  | DO_HANDLE_NAN(result, x) | 
|  | #define HANDLE_NAN2(result, x, y)                       \ | 
|  | DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y) | 
|  | #define HANDLE_NAN3(result, x, y, z)                                    \ | 
|  | DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y) DO_HANDLE_NAN(result, z) | 
|  |  | 
|  | /* Saturating arithmetic helpers.  */ | 
|  | #define SATCVT(from, to, from_type, to_type, min, max)          \ | 
|  | static inline to_type cvt##from##to(from_type x, int *sat)  \ | 
|  | {                                                           \ | 
|  | to_type r;                                              \ | 
|  | \ | 
|  | if (x < (from_type)min) {                               \ | 
|  | r = min;                                            \ | 
|  | *sat = 1;                                           \ | 
|  | } else if (x > (from_type)max) {                        \ | 
|  | r = max;                                            \ | 
|  | *sat = 1;                                           \ | 
|  | } else {                                                \ | 
|  | r = x;                                              \ | 
|  | }                                                       \ | 
|  | return r;                                               \ | 
|  | } | 
|  | #define SATCVTU(from, to, from_type, to_type, min, max)         \ | 
|  | static inline to_type cvt##from##to(from_type x, int *sat)  \ | 
|  | {                                                           \ | 
|  | to_type r;                                              \ | 
|  | \ | 
|  | if (x > (from_type)max) {                               \ | 
|  | r = max;                                            \ | 
|  | *sat = 1;                                           \ | 
|  | } else {                                                \ | 
|  | r = x;                                              \ | 
|  | }                                                       \ | 
|  | return r;                                               \ | 
|  | } | 
|  | SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX) | 
|  | SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX) | 
|  | SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX) | 
|  |  | 
|  | SATCVTU(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX) | 
|  | SATCVTU(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX) | 
|  | SATCVTU(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX) | 
|  | SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX) | 
|  | SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX) | 
|  | SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX) | 
|  | #undef SATCVT | 
|  | #undef SATCVTU | 
|  |  | 
|  | void helper_lvsl(ppc_avr_t *r, target_ulong sh) | 
|  | { | 
|  | int i, j = (sh & 0xf); | 
|  |  | 
|  | VECTOR_FOR_INORDER_I(i, u8) { | 
|  | r->u8[i] = j++; | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_lvsr(ppc_avr_t *r, target_ulong sh) | 
|  | { | 
|  | int i, j = 0x10 - (sh & 0xf); | 
|  |  | 
|  | VECTOR_FOR_INORDER_I(i, u8) { | 
|  | r->u8[i] = j++; | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_mtvscr(CPUPPCState *env, ppc_avr_t *r) | 
|  | { | 
|  | #if defined(HOST_WORDS_BIGENDIAN) | 
|  | env->vscr = r->u32[3]; | 
|  | #else | 
|  | env->vscr = r->u32[0]; | 
|  | #endif | 
|  | set_flush_to_zero(vscr_nj, &env->vec_status); | 
|  | } | 
|  |  | 
|  | void helper_vaddcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(r->u32); i++) { | 
|  | r->u32[i] = ~a->u32[i] < b->u32[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define VARITH_DO(name, op, element)                                    \ | 
|  | void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)       \ | 
|  | {                                                                   \ | 
|  | int i;                                                          \ | 
|  | \ | 
|  | for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \ | 
|  | r->element[i] = a->element[i] op b->element[i];             \ | 
|  | }                                                               \ | 
|  | } | 
|  | #define VARITH(suffix, element)                 \ | 
|  | VARITH_DO(add##suffix, +, element)          \ | 
|  | VARITH_DO(sub##suffix, -, element) | 
|  | VARITH(ubm, u8) | 
|  | VARITH(uhm, u16) | 
|  | VARITH(uwm, u32) | 
|  | #undef VARITH_DO | 
|  | #undef VARITH | 
|  |  | 
|  | #define VARITHFP(suffix, func)                                          \ | 
|  | void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \ | 
|  | ppc_avr_t *b)                                 \ | 
|  | {                                                                   \ | 
|  | int i;                                                          \ | 
|  | \ | 
|  | for (i = 0; i < ARRAY_SIZE(r->f); i++) {                        \ | 
|  | HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) {                    \ | 
|  | r->f[i] = func(a->f[i], b->f[i], &env->vec_status);     \ | 
|  | }                                                           \ | 
|  | }                                                               \ | 
|  | } | 
|  | VARITHFP(addfp, float32_add) | 
|  | VARITHFP(subfp, float32_sub) | 
|  | #undef VARITHFP | 
|  |  | 
|  | #define VARITHSAT_CASE(type, op, cvt, element)                          \ | 
|  | {                                                                   \ | 
|  | type result = (type)a->element[i] op (type)b->element[i];       \ | 
|  | r->element[i] = cvt(result, &sat);                              \ | 
|  | } | 
|  |  | 
|  | #define VARITHSAT_DO(name, op, optype, cvt, element)                    \ | 
|  | void helper_v##name(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,   \ | 
|  | ppc_avr_t *b)                                   \ | 
|  | {                                                                   \ | 
|  | int sat = 0;                                                    \ | 
|  | int i;                                                          \ | 
|  | \ | 
|  | for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \ | 
|  | switch (sizeof(r->element[0])) {                            \ | 
|  | case 1:                                                     \ | 
