|  | /* | 
|  | * QEMU float support | 
|  | * | 
|  | * Derived from SoftFloat. | 
|  | */ | 
|  |  | 
|  | /*============================================================================ | 
|  |  | 
|  | This C source fragment is part of the SoftFloat IEC/IEEE Floating-point | 
|  | Arithmetic Package, Release 2b. | 
|  |  | 
|  | Written by John R. Hauser.  This work was made possible in part by the | 
|  | International Computer Science Institute, located at Suite 600, 1947 Center | 
|  | Street, Berkeley, California 94704.  Funding was partially provided by the | 
|  | National Science Foundation under grant MIP-9311980.  The original version | 
|  | of this code was written as part of a project to build a fixed-point vector | 
|  | processor in collaboration with the University of California at Berkeley, | 
|  | overseen by Profs. Nelson Morgan and John Wawrzynek.  More information | 
|  | is available through the Web page `http://www.cs.berkeley.edu/~jhauser/ | 
|  | arithmetic/SoftFloat.html'. | 
|  |  | 
|  | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has | 
|  | been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES | 
|  | RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS | 
|  | AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES, | 
|  | COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE | 
|  | EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE | 
|  | INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR | 
|  | OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE. | 
|  |  | 
|  | Derivative works are acceptable, even for commercial purposes, so long as | 
|  | (1) the source code for the derivative work includes prominent notice that | 
|  | the work is derivative, and (2) the source code includes prominent notice with | 
|  | these four paragraphs for those parts of this code that are retained. | 
|  |  | 
|  | =============================================================================*/ | 
|  |  | 
|  | #if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) | 
|  | #define SNAN_BIT_IS_ONE		1 | 
|  | #else | 
|  | #define SNAN_BIT_IS_ONE		0 | 
|  | #endif | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | The pattern for a default generated half-precision NaN. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | #if defined(TARGET_ARM) | 
|  | const float16 float16_default_nan = const_float16(0x7E00); | 
|  | #elif SNAN_BIT_IS_ONE | 
|  | const float16 float16_default_nan = const_float16(0x7DFF); | 
|  | #else | 
|  | const float16 float16_default_nan = const_float16(0xFE00); | 
|  | #endif | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | The pattern for a default generated single-precision NaN. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | #if defined(TARGET_SPARC) | 
|  | const float32 float32_default_nan = const_float32(0x7FFFFFFF); | 
|  | #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) | 
|  | const float32 float32_default_nan = const_float32(0x7FC00000); | 
|  | #elif SNAN_BIT_IS_ONE | 
|  | const float32 float32_default_nan = const_float32(0x7FBFFFFF); | 
|  | #else | 
|  | const float32 float32_default_nan = const_float32(0xFFC00000); | 
|  | #endif | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | The pattern for a default generated double-precision NaN. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | #if defined(TARGET_SPARC) | 
|  | const float64 float64_default_nan = const_float64(LIT64( 0x7FFFFFFFFFFFFFFF )); | 
|  | #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) | 
|  | const float64 float64_default_nan = const_float64(LIT64( 0x7FF8000000000000 )); | 
|  | #elif SNAN_BIT_IS_ONE | 
|  | const float64 float64_default_nan = const_float64(LIT64( 0x7FF7FFFFFFFFFFFF )); | 
|  | #else | 
|  | const float64 float64_default_nan = const_float64(LIT64( 0xFFF8000000000000 )); | 
|  | #endif | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | The pattern for a default generated extended double-precision NaN. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | #if SNAN_BIT_IS_ONE | 
|  | #define floatx80_default_nan_high 0x7FFF | 
|  | #define floatx80_default_nan_low  LIT64( 0xBFFFFFFFFFFFFFFF ) | 
|  | #else | 
|  | #define floatx80_default_nan_high 0xFFFF | 
|  | #define floatx80_default_nan_low  LIT64( 0xC000000000000000 ) | 
|  | #endif | 
|  |  | 
|  | const floatx80 floatx80_default_nan = make_floatx80(floatx80_default_nan_high, | 
|  | floatx80_default_nan_low); | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | The pattern for a default generated quadruple-precision NaN.  The `high' and | 
|  | | `low' values hold the most- and least-significant bits, respectively. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | #if SNAN_BIT_IS_ONE | 
|  | #define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF ) | 
|  | #define float128_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF ) | 
|  | #else | 
|  | #define float128_default_nan_high LIT64( 0xFFFF800000000000 ) | 
|  | #define float128_default_nan_low  LIT64( 0x0000000000000000 ) | 
|  | #endif | 
|  |  | 
|  | const float128 float128_default_nan = make_float128(float128_default_nan_high, | 
|  | float128_default_nan_low); | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Raises the exceptions specified by `flags'.  Floating-point traps can be | 
|  | | defined here if desired.  It is currently not possible for such a trap | 
|  | | to substitute a result value.  If traps are not implemented, this routine | 
|  | | should be simply `float_exception_flags |= flags;'. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | void float_raise( int8 flags STATUS_PARAM ) | 
|  | { | 
|  | STATUS(float_exception_flags) |= flags; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Internal canonical NaN format. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | typedef struct { | 
|  | flag sign; | 
|  | uint64_t high, low; | 
|  | } commonNaNT; | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the half-precision floating-point value `a' is a quiet | 
|  | | NaN; otherwise returns 0. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float16_is_quiet_nan(float16 a_) | 
|  | { | 
|  | uint16_t a = float16_val(a_); | 
|  | #if SNAN_BIT_IS_ONE | 
|  | return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF); | 
|  | #else | 
|  | return ((a & ~0x8000) >= 0x7c80); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the half-precision floating-point value `a' is a signaling | 
|  | | NaN; otherwise returns 0. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float16_is_signaling_nan(float16 a_) | 
|  | { | 
|  | uint16_t a = float16_val(a_); | 
|  | #if SNAN_BIT_IS_ONE | 
|  | return ((a & ~0x8000) >= 0x7c80); | 
|  | #else | 
|  | return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns a quiet NaN if the half-precision floating point value `a' is a | 
|  | | signaling NaN; otherwise returns `a'. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | float16 float16_maybe_silence_nan(float16 a_) | 
|  | { | 
|  | if (float16_is_signaling_nan(a_)) { | 
|  | #if SNAN_BIT_IS_ONE | 
|  | #  if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) | 
|  | return float16_default_nan; | 
|  | #  else | 
|  | #    error Rules for silencing a signaling NaN are target-specific | 
|  | #  endif | 
|  | #else | 
|  | uint16_t a = float16_val(a_); | 
|  | a |= (1 << 9); | 
|  | return make_float16(a); | 
|  | #endif | 
|  | } | 
|  | return a_; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the half-precision floating-point NaN | 
|  | | `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid | 
|  | | exception is raised. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static commonNaNT float16ToCommonNaN( float16 a STATUS_PARAM ) | 
|  | { | 
|  | commonNaNT z; | 
|  |  | 
|  | if ( float16_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR ); | 
|  | z.sign = float16_val(a) >> 15; | 
|  | z.low = 0; | 
|  | z.high = ((uint64_t) float16_val(a))<<54; | 
|  | return z; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the canonical NaN `a' to the half- | 
|  | | precision floating-point format. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static float16 commonNaNToFloat16(commonNaNT a STATUS_PARAM) | 
|  | { | 
|  | uint16_t mantissa = a.high>>54; | 
|  |  | 
|  | if (STATUS(default_nan_mode)) { | 
|  | return float16_default_nan; | 
|  | } | 
|  |  | 
|  | if (mantissa) { | 
|  | return make_float16(((((uint16_t) a.sign) << 15) | 
|  | | (0x1F << 10) | mantissa)); | 
|  | } else { | 
|  | return float16_default_nan; | 
|  | } | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the single-precision floating-point value `a' is a quiet | 