|  | VARITHSAT_CASE(optype, op, cvt, element);               \ | 
|  | break;                                                  \ | 
|  | case 2:                                                     \ | 
|  | VARITHSAT_CASE(optype, op, cvt, element);               \ | 
|  | break;                                                  \ | 
|  | case 4:                                                     \ | 
|  | VARITHSAT_CASE(optype, op, cvt, element);               \ | 
|  | break;                                                  \ | 
|  | }                                                           \ | 
|  | }                                                               \ | 
|  | if (sat) {                                                      \ | 
|  | env->vscr |= (1 << VSCR_SAT);                               \ | 
|  | }                                                               \ | 
|  | } | 
|  | #define VARITHSAT_SIGNED(suffix, element, optype, cvt)          \ | 
|  | VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element)      \ | 
|  | VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element) | 
|  | #define VARITHSAT_UNSIGNED(suffix, element, optype, cvt)        \ | 
|  | VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element)      \ | 
|  | VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element) | 
|  | VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb) | 
|  | VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh) | 
|  | VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw) | 
|  | VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub) | 
|  | VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh) | 
|  | VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw) | 
|  | #undef VARITHSAT_CASE | 
|  | #undef VARITHSAT_DO | 
|  | #undef VARITHSAT_SIGNED | 
|  | #undef VARITHSAT_UNSIGNED | 
|  |  | 
|  | #define VAVG_DO(name, element, etype)                                   \ | 
|  | void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)       \ | 
|  | {                                                                   \ | 
|  | int i;                                                          \ | 
|  | \ | 
|  | for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \ | 
|  | etype x = (etype)a->element[i] + (etype)b->element[i] + 1;  \ | 
|  | r->element[i] = x >> 1;                                     \ | 
|  | }                                                               \ | 
|  | } | 
|  |  | 
|  | #define VAVG(type, signed_element, signed_type, unsigned_element,       \ | 
|  | unsigned_type)                                             \ | 
|  | VAVG_DO(avgs##type, signed_element, signed_type)                    \ | 
|  | VAVG_DO(avgu##type, unsigned_element, unsigned_type) | 
|  | VAVG(b, s8, int16_t, u8, uint16_t) | 
|  | VAVG(h, s16, int32_t, u16, uint32_t) | 
|  | VAVG(w, s32, int64_t, u32, uint64_t) | 
|  | #undef VAVG_DO | 
|  | #undef VAVG | 
|  |  | 
|  | #define VCF(suffix, cvt, element)                                       \ | 
|  | void helper_vcf##suffix(CPUPPCState *env, ppc_avr_t *r,             \ | 
|  | ppc_avr_t *b, uint32_t uim)                 \ | 
|  | {                                                                   \ | 
|  | int i;                                                          \ | 
|  | \ | 
|  | for (i = 0; i < ARRAY_SIZE(r->f); i++) {                        \ | 
|  | float32 t = cvt(b->element[i], &env->vec_status);           \ | 
|  | r->f[i] = float32_scalbn(t, -uim, &env->vec_status);        \ | 
|  | }                                                               \ | 
|  | } | 
|  | VCF(ux, uint32_to_float32, u32) | 
|  | VCF(sx, int32_to_float32, s32) | 
|  | #undef VCF | 
|  |  | 
|  | #define VCMP_DO(suffix, compare, element, record)                       \ | 
|  | void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r,            \ | 
|  | ppc_avr_t *a, ppc_avr_t *b)                \ | 
|  | {                                                                   \ | 
|  | uint32_t ones = (uint32_t)-1;                                   \ | 
|  | uint32_t all = ones;                                            \ | 
|  | uint32_t none = 0;                                              \ | 
|  | int i;                                                          \ | 
|  | \ | 
|  | for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \ | 
|  | uint32_t result = (a->element[i] compare b->element[i] ?    \ | 
|  | ones : 0x0);                             \ | 
|  | switch (sizeof(a->element[0])) {                            \ | 
|  | case 4:                                                     \ | 
|  | r->u32[i] = result;                                     \ | 
|  | break;                                                  \ | 
|  | case 2:                                                     \ | 
|  | r->u16[i] = result;                                     \ | 
|  | break;                                                  \ | 
|  | case 1:                                                     \ | 
|  | r->u8[i] = result;                                      \ | 
|  | break;                                                  \ | 
|  | }                                                           \ | 
|  | all &= result;                                              \ | 
|  | none |= result;                                             \ | 
|  | }                                                               \ | 
|  | if (record) {                                                   \ | 
|  | env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1);       \ | 
|  | }                                                               \ | 
|  | } | 
|  | #define VCMP(suffix, compare, element)          \ | 
|  | VCMP_DO(suffix, compare, element, 0)        \ | 
|  | VCMP_DO(suffix##_dot, compare, element, 1) | 
|  | VCMP(equb, ==, u8) | 
|  | VCMP(equh, ==, u16) | 
|  | VCMP(equw, ==, u32) | 
|  | VCMP(gtub, >, u8) | 
|  | VCMP(gtuh, >, u16) | 
|  | VCMP(gtuw, >, u32) | 
|  | VCMP(gtsb, >, s8) | 
|  | VCMP(gtsh, >, s16) | 
|  | VCMP(gtsw, >, s32) | 
|  | #undef VCMP_DO | 
|  | #undef VCMP | 
|  |  | 
|  | #define VCMPFP_DO(suffix, compare, order, record)                       \ | 