|  | | NaN; otherwise returns 0. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float32_is_quiet_nan( float32 a_ ) | 
|  | { | 
|  | uint32_t a = float32_val(a_); | 
|  | #if SNAN_BIT_IS_ONE | 
|  | return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); | 
|  | #else | 
|  | return ( 0xFF800000 <= (uint32_t) ( a<<1 ) ); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the single-precision floating-point value `a' is a signaling | 
|  | | NaN; otherwise returns 0. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float32_is_signaling_nan( float32 a_ ) | 
|  | { | 
|  | uint32_t a = float32_val(a_); | 
|  | #if SNAN_BIT_IS_ONE | 
|  | return ( 0xFF800000 <= (uint32_t) ( a<<1 ) ); | 
|  | #else | 
|  | return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns a quiet NaN if the single-precision floating point value `a' is a | 
|  | | signaling NaN; otherwise returns `a'. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float32 float32_maybe_silence_nan( float32 a_ ) | 
|  | { | 
|  | if (float32_is_signaling_nan(a_)) { | 
|  | #if SNAN_BIT_IS_ONE | 
|  | #  if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) | 
|  | return float32_default_nan; | 
|  | #  else | 
|  | #    error Rules for silencing a signaling NaN are target-specific | 
|  | #  endif | 
|  | #else | 
|  | uint32_t a = float32_val(a_); | 
|  | a |= (1 << 22); | 
|  | return make_float32(a); | 
|  | #endif | 
|  | } | 
|  | return a_; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the single-precision floating-point NaN | 
|  | | `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid | 
|  | | exception is raised. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static commonNaNT float32ToCommonNaN( float32 a STATUS_PARAM ) | 
|  | { | 
|  | commonNaNT z; | 
|  |  | 
|  | if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR ); | 
|  | z.sign = float32_val(a)>>31; | 
|  | z.low = 0; | 
|  | z.high = ( (uint64_t) float32_val(a) )<<41; | 
|  | return z; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the canonical NaN `a' to the single- | 
|  | | precision floating-point format. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static float32 commonNaNToFloat32( commonNaNT a STATUS_PARAM) | 
|  | { | 
|  | uint32_t mantissa = a.high>>41; | 
|  |  | 
|  | if ( STATUS(default_nan_mode) ) { | 
|  | return float32_default_nan; | 
|  | } | 
|  |  | 
|  | if ( mantissa ) | 
|  | return make_float32( | 
|  | ( ( (uint32_t) a.sign )<<31 ) | 0x7F800000 | ( a.high>>41 ) ); | 
|  | else | 
|  | return float32_default_nan; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Select which NaN to propagate for a two-input operation. | 
|  | | IEEE754 doesn't specify all the details of this, so the | 
|  | | algorithm is target-specific. | 
|  | | The routine is passed various bits of information about the | 
|  | | two NaNs and should return 0 to select NaN a and 1 for NaN b. | 
|  | | Note that signalling NaNs are always squashed to quiet NaNs | 
|  | | by the caller, by calling floatXX_maybe_silence_nan() before | 
|  | | returning them. | 
|  | | | 
|  | | aIsLargerSignificand is only valid if both a and b are NaNs | 
|  | | of some kind, and is true if a has the larger significand, | 
|  | | or if both a and b have the same significand but a is | 
|  | | positive but b is negative. It is only needed for the x87 | 
|  | | tie-break rule. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | #if defined(TARGET_ARM) | 
|  | static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN, | 
|  | flag aIsLargerSignificand) | 
|  | { | 
|  | /* ARM mandated NaN propagation rules: take the first of: | 
|  | *  1. A if it is signaling | 
|  | *  2. B if it is signaling | 
|  | *  3. A (quiet) | 
|  | *  4. B (quiet) | 
|  | * A signaling NaN is always quietened before returning it. | 
|  | */ | 
|  | if (aIsSNaN) { | 
|  | return 0; | 
|  | } else if (bIsSNaN) { | 
|  | return 1; | 
|  | } else if (aIsQNaN) { | 
|  | return 0; | 
|  | } else { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | #elif defined(TARGET_MIPS) | 
|  | static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN, | 
|  | flag aIsLargerSignificand) | 
|  | { | 
|  | /* According to MIPS specifications, if one of the two operands is | 
|  | * a sNaN, a new qNaN has to be generated. This is done in | 