|  | void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r,            \ | 
|  | ppc_avr_t *a, ppc_avr_t *b)                \ | 
|  | {                                                                   \ | 
|  | uint32_t ones = (uint32_t)-1;                                   \ | 
|  | uint32_t all = ones;                                            \ | 
|  | uint32_t none = 0;                                              \ | 
|  | int i;                                                          \ | 
|  | \ | 
|  | for (i = 0; i < ARRAY_SIZE(r->f); i++) {                        \ | 
|  | uint32_t result;                                            \ | 
|  | int rel = float32_compare_quiet(a->f[i], b->f[i],           \ | 
|  | &env->vec_status);          \ | 
|  | if (rel == float_relation_unordered) {                      \ | 
|  | result = 0;                                             \ | 
|  | } else if (rel compare order) {                             \ | 
|  | result = ones;                                          \ | 
|  | } else {                                                    \ | 
|  | result = 0;                                             \ | 
|  | }                                                           \ | 
|  | r->u32[i] = result;                                         \ | 
|  | all &= result;                                              \ | 
|  | none |= result;                                             \ | 
|  | }                                                               \ | 
|  | if (record) {                                                   \ | 
|  | env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1);       \ | 
|  | }                                                               \ | 
|  | } | 
|  | #define VCMPFP(suffix, compare, order)          \ | 
|  | VCMPFP_DO(suffix, compare, order, 0)        \ | 
|  | VCMPFP_DO(suffix##_dot, compare, order, 1) | 
|  | VCMPFP(eqfp, ==, float_relation_equal) | 
|  | VCMPFP(gefp, !=, float_relation_less) | 
|  | VCMPFP(gtfp, ==, float_relation_greater) | 
|  | #undef VCMPFP_DO | 
|  | #undef VCMPFP | 
|  |  | 
|  | static inline void vcmpbfp_internal(CPUPPCState *env, ppc_avr_t *r, | 
|  | ppc_avr_t *a, ppc_avr_t *b, int record) | 
|  | { | 
|  | int i; | 
|  | int all_in = 0; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(r->f); i++) { | 
|  | int le_rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status); | 
|  | if (le_rel == float_relation_unordered) { | 
|  | r->u32[i] = 0xc0000000; | 
|  | /* ALL_IN does not need to be updated here.  */ | 
|  | } else { | 
|  | float32 bneg = float32_chs(b->f[i]); | 
|  | int ge_rel = float32_compare_quiet(a->f[i], bneg, &env->vec_status); | 
|  | int le = le_rel != float_relation_greater; | 
|  | int ge = ge_rel != float_relation_less; | 
|  |  | 
|  | r->u32[i] = ((!le) << 31) | ((!ge) << 30); | 
|  | all_in |= (!le | !ge); | 
|  | } | 
|  | } | 
|  | if (record) { | 
|  | env->crf[6] = (all_in == 0) << 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_vcmpbfp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | 
|  | { | 
|  | vcmpbfp_internal(env, r, a, b, 0); | 
|  | } | 
|  |  | 
|  | void helper_vcmpbfp_dot(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, | 
|  | ppc_avr_t *b) | 
|  | { | 
|  | vcmpbfp_internal(env, r, a, b, 1); | 
|  | } | 
|  |  | 
|  | #define VCT(suffix, satcvt, element)                                    \ | 
|  | void helper_vct##suffix(CPUPPCState *env, ppc_avr_t *r,             \ | 
|  | ppc_avr_t *b, uint32_t uim)                 \ | 
|  | {                                                                   \ | 
|  | int i;                                                          \ | 
|  | int sat = 0;                                                    \ | 
|  | float_status s = env->vec_status;                               \ | 
|  | \ | 
|  | set_float_rounding_mode(float_round_to_zero, &s);               \ | 
|  | for (i = 0; i < ARRAY_SIZE(r->f); i++) {                        \ | 
|  | if (float32_is_any_nan(b->f[i])) {                          \ | 
|  | r->element[i] = 0;                                      \ | 
|  | } else {                                                    \ | 
|  | float64 t = float32_to_float64(b->f[i], &s);            \ | 
|  | int64_t j;                                              \ | 
|  | \ | 
|  | t = float64_scalbn(t, uim, &s);                         \ | 
|  | j = float64_to_int64(t, &s);                            \ | 
|  | r->element[i] = satcvt(j, &sat);                        \ | 
|  | }                                                           \ | 
|  | }                                                               \ | 
|  | if (sat) {                                                      \ | 
|  | env->vscr |= (1 << VSCR_SAT);                               \ | 
|  | }                                                               \ | 
|  | } | 
|  | VCT(uxs, cvtsduw, u32) | 
|  | VCT(sxs, cvtsdsw, s32) | 
|  | #undef VCT | 
|  |  | 
|  | void helper_vmaddfp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, | 
|  | ppc_avr_t *c) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(r->f); i++) { | 
|  | HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) { | 
|  | /* Need to do the computation in higher precision and round | 
|  | * once at the end.  */ | 
|  | float64 af, bf, cf, t; | 
|  |  | 
|  | af = float32_to_float64(a->f[i], &env->vec_status); | 
|  | bf = float32_to_float64(b->f[i], &env->vec_status); | 
|  | cf = float32_to_float64(c->f[i], &env->vec_status); | 
|  | t = float64_mul(af, cf, &env->vec_status); | 
|  | t = float64_add(t, bf, &env->vec_status); | 
|  | r->f[i] = float64_to_float32(t, &env->vec_status); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_vmhaddshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, | 
|  | ppc_avr_t *b, ppc_avr_t *c) | 
|  | { | 
|  | int sat = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(r->s16); i++) { | 
|  | int32_t prod = a->s16[i] * b->s16[i]; | 
|  | int32_t t = (int32_t)c->s16[i] + (prod >> 15); | 
|  |  | 
|  | r->s16[i] = cvtswsh(t, &sat); | 
|  | } | 
|  |  | 
|  | if (sat) { | 
|  | env->vscr |= (1 << VSCR_SAT); | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_vmhraddshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, | 
|  | ppc_avr_t *b, ppc_avr_t *c) | 
|  | { | 
|  | int sat = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(r->s16); i++) { | 
|  | int32_t prod = a->s16[i] * b->s16[i] + 0x00004000; | 
|  | int32_t t = (int32_t)c->s16[i] + (prod >> 15); | 
|  | r->s16[i] = cvtswsh(t, &sat); | 
|  | } | 
|  |  | 
|  | if (sat) { | 
|  | env->vscr |= (1 << VSCR_SAT); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define VMINMAX_DO(name, compare, element)                              \ | 
|  | void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)       \ | 
|  | {                                                                   \ | 
|  | int i;                                                          \ | 
|  | \ | 
|  | for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \ | 
|  | if (a->element[i] compare b->element[i]) {                  \ | 
|  | r->element[i] = b->element[i];                          \ | 
|  | } else {                                                    \ | 
|  | r->element[i] = a->element[i];                          \ | 
|  | }                                                           \ | 
|  | }                                                               \ | 
|  | } | 
|  | #define VMINMAX(suffix, element)                \ | 
|  | VMINMAX_DO(min##suffix, >, element)         \ | 
|  | VMINMAX_DO(max##suffix, <, element) | 
|  | VMINMAX(sb, s8) | 
|  | VMINMAX(sh, s16) | 
|  | VMINMAX(sw, s32) | 
|  | VMINMAX(ub, u8) | 
|  | VMINMAX(uh, u16) | 
|  | VMINMAX(uw, u32) | 
|  | #undef VMINMAX_DO | 
|  | #undef VMINMAX | 
|  |  | 
|  | #define VMINMAXFP(suffix, rT, rF)                                       \ | 
|  | void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \ | 
|  | ppc_avr_t *b)                                 \ | 
|  | {                                                                   \ | 
|  | int i;                                                          \ | 
|  | \ | 
|  | for (i = 0; i < ARRAY_SIZE(r->f); i++) {                        \ | 
|  | HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) {                    \ | 
|  | if (float32_lt_quiet(a->f[i], b->f[i],                  \ | 
|  | &env->vec_status)) {               \ | 
|  | r->f[i] = rT->f[i];                                 \ | 
|  | } else {                                                \ | 
|  | r->f[i] = rF->f[i];                                 \ | 
|  | }                                                       \ | 
|  | }                                                           \ | 
|  | }                                                               \ | 
|  | } | 
|  | VMINMAXFP(minfp, a, b) | 
|  | VMINMAXFP(maxfp, b, a) | 
|  | #undef VMINMAXFP | 
|  |  | 
|  | void helper_vmladduhm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(r->s16); i++) { | 
|  | int32_t prod = a->s16[i] * b->s16[i]; | 
|  | r->s16[i] = (int16_t) (prod + c->s16[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define VMRG_DO(name, element, highp)                                   \ | 
|  | void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)       \ | 
|  | {                                                                   \ | 
|  | ppc_avr_t result;                                               \ | 
|  | int i;                                                          \ | 
|  | size_t n_elems = ARRAY_SIZE(r->element);                        \ | 
|  | \ | 
|  | for (i = 0; i < n_elems / 2; i++) {                             \ | 
|  | if (highp) {                                                \ | 
|  | result.element[i*2+HI_IDX] = a->element[i];             \ | 
|  | result.element[i*2+LO_IDX] = b->element[i];             \ | 
|  | } else {                                                    \ | 
|  | result.element[n_elems - i * 2 - (1 + HI_IDX)] =        \ | 
|  | b->element[n_elems - i - 1];                        \ | 
|  | result.element[n_elems - i * 2 - (1 + LO_IDX)] =        \ | 
|  | a->element[n_elems - i - 1];                        \ | 
|  | }                                                           \ | 
|  | }                                                               \ | 
|  | *r = result;                                                    \ | 
|  | } | 
|  | #if defined(HOST_WORDS_BIGENDIAN) | 
|  | #define MRGHI 0 | 
|  | #define MRGLO 1 | 
|  | #else | 
|  | #define MRGHI 1 | 
|  | #define MRGLO 0 | 
|  | #endif | 
|  | #define VMRG(suffix, element)                   \ | 
|  | VMRG_DO(mrgl##suffix, element, MRGHI)       \ | 
|  | VMRG_DO(mrgh##suffix, element, MRGLO) | 
|  | VMRG(b, u8) | 
|  | VMRG(h, u16) | 
|  | VMRG(w, u32) | 
|  | #undef VMRG_DO | 
|  | #undef VMRG | 
|  | #undef MRGHI | 
|  | #undef MRGLO | 
|  |  | 
|  | void helper_vmsummbm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, | 
|  | ppc_avr_t *b, ppc_avr_t *c) | 
|  | { | 
|  | int32_t prod[16]; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(r->s8); i++) { | 
|  | prod[i] = (int32_t)a->s8[i] * b->u8[i]; | 
|  | } | 
|  |  | 
|  | VECTOR_FOR_INORDER_I(i, s32) { | 
|  | r->s32[i] = c->s32[i] + prod[4 * i] + prod[4 * i + 1] + | 
|  | prod[4 * i + 2] + prod[4 * i + 3]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_vmsumshm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, | 
|  | ppc_avr_t *b, ppc_avr_t *c) | 
|  | { | 
|  | int32_t prod[8]; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(r->s16); i++) { | 
|  | prod[i] = a->s16[i] * b->s16[i]; | 
|  | } | 
|  |  | 
|  | VECTOR_FOR_INORDER_I(i, s32) { | 
|  | r->s32[i] = c->s32[i] + prod[2 * i] + prod[2 * i + 1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_vmsumshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, | 
|  | ppc_avr_t *b, ppc_avr_t *c) | 
|  | { | 
|  | int32_t prod[8]; | 
|  | int i; | 
|  | int sat = 0; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(r->s16); i++) { | 
|  | prod[i] = (int32_t)a->s16[i] * b->s16[i]; | 
|  | } | 
|  |  | 
|  | VECTOR_FOR_INORDER_I(i, s32) { | 
|  | int64_t t = (int64_t)c->s32[i] + prod[2 * i] + prod[2 * i + 1]; | 
|  |  | 
|  | r->u32[i] = cvtsdsw(t, &sat); | 
|  | } | 
|  |  | 
|  | if (sat) { | 
|  | env->vscr |= (1 << VSCR_SAT); | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_vmsumubm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, | 