|  | * floatXX_maybe_silence_nan(). For qNaN inputs the specifications | 
|  | * says: "When possible, this QNaN result is one of the operand QNaN | 
|  | * values." In practice it seems that most implementations choose | 
|  | * the first operand if both operands are qNaN. In short this gives | 
|  | * the following rules: | 
|  | *  1. A if it is signaling | 
|  | *  2. B if it is signaling | 
|  | *  3. A (quiet) | 
|  | *  4. B (quiet) | 
|  | * A signaling NaN is always silenced before returning it. | 
|  | */ | 
|  | if (aIsSNaN) { | 
|  | return 0; | 
|  | } else if (bIsSNaN) { | 
|  | return 1; | 
|  | } else if (aIsQNaN) { | 
|  | return 0; | 
|  | } else { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | #elif defined(TARGET_PPC) | 
|  | static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN, | 
|  | flag aIsLargerSignificand) | 
|  | { | 
|  | /* PowerPC propagation rules: | 
|  | *  1. A if it sNaN or qNaN | 
|  | *  2. B if it sNaN or qNaN | 
|  | * A signaling NaN is always silenced before returning it. | 
|  | */ | 
|  | if (aIsSNaN || aIsQNaN) { | 
|  | return 0; | 
|  | } else { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | #else | 
|  | static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN, | 
|  | flag aIsLargerSignificand) | 
|  | { | 
|  | /* This implements x87 NaN propagation rules: | 
|  | * SNaN + QNaN => return the QNaN | 
|  | * two SNaNs => return the one with the larger significand, silenced | 
|  | * two QNaNs => return the one with the larger significand | 
|  | * SNaN and a non-NaN => return the SNaN, silenced | 
|  | * QNaN and a non-NaN => return the QNaN | 
|  | * | 
|  | * If we get down to comparing significands and they are the same, | 
|  | * return the NaN with the positive sign bit (if any). | 
|  | */ | 
|  | if (aIsSNaN) { | 
|  | if (bIsSNaN) { | 
|  | return aIsLargerSignificand ? 0 : 1; | 
|  | } | 
|  | return bIsQNaN ? 1 : 0; | 
|  | } | 
|  | else if (aIsQNaN) { | 
|  | if (bIsSNaN || !bIsQNaN) | 
|  | return 0; | 
|  | else { | 
|  | return aIsLargerSignificand ? 0 : 1; | 
|  | } | 
|  | } else { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Takes two single-precision floating-point values `a' and `b', one of which | 
|  | | is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a | 
|  | | signaling NaN, the invalid exception is raised. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static float32 propagateFloat32NaN( float32 a, float32 b STATUS_PARAM) | 
|  | { | 
|  | flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN; | 
|  | flag aIsLargerSignificand; | 
|  | uint32_t av, bv; | 
|  |  | 
|  | aIsQuietNaN = float32_is_quiet_nan( a ); | 
|  | aIsSignalingNaN = float32_is_signaling_nan( a ); | 
|  | bIsQuietNaN = float32_is_quiet_nan( b ); | 
|  | bIsSignalingNaN = float32_is_signaling_nan( b ); | 
|  | av = float32_val(a); | 
|  | bv = float32_val(b); | 
|  |  | 
|  | if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR); | 
|  |  | 
|  | if ( STATUS(default_nan_mode) ) | 
|  | return float32_default_nan; | 
|  |  | 
|  | if ((uint32_t)(av<<1) < (uint32_t)(bv<<1)) { | 
|  | aIsLargerSignificand = 0; | 
|  | } else if ((uint32_t)(bv<<1) < (uint32_t)(av<<1)) { | 
|  | aIsLargerSignificand = 1; | 
|  | } else { | 
|  | aIsLargerSignificand = (av < bv) ? 1 : 0; | 
|  | } | 
|  |  | 
|  | if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, | 
|  | aIsLargerSignificand)) { | 
|  | return float32_maybe_silence_nan(b); | 
|  | } else { | 
|  | return float32_maybe_silence_nan(a); | 
|  | } | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the double-precision floating-point value `a' is a quiet | 
|  | | NaN; otherwise returns 0. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float64_is_quiet_nan( float64 a_ ) | 
|  | { | 
|  | uint64_t a = float64_val(a_); | 
|  | #if SNAN_BIT_IS_ONE | 
|  | return | 
|  | ( ( ( a>>51 ) & 0xFFF ) == 0xFFE ) | 
|  | && ( a & LIT64( 0x0007FFFFFFFFFFFF ) ); | 
|  | #else | 
|  | return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a<<1 ) ); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the double-precision floating-point value `a' is a signaling | 
|  | | NaN; otherwise returns 0. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float64_is_signaling_nan( float64 a_ ) | 
|  | { | 
|  | uint64_t a = float64_val(a_); | 
|  | #if SNAN_BIT_IS_ONE | 