|  | ppc_avr_t *b, ppc_avr_t *c) | 
|  | { | 
|  | uint16_t prod[16]; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(r->u8); i++) { | 
|  | prod[i] = a->u8[i] * b->u8[i]; | 
|  | } | 
|  |  | 
|  | VECTOR_FOR_INORDER_I(i, u32) { | 
|  | r->u32[i] = c->u32[i] + prod[4 * i] + prod[4 * i + 1] + | 
|  | prod[4 * i + 2] + prod[4 * i + 3]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_vmsumuhm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, | 
|  | ppc_avr_t *b, ppc_avr_t *c) | 
|  | { | 
|  | uint32_t prod[8]; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(r->u16); i++) { | 
|  | prod[i] = a->u16[i] * b->u16[i]; | 
|  | } | 
|  |  | 
|  | VECTOR_FOR_INORDER_I(i, u32) { | 
|  | r->u32[i] = c->u32[i] + prod[2 * i] + prod[2 * i + 1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_vmsumuhs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, | 
|  | ppc_avr_t *b, ppc_avr_t *c) | 
|  | { | 
|  | uint32_t prod[8]; | 
|  | int i; | 
|  | int sat = 0; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(r->u16); i++) { | 
|  | prod[i] = a->u16[i] * b->u16[i]; | 
|  | } | 
|  |  | 
|  | VECTOR_FOR_INORDER_I(i, s32) { | 
|  | uint64_t t = (uint64_t)c->u32[i] + prod[2 * i] + prod[2 * i + 1]; | 
|  |  | 
|  | r->u32[i] = cvtuduw(t, &sat); | 
|  | } | 
|  |  | 
|  | if (sat) { | 
|  | env->vscr |= (1 << VSCR_SAT); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define VMUL_DO(name, mul_element, prod_element, evenp)                 \ | 
|  | void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)       \ | 
|  | {                                                                   \ | 
|  | int i;                                                          \ | 
|  | \ | 
|  | VECTOR_FOR_INORDER_I(i, prod_element) {                         \ | 
|  | if (evenp) {                                                \ | 
|  | r->prod_element[i] = a->mul_element[i * 2 + HI_IDX] *   \ | 
|  | b->mul_element[i * 2 + HI_IDX];                     \ | 
|  | } else {                                                    \ | 
|  | r->prod_element[i] = a->mul_element[i * 2 + LO_IDX] *   \ | 
|  | b->mul_element[i * 2 + LO_IDX];                     \ | 
|  | }                                                           \ | 
|  | }                                                               \ | 
|  | } | 
|  | #define VMUL(suffix, mul_element, prod_element)         \ | 
|  | VMUL_DO(mule##suffix, mul_element, prod_element, 1) \ | 
|  | VMUL_DO(mulo##suffix, mul_element, prod_element, 0) | 
|  | VMUL(sb, s8, s16) | 
|  | VMUL(sh, s16, s32) | 
|  | VMUL(ub, u8, u16) | 
|  | VMUL(uh, u16, u32) | 
|  | #undef VMUL_DO | 
|  | #undef VMUL | 
|  |  | 
|  | void helper_vnmsubfp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, | 
|  | ppc_avr_t *b, ppc_avr_t *c) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(r->f); i++) { | 
|  | HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) { | 
|  | /* Need to do the computation is higher precision and round | 
|  | * once at the end.  */ | 
|  | float64 af, bf, cf, t; | 
|  |  | 
|  | af = float32_to_float64(a->f[i], &env->vec_status); | 
|  | bf = float32_to_float64(b->f[i], &env->vec_status); | 
|  | cf = float32_to_float64(c->f[i], &env->vec_status); | 
|  | t = float64_mul(af, cf, &env->vec_status); | 
|  | t = float64_sub(t, bf, &env->vec_status); | 
|  | t = float64_chs(t); | 
|  | r->f[i] = float64_to_float32(t, &env->vec_status); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_vperm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, | 
|  | ppc_avr_t *c) | 
|  | { | 
|  | ppc_avr_t result; | 
|  | int i; | 
|  |  | 
|  | VECTOR_FOR_INORDER_I(i, u8) { | 
|  | int s = c->u8[i] & 0x1f; | 
|  | #if defined(HOST_WORDS_BIGENDIAN) | 
|  | int index = s & 0xf; | 
|  | #else | 
|  | int index = 15 - (s & 0xf); | 
|  | #endif | 
|  |  | 
|  | if (s & 0x10) { | 
|  | result.u8[i] = b->u8[index]; | 
|  | } else { | 
|  | result.u8[i] = a->u8[index]; | 
|  | } | 
|  | } | 
|  | *r = result; | 
|  | } | 
|  |  | 
|  | #if defined(HOST_WORDS_BIGENDIAN) | 
|  | #define PKBIG 1 | 
|  | #else | 
|  | #define PKBIG 0 | 
|  | #endif | 
|  | void helper_vpkpx(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | 
|  | { | 
|  | int i, j; | 
|  | ppc_avr_t result; | 
|  | #if defined(HOST_WORDS_BIGENDIAN) | 
|  | const ppc_avr_t *x[2] = { a, b }; | 
|  | #else | 
|  | const ppc_avr_t *x[2] = { b, a }; | 
|  | #endif | 
|  |  | 
|  | VECTOR_FOR_INORDER_I(i, u64) { | 
|  | VECTOR_FOR_INORDER_I(j, u32) { | 
|  | uint32_t e = x[i]->u32[j]; | 
|  |  | 
|  | result.u16[4*i+j] = (((e >> 9) & 0xfc00) | | 
|  | ((e >> 6) & 0x3e0) | | 
|  | ((e >> 3) & 0x1f)); | 
|  | } | 
|  | } | 
|  | *r = result; | 
|  | } | 
|  |  | 
|  | #define VPK(suffix, from, to, cvt, dosat)                               \ | 
|  | void helper_vpk##suffix(CPUPPCState *env, ppc_avr_t *r,             \ | 
|  | ppc_avr_t *a, ppc_avr_t *b)                 \ | 
|  | {                                                                   \ | 
|  | int i;                                                          \ | 
|  | int sat = 0;                                                    \ | 
|  | ppc_avr_t result;                                               \ | 
|  | ppc_avr_t *a0 = PKBIG ? a : b;                                  \ | 
|  | ppc_avr_t *a1 = PKBIG ? b : a;                                  \ | 
|  | \ | 
|  | VECTOR_FOR_INORDER_I(i, from) {                                 \ | 
|  | result.to[i] = cvt(a0->from[i], &sat);                      \ | 
|  | result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat);  \ | 
|  | }                                                               \ | 
|  | *r = result;                                                    \ | 
|  | if (dosat && sat) {                                             \ | 
|  | env->vscr |= (1 << VSCR_SAT);                               \ | 
|  | }                                                               \ | 
|  | } | 
|  | #define I(x, y) (x) | 
|  | VPK(shss, s16, s8, cvtshsb, 1) | 
|  | VPK(shus, s16, u8, cvtshub, 1) | 
|  | VPK(swss, s32, s16, cvtswsh, 1) | 
|  | VPK(swus, s32, u16, cvtswuh, 1) | 
|  | VPK(uhus, u16, u8, cvtuhub, 1) | 
|  | VPK(uwus, u32, u16, cvtuwuh, 1) | 
|  | VPK(uhum, u16, u8, I, 0) | 
|  | VPK(uwum, u32, u16, I, 0) | 
|  | #undef I | 
|  | #undef VPK | 
|  | #undef PKBIG | 
|  |  | 
|  | void helper_vrefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(r->f); i++) { | 
|  | HANDLE_NAN1(r->f[i], b->f[i]) { | 
|  | r->f[i] = float32_div(float32_one, b->f[i], &env->vec_status); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #define VRFI(suffix, rounding)                                  \ | 
|  | void helper_vrfi##suffix(CPUPPCState *env, ppc_avr_t *r,    \ | 
|  | ppc_avr_t *b)                      \ | 
|  | {                                                           \ | 
|  | int i;                                                  \ | 
|  | float_status s = env->vec_status;                       \ | 
|  | \ | 
|  | set_float_rounding_mode(rounding, &s);                  \ | 
|  | for (i = 0; i < ARRAY_SIZE(r->f); i++) {                \ | 
|  | HANDLE_NAN1(r->f[i], b->f[i]) {                     \ | 
|  | r->f[i] = float32_round_to_int (b->f[i], &s);   \ | 
|  | }                                                   \ | 
|  | }                                                       \ | 
|  | } | 
|  | VRFI(n, float_round_nearest_even) | 
|  | VRFI(m, float_round_down) | 
|  | VRFI(p, float_round_up) | 
|  | VRFI(z, float_round_to_zero) | 
|  | #undef VRFI | 
|  |  | 
|  | #define VROTATE(suffix, element)                                        \ | 
|  | void helper_vrl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)   \ | 
|  | {                                                                   \ | 
|  | int i;                                                          \ | 
|  | \ | 
|  | for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \ | 
|  | unsigned int mask = ((1 <<                                  \ | 
|  | (3 + (sizeof(a->element[0]) >> 1)))   \ | 
|  | - 1);                                  \ | 
|  | unsigned int shift = b->element[i] & mask;                  \ | 
|  | r->element[i] = (a->element[i] << shift) |                  \ | 
|  | (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \ | 
|  | }                                                               \ | 
|  | } | 
|  | VROTATE(b, u8) | 
|  | VROTATE(h, u16) | 
|  | VROTATE(w, u32) | 
|  | #undef VROTATE | 
|  |  | 
|  | void helper_vrsqrtefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(r->f); i++) { | 
|  | HANDLE_NAN1(r->f[i], b->f[i]) { | 
|  | float32 t = float32_sqrt(b->f[i], &env->vec_status); | 
|  |  | 
|  | r->f[i] = float32_div(float32_one, t, &env->vec_status); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_vsel(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, | 
|  | ppc_avr_t *c) | 
|  | { | 
|  | r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]); | 
|  | r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]); | 
|  | } | 
|  |  | 
|  | void helper_vexptefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(r->f); i++) { | 
|  | HANDLE_NAN1(r->f[i], b->f[i]) { | 
|  | r->f[i] = float32_exp2(b->f[i], &env->vec_status); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_vlogefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(r->f); i++) { | 
|  | HANDLE_NAN1(r->f[i], b->f[i]) { | 
|  | r->f[i] = float32_log2(b->f[i], &env->vec_status); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if defined(HOST_WORDS_BIGENDIAN) | 
|  | #define LEFT 0 | 
|  | #define RIGHT 1 | 
|  | #else | 
|  | #define LEFT 1 | 
|  | #define RIGHT 0 | 
|  | #endif | 
|  | /* The specification says that the results are undefined if all of the | 
|  | * shift counts are not identical.  We check to make sure that they are | 
|  | * to conform to what real hardware appears to do.  */ | 
|  | #define VSHIFT(suffix, leftp)                                           \ | 
|  | void helper_vs##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)    \ | 
|  | {                                                                   \ | 
|  | int shift = b->u8[LO_IDX*15] & 0x7;                             \ | 
|  | int doit = 1;                                                   \ | 
|  | int i;                                                          \ | 
|  | \ | 
|  | for (i = 0; i < ARRAY_SIZE(r->u8); i++) {                       \ | 
|  | doit = doit && ((b->u8[i] & 0x7) == shift);                 \ | 
|  | }                                                               \ | 
|  | if (doit) {                                                     \ | 
|  | if (shift == 0) {                                           \ | 
|  | *r = *a;                                                \ | 
|  | } else if (leftp) {                                         \ | 
|  | uint64_t carry = a->u64[LO_IDX] >> (64 - shift);        \ | 
|  | \ | 
|  | r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry;     \ | 
|  | r->u64[LO_IDX] = a->u64[LO_IDX] << shift;               \ | 
|  | } else {                                                    \ | 
|  | uint64_t carry = a->u64[HI_IDX] << (64 - shift);        \ | 
|  | \ | 
|  | r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry;     \ | 
|  | r->u64[HI_IDX] = a->u64[HI_IDX] >> shift;               \ | 
|  | }                                                           \ | 
|  | }                                                               \ | 
|  | } | 
|  | VSHIFT(l, LEFT) | 
|  | VSHIFT(r, RIGHT) | 
|  | #undef VSHIFT | 
|  | #undef LEFT | 
|  | #undef RIGHT | 
|  |  | 
|  | #define VSL(suffix, element)                                            \ | 
|  | void helper_vsl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)   \ | 
|  | {                                                                   \ | 
|  | int i;                                                          \ | 
|  | \ | 
|  | for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \ | 
|  | unsigned int mask = ((1 <<                                  \ | 
|  | (3 + (sizeof(a->element[0]) >> 1)))   \ | 
|  | - 1);                                  \ | 
|  | unsigned int shift = b->element[i] & mask;                  \ | 
|  | \ | 
|  | r->element[i] = a->element[i] << shift;                     \ | 
|  | }                                                               \ | 
|  | } | 
|  | VSL(b, u8) | 
|  | VSL(h, u16) | 
|  | VSL(w, u32) | 
|  | #undef VSL | 