|  | return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a<<1 ) ); | 
|  | #else | 
|  | return | 
|  | ( ( ( a>>51 ) & 0xFFF ) == 0xFFE ) | 
|  | && ( a & LIT64( 0x0007FFFFFFFFFFFF ) ); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns a quiet NaN if the double-precision floating point value `a' is a | 
|  | | signaling NaN; otherwise returns `a'. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float64 float64_maybe_silence_nan( float64 a_ ) | 
|  | { | 
|  | if (float64_is_signaling_nan(a_)) { | 
|  | #if SNAN_BIT_IS_ONE | 
|  | #  if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) | 
|  | return float64_default_nan; | 
|  | #  else | 
|  | #    error Rules for silencing a signaling NaN are target-specific | 
|  | #  endif | 
|  | #else | 
|  | uint64_t a = float64_val(a_); | 
|  | a |= LIT64( 0x0008000000000000 ); | 
|  | return make_float64(a); | 
|  | #endif | 
|  | } | 
|  | return a_; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the double-precision floating-point NaN | 
|  | | `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid | 
|  | | exception is raised. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static commonNaNT float64ToCommonNaN( float64 a STATUS_PARAM) | 
|  | { | 
|  | commonNaNT z; | 
|  |  | 
|  | if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR); | 
|  | z.sign = float64_val(a)>>63; | 
|  | z.low = 0; | 
|  | z.high = float64_val(a)<<12; | 
|  | return z; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the canonical NaN `a' to the double- | 
|  | | precision floating-point format. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static float64 commonNaNToFloat64( commonNaNT a STATUS_PARAM) | 
|  | { | 
|  | uint64_t mantissa = a.high>>12; | 
|  |  | 
|  | if ( STATUS(default_nan_mode) ) { | 
|  | return float64_default_nan; | 
|  | } | 
|  |  | 
|  | if ( mantissa ) | 
|  | return make_float64( | 
|  | ( ( (uint64_t) a.sign )<<63 ) | 
|  | | LIT64( 0x7FF0000000000000 ) | 
|  | | ( a.high>>12 )); | 
|  | else | 
|  | return float64_default_nan; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Takes two double-precision floating-point values `a' and `b', one of which | 
|  | | is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a | 
|  | | signaling NaN, the invalid exception is raised. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static float64 propagateFloat64NaN( float64 a, float64 b STATUS_PARAM) | 
|  | { | 
|  | flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN; | 
|  | flag aIsLargerSignificand; | 
|  | uint64_t av, bv; | 
|  |  | 
|  | aIsQuietNaN = float64_is_quiet_nan( a ); | 
|  | aIsSignalingNaN = float64_is_signaling_nan( a ); | 
|  | bIsQuietNaN = float64_is_quiet_nan( b ); | 
|  | bIsSignalingNaN = float64_is_signaling_nan( b ); | 
|  | av = float64_val(a); | 
|  | bv = float64_val(b); | 
|  |  | 
|  | if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR); | 
|  |  | 
|  | if ( STATUS(default_nan_mode) ) | 
|  | return float64_default_nan; | 
|  |  | 
|  | if ((uint64_t)(av<<1) < (uint64_t)(bv<<1)) { | 
|  | aIsLargerSignificand = 0; | 
|  | } else if ((uint64_t)(bv<<1) < (uint64_t)(av<<1)) { | 
|  | aIsLargerSignificand = 1; | 
|  | } else { | 
|  | aIsLargerSignificand = (av < bv) ? 1 : 0; | 
|  | } | 
|  |  | 
|  | if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, | 
|  | aIsLargerSignificand)) { | 
|  | return float64_maybe_silence_nan(b); | 
|  | } else { | 
|  | return float64_maybe_silence_nan(a); | 
|  | } | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the extended double-precision floating-point value `a' is a | 
|  | | quiet NaN; otherwise returns 0. This slightly differs from the same | 
|  | | function for other types as floatx80 has an explicit bit. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int floatx80_is_quiet_nan( floatx80 a ) | 
|  | { | 
|  | #if SNAN_BIT_IS_ONE | 
|  | uint64_t aLow; | 
|  |  | 
|  | aLow = a.low & ~ LIT64( 0x4000000000000000 ); | 
|  | return | 
|  | ( ( a.high & 0x7FFF ) == 0x7FFF ) | 
|  | && (uint64_t) ( aLow<<1 ) | 
|  | && ( a.low == aLow ); | 
|  | #else | 
|  | return ( ( a.high & 0x7FFF ) == 0x7FFF ) | 
|  | && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 ))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the extended double-precision floating-point value `a' is a | 
|  | | signaling NaN; otherwise returns 0. This slightly differs from the same | 
|  | | function for other types as floatx80 has an explicit bit. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int floatx80_is_signaling_nan( floatx80 a ) | 
|  | { | 
|  | #if SNAN_BIT_IS_ONE | 
|  | return ( ( a.high & 0x7FFF ) == 0x7FFF ) | 
|  | && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 ))); | 
|  | #else | 
|  | uint64_t aLow; | 
|  |  | 
|  | aLow = a.low & ~ LIT64( 0x4000000000000000 ); | 
|  | return | 
|  | ( ( a.high & 0x7FFF ) == 0x7FFF ) | 
|  | && (uint64_t) ( aLow<<1 ) | 
|  | && ( a.low == aLow ); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns a quiet NaN if the extended double-precision floating point value | 
|  | | `a' is a signaling NaN; otherwise returns `a'. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | floatx80 floatx80_maybe_silence_nan( floatx80 a ) | 
|  | { | 
|  | if (floatx80_is_signaling_nan(a)) { | 
|  | #if SNAN_BIT_IS_ONE | 
|  | #  if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) | 
|  | a.low = floatx80_default_nan_low; | 
|  | a.high = floatx80_default_nan_high; | 
|  | #  else | 
|  | #    error Rules for silencing a signaling NaN are target-specific | 
|  | #  endif | 
|  | #else | 
|  | a.low |= LIT64( 0xC000000000000000 ); | 
|  | return a; | 
|  | #endif | 
|  | } | 
|  | return a; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the extended double-precision floating- | 
|  | | point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the | 
|  | | invalid exception is raised. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static commonNaNT floatx80ToCommonNaN( floatx80 a STATUS_PARAM) | 
|  | { | 
|  | commonNaNT z; | 
|  |  | 
|  | if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR); | 
|  | if ( a.low >> 63 ) { | 
|  | z.sign = a.high >> 15; | 
|  | z.low = 0; | 
|  | z.high = a.low << 1; | 
|  | } else { | 
|  | z.sign = floatx80_default_nan_high >> 15; | 
|  | z.low = 0; | 
|  | z.high = floatx80_default_nan_low << 1; | 
|  | } | 
|  | return z; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the canonical NaN `a' to the extended | 
|  | | double-precision floating-point format. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static floatx80 commonNaNToFloatx80( commonNaNT a STATUS_PARAM) | 
|  | { | 
|  | floatx80 z; | 
|  |  | 
|  | if ( STATUS(default_nan_mode) ) { | 
|  | z.low = floatx80_default_nan_low; | 
|  | z.high = floatx80_default_nan_high; | 
|  | return z; | 
|  | } | 
|  |  | 
|  | if (a.high >> 1) { | 
|  | z.low = LIT64( 0x8000000000000000 ) | a.high >> 1; | 
|  | z.high = ( ( (uint16_t) a.sign )<<15 ) | 0x7FFF; | 
|  | } else { | 
|  | z.low = floatx80_default_nan_low; | 
|  | z.high = floatx80_default_nan_high; | 
|  | } | 
|  |  | 
|  | return z; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Takes two extended double-precision floating-point values `a' and `b', one | 
|  | | of which is a NaN, and returns the appropriate NaN result.  If either `a' or | 
|  | | `b' is a signaling NaN, the invalid exception is raised. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM) | 
|  | { | 
|  | flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN; | 
|  | flag aIsLargerSignificand; | 
|  |  | 
|  | aIsQuietNaN = floatx80_is_quiet_nan( a ); | 
|  | aIsSignalingNaN = floatx80_is_signaling_nan( a ); | 
|  | bIsQuietNaN = floatx80_is_quiet_nan( b ); | 
|  | bIsSignalingNaN = floatx80_is_signaling_nan( b ); | 
|  |  | 
|  | if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR); | 
|  |  | 
|  | if ( STATUS(default_nan_mode) ) { | 
|  | a.low = floatx80_default_nan_low; | 
|  | a.high = floatx80_default_nan_high; | 
|  | return a; | 
|  | } | 
|  |  | 
|  | if (a.low < b.low) { | 
|  | aIsLargerSignificand = 0; | 
|  | } else if (b.low < a.low) { | 
|  | aIsLargerSignificand = 1; | 
|  | } else { | 
|  | aIsLargerSignificand = (a.high < b.high) ? 1 : 0; | 
|  | } | 
|  |  | 
|  | if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, | 
|  | aIsLargerSignificand)) { | 
|  | return floatx80_maybe_silence_nan(b); | 
|  | } else { | 
|  | return floatx80_maybe_silence_nan(a); | 
|  | } | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the quadruple-precision floating-point value `a' is a quiet | 
|  | | NaN; otherwise returns 0. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float128_is_quiet_nan( float128 a ) | 