|  |  | 
|  | void helper_vsldoi(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift) | 
|  | { | 
|  | int sh = shift & 0xf; | 
|  | int i; | 
|  | ppc_avr_t result; | 
|  |  | 
|  | #if defined(HOST_WORDS_BIGENDIAN) | 
|  | for (i = 0; i < ARRAY_SIZE(r->u8); i++) { | 
|  | int index = sh + i; | 
|  | if (index > 0xf) { | 
|  | result.u8[i] = b->u8[index - 0x10]; | 
|  | } else { | 
|  | result.u8[i] = a->u8[index]; | 
|  | } | 
|  | } | 
|  | #else | 
|  | for (i = 0; i < ARRAY_SIZE(r->u8); i++) { | 
|  | int index = (16 - sh) + i; | 
|  | if (index > 0xf) { | 
|  | result.u8[i] = a->u8[index - 0x10]; | 
|  | } else { | 
|  | result.u8[i] = b->u8[index]; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | *r = result; | 
|  | } | 
|  |  | 
|  | void helper_vslo(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | 
|  | { | 
|  | int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf; | 
|  |  | 
|  | #if defined(HOST_WORDS_BIGENDIAN) | 
|  | memmove(&r->u8[0], &a->u8[sh], 16 - sh); | 
|  | memset(&r->u8[16-sh], 0, sh); | 
|  | #else | 
|  | memmove(&r->u8[sh], &a->u8[0], 16 - sh); | 
|  | memset(&r->u8[0], 0, sh); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Experimental testing shows that hardware masks the immediate.  */ | 
|  | #define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1)) | 
|  | #if defined(HOST_WORDS_BIGENDIAN) | 
|  | #define SPLAT_ELEMENT(element) _SPLAT_MASKED(element) | 
|  | #else | 
|  | #define SPLAT_ELEMENT(element)                                  \ | 
|  | (ARRAY_SIZE(r->element) - 1 - _SPLAT_MASKED(element)) | 
|  | #endif | 
|  | #define VSPLT(suffix, element)                                          \ | 
|  | void helper_vsplt##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \ | 
|  | {                                                                   \ | 
|  | uint32_t s = b->element[SPLAT_ELEMENT(element)];                \ | 
|  | int i;                                                          \ | 
|  | \ | 
|  | for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \ | 
|  | r->element[i] = s;                                          \ | 
|  | }                                                               \ | 
|  | } | 
|  | VSPLT(b, u8) | 
|  | VSPLT(h, u16) | 
|  | VSPLT(w, u32) | 
|  | #undef VSPLT | 
|  | #undef SPLAT_ELEMENT | 
|  | #undef _SPLAT_MASKED | 
|  |  | 
|  | #define VSPLTI(suffix, element, splat_type)                     \ | 
|  | void helper_vspltis##suffix(ppc_avr_t *r, uint32_t splat)   \ | 
|  | {                                                           \ | 
|  | splat_type x = (int8_t)(splat << 3) >> 3;               \ | 
|  | int i;                                                  \ | 
|  | \ | 
|  | for (i = 0; i < ARRAY_SIZE(r->element); i++) {          \ | 
|  | r->element[i] = x;                                  \ | 
|  | }                                                       \ | 
|  | } | 
|  | VSPLTI(b, s8, int8_t) | 
|  | VSPLTI(h, s16, int16_t) | 
|  | VSPLTI(w, s32, int32_t) | 
|  | #undef VSPLTI | 
|  |  | 
|  | #define VSR(suffix, element)                                            \ | 
|  | void helper_vsr##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)   \ | 
|  | {                                                                   \ | 
|  | int i;                                                          \ | 
|  | \ | 
|  | for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \ | 
|  | unsigned int mask = ((1 <<                                  \ | 
|  | (3 + (sizeof(a->element[0]) >> 1)))   \ | 
|  | - 1);                                  \ | 
|  | unsigned int shift = b->element[i] & mask;                  \ | 
|  | \ | 
|  | r->element[i] = a->element[i] >> shift;                     \ | 
|  | }                                                               \ | 
|  | } | 
|  | VSR(ab, s8) | 
|  | VSR(ah, s16) | 
|  | VSR(aw, s32) | 
|  | VSR(b, u8) | 
|  | VSR(h, u16) | 
|  | VSR(w, u32) | 
|  | #undef VSR | 
|  |  | 
|  | void helper_vsro(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | 
|  | { | 
|  | int sh = (b->u8[LO_IDX * 0xf] >> 3) & 0xf; | 
|  |  | 
|  | #if defined(HOST_WORDS_BIGENDIAN) | 
|  | memmove(&r->u8[sh], &a->u8[0], 16 - sh); | 
|  | memset(&r->u8[0], 0, sh); | 
|  | #else | 
|  | memmove(&r->u8[0], &a->u8[sh], 16 - sh); | 
|  | memset(&r->u8[16 - sh], 0, sh); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void helper_vsubcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(r->u32); i++) { | 
|  | r->u32[i] = a->u32[i] >= b->u32[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_vsumsws(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | 
|  | { | 
|  | int64_t t; | 
|  | int i, upper; | 
|  | ppc_avr_t result; | 
|  | int sat = 0; | 
|  |  | 
|  | #if defined(HOST_WORDS_BIGENDIAN) | 
|  | upper = ARRAY_SIZE(r->s32)-1; | 
|  | #else | 
|  | upper = 0; | 
|  | #endif | 
|  | t = (int64_t)b->s32[upper]; | 
|  | for (i = 0; i < ARRAY_SIZE(r->s32); i++) { | 
|  | t += a->s32[i]; | 
|  | result.s32[i] = 0; | 
|  | } | 
|  | result.s32[upper] = cvtsdsw(t, &sat); | 
|  | *r = result; | 
|  |  | 
|  | if (sat) { | 
|  | env->vscr |= (1 << VSCR_SAT); | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_vsum2sws(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | 
|  | { | 
|  | int i, j, upper; | 
|  | ppc_avr_t result; | 
|  | int sat = 0; | 
|  |  | 
|  | #if defined(HOST_WORDS_BIGENDIAN) | 
|  | upper = 1; | 
|  | #else | 
|  | upper = 0; | 
|  | #endif | 
|  | for (i = 0; i < ARRAY_SIZE(r->u64); i++) { | 
|  | int64_t t = (int64_t)b->s32[upper + i * 2]; | 
|  |  | 
|  | result.u64[i] = 0; | 
|  | for (j = 0; j < ARRAY_SIZE(r->u64); j++) { | 
|  | t += a->s32[2 * i + j]; | 
|  | } | 
|  | result.s32[upper + i * 2] = cvtsdsw(t, &sat); | 
|  | } | 
|  |  | 
|  | *r = result; | 
|  | if (sat) { | 
|  | env->vscr |= (1 << VSCR_SAT); | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_vsum4sbs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | 
|  | { | 
|  | int i, j; | 
|  | int sat = 0; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(r->s32); i++) { | 
|  | int64_t t = (int64_t)b->s32[i]; | 
|  |  | 
|  | for (j = 0; j < ARRAY_SIZE(r->s32); j++) { | 
|  | t += a->s8[4 * i + j]; | 
|  | } | 
|  | r->s32[i] = cvtsdsw(t, &sat); | 