|  | { | 
|  | #if SNAN_BIT_IS_ONE | 
|  | return | 
|  | ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE ) | 
|  | && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) ); | 
|  | #else | 
|  | return | 
|  | ( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a.high<<1 ) ) | 
|  | && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) ); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the quadruple-precision floating-point value `a' is a | 
|  | | signaling NaN; otherwise returns 0. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | int float128_is_signaling_nan( float128 a ) | 
|  | { | 
|  | #if SNAN_BIT_IS_ONE | 
|  | return | 
|  | ( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a.high<<1 ) ) | 
|  | && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) ); | 
|  | #else | 
|  | return | 
|  | ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE ) | 
|  | && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) ); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns a quiet NaN if the quadruple-precision floating point value `a' is | 
|  | | a signaling NaN; otherwise returns `a'. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float128 float128_maybe_silence_nan( float128 a ) | 
|  | { | 
|  | if (float128_is_signaling_nan(a)) { | 
|  | #if SNAN_BIT_IS_ONE | 
|  | #  if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32) | 
|  | a.low = float128_default_nan_low; | 
|  | a.high = float128_default_nan_high; | 
|  | #  else | 
|  | #    error Rules for silencing a signaling NaN are target-specific | 
|  | #  endif | 
|  | #else | 
|  | a.high |= LIT64( 0x0000800000000000 ); | 
|  | return a; | 
|  | #endif | 
|  | } | 
|  | return a; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the quadruple-precision floating-point NaN | 
|  | | `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid | 
|  | | exception is raised. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static commonNaNT float128ToCommonNaN( float128 a STATUS_PARAM) | 
|  | { | 
|  | commonNaNT z; | 
|  |  | 
|  | if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR); | 
|  | z.sign = a.high>>63; | 
|  | shortShift128Left( a.high, a.low, 16, &z.high, &z.low ); | 
|  | return z; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the canonical NaN `a' to the quadruple- | 
|  | | precision floating-point format. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static float128 commonNaNToFloat128( commonNaNT a STATUS_PARAM) | 
|  | { | 
|  | float128 z; | 
|  |  | 
|  | if ( STATUS(default_nan_mode) ) { | 
|  | z.low = float128_default_nan_low; | 
|  | z.high = float128_default_nan_high; | 
|  | return z; | 
|  | } | 
|  |  | 
|  | shift128Right( a.high, a.low, 16, &z.high, &z.low ); | 
|  | z.high |= ( ( (uint64_t) a.sign )<<63 ) | LIT64( 0x7FFF000000000000 ); | 
|  | return z; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Takes two quadruple-precision floating-point values `a' and `b', one of | 
|  | | which is a NaN, and returns the appropriate NaN result.  If either `a' or | 
|  | | `b' is a signaling NaN, the invalid exception is raised. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | static float128 propagateFloat128NaN( float128 a, float128 b STATUS_PARAM) | 
|  | { | 
|  | flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN; | 
|  | flag aIsLargerSignificand; | 
|  |  | 
|  | aIsQuietNaN = float128_is_quiet_nan( a ); | 
|  | aIsSignalingNaN = float128_is_signaling_nan( a ); | 
|  | bIsQuietNaN = float128_is_quiet_nan( b ); | 
|  | bIsSignalingNaN = float128_is_signaling_nan( b ); | 
|  |  | 
|  | if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR); | 
|  |  | 
|  | if ( STATUS(default_nan_mode) ) { | 
|  | a.low = float128_default_nan_low; | 
|  | a.high = float128_default_nan_high; | 
|  | return a; | 
|  | } | 
|  |  | 
|  | if (lt128(a.high<<1, a.low, b.high<<1, b.low)) { | 
|  | aIsLargerSignificand = 0; | 
|  | } else if (lt128(b.high<<1, b.low, a.high<<1, a.low)) { | 
|  | aIsLargerSignificand = 1; | 
|  | } else { | 
|  | aIsLargerSignificand = (a.high < b.high) ? 1 : 0; | 
|  | } | 
|  |  | 
|  | if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN, | 
|  | aIsLargerSignificand)) { | 
|  | return float128_maybe_silence_nan(b); | 
|  | } else { | 
|  | return float128_maybe_silence_nan(a); | 
|  | } | 
|  | } | 
|  |  |