|  | } | 
|  |  | 
|  | if (sat) { | 
|  | env->vscr |= (1 << VSCR_SAT); | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_vsum4shs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | 
|  | { | 
|  | int sat = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(r->s32); i++) { | 
|  | int64_t t = (int64_t)b->s32[i]; | 
|  |  | 
|  | t += a->s16[2 * i] + a->s16[2 * i + 1]; | 
|  | r->s32[i] = cvtsdsw(t, &sat); | 
|  | } | 
|  |  | 
|  | if (sat) { | 
|  | env->vscr |= (1 << VSCR_SAT); | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_vsum4ubs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) | 
|  | { | 
|  | int i, j; | 
|  | int sat = 0; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(r->u32); i++) { | 
|  | uint64_t t = (uint64_t)b->u32[i]; | 
|  |  | 
|  | for (j = 0; j < ARRAY_SIZE(r->u32); j++) { | 
|  | t += a->u8[4 * i + j]; | 
|  | } | 
|  | r->u32[i] = cvtuduw(t, &sat); | 
|  | } | 
|  |  | 
|  | if (sat) { | 
|  | env->vscr |= (1 << VSCR_SAT); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if defined(HOST_WORDS_BIGENDIAN) | 
|  | #define UPKHI 1 | 
|  | #define UPKLO 0 | 
|  | #else | 
|  | #define UPKHI 0 | 
|  | #define UPKLO 1 | 
|  | #endif | 
|  | #define VUPKPX(suffix, hi)                                              \ | 
|  | void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b)                \ | 
|  | {                                                                   \ | 
|  | int i;                                                          \ | 
|  | ppc_avr_t result;                                               \ | 
|  | \ | 
|  | for (i = 0; i < ARRAY_SIZE(r->u32); i++) {                      \ | 
|  | uint16_t e = b->u16[hi ? i : i+4];                          \ | 
|  | uint8_t a = (e >> 15) ? 0xff : 0;                           \ | 
|  | uint8_t r = (e >> 10) & 0x1f;                               \ | 
|  | uint8_t g = (e >> 5) & 0x1f;                                \ | 
|  | uint8_t b = e & 0x1f;                                       \ | 
|  | \ | 
|  | result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b;       \ | 
|  | }                                                               \ | 
|  | *r = result;                                                    \ | 
|  | } | 
|  | VUPKPX(lpx, UPKLO) | 
|  | VUPKPX(hpx, UPKHI) | 
|  | #undef VUPKPX | 
|  |  | 
|  | #define VUPK(suffix, unpacked, packee, hi)                              \ | 
|  | void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b)                \ | 
|  | {                                                                   \ | 
|  | int i;                                                          \ | 
|  | ppc_avr_t result;                                               \ | 
|  | \ | 
|  | if (hi) {                                                       \ | 
|  | for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) {             \ | 
|  | result.unpacked[i] = b->packee[i];                      \ | 
|  | }                                                           \ | 
|  | } else {                                                        \ | 
|  | for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); \ | 
|  | i++) {                                                 \ | 
|  | result.unpacked[i - ARRAY_SIZE(r->unpacked)] = b->packee[i]; \ | 
|  | }                                                           \ | 
|  | }                                                               \ | 
|  | *r = result;                                                    \ | 
|  | } | 
|  | VUPK(hsb, s16, s8, UPKHI) | 
|  | VUPK(hsh, s32, s16, UPKHI) | 
|  | VUPK(lsb, s16, s8, UPKLO) | 
|  | VUPK(lsh, s32, s16, UPKLO) | 
|  | #undef VUPK | 
|  | #undef UPKHI | 
|  | #undef UPKLO | 
|  |  | 
|  | #undef DO_HANDLE_NAN | 
|  | #undef HANDLE_NAN1 | 
|  | #undef HANDLE_NAN2 | 
|  | #undef HANDLE_NAN3 | 
|  | #undef VECTOR_FOR_INORDER_I | 
|  | #undef HI_IDX | 
|  | #undef LO_IDX | 
|  |  | 
|  | /*****************************************************************************/ | 
|  | /* SPE extension helpers */ | 
|  | /* Use a table to make this quicker */ | 
|  | static const uint8_t hbrev[16] = { | 
|  | 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE, | 
|  | 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF, | 
|  | }; | 
|  |  | 
|  | static inline uint8_t byte_reverse(uint8_t val) | 
|  | { | 
|  | return hbrev[val >> 4] | (hbrev[val & 0xF] << 4); | 
|  | } | 
|  |  | 
|  | static inline uint32_t word_reverse(uint32_t val) | 
|  | { | 
|  | return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) | | 
|  | (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24); | 
|  | } | 
|  |  | 
|  | #define MASKBITS 16 /* Random value - to be fixed (implementation dependent) */ | 
|  | target_ulong helper_brinc(target_ulong arg1, target_ulong arg2) | 
|  | { | 
|  | uint32_t a, b, d, mask; | 
|  |  | 
|  | mask = UINT32_MAX >> (32 - MASKBITS); | 
|  | a = arg1 & mask; | 
|  | b = arg2 & mask; | 
|  | d = word_reverse(1 + word_reverse(a | ~b)); | 
|  | return (arg1 & ~mask) | (d & b); | 
|  | } | 
|  |  | 
|  | uint32_t helper_cntlsw32(uint32_t val) | 
|  | { | 
|  | if (val & 0x80000000) { | 
|  | return clz32(~val); | 
|  | } else { | 
|  | return clz32(val); | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t helper_cntlzw32(uint32_t val) | 
|  | { | 
|  | return clz32(val); | 
|  | } | 
|  |  | 
|  | /* 440 specific */ | 
|  | target_ulong helper_dlmzb(CPUPPCState *env, target_ulong high, | 
|  | target_ulong low, uint32_t update_Rc) | 
|  | { | 
|  | target_ulong mask; | 
|  | int i; | 
|  |  | 
|  | i = 1; | 
|  | for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { | 
|  | if ((high & mask) == 0) { | 
|  | if (update_Rc) { | 
|  | env->crf[0] = 0x4; | 
|  | } | 
|  | goto done; | 
|  | } | 
|  | i++; | 
|  | } | 
|  | for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { | 
|  | if ((low & mask) == 0) { | 
|  | if (update_Rc) { | 
|  | env->crf[0] = 0x8; | 
|  | } | 
|  | goto done; | 
|  | } | 
|  | i++; | 
|  | } | 
|  | if (update_Rc) { | 
|  | env->crf[0] = 0x2; | 
|  | } | 
|  | done: | 
|  | env->xer = (env->xer & ~0x7F) | i; | 
|  | if (update_Rc) { | 
|  | env->crf[0] |= xer_so; | 
|  | } | 
|  | return i; | 
|  | } |