|  | /* | 
|  | * Bitmap Module | 
|  | * | 
|  | * Stolen from linux/src/lib/bitmap.c | 
|  | * | 
|  | * Copyright (C) 2010 Corentin Chary | 
|  | * | 
|  | * This source code is licensed under the GNU General Public License, | 
|  | * Version 2. | 
|  | */ | 
|  |  | 
|  | #include "bitops.h" | 
|  | #include "bitmap.h" | 
|  |  | 
|  | /* | 
|  | * bitmaps provide an array of bits, implemented using an an | 
|  | * array of unsigned longs.  The number of valid bits in a | 
|  | * given bitmap does _not_ need to be an exact multiple of | 
|  | * BITS_PER_LONG. | 
|  | * | 
|  | * The possible unused bits in the last, partially used word | 
|  | * of a bitmap are 'don't care'.  The implementation makes | 
|  | * no particular effort to keep them zero.  It ensures that | 
|  | * their value will not affect the results of any operation. | 
|  | * The bitmap operations that return Boolean (bitmap_empty, | 
|  | * for example) or scalar (bitmap_weight, for example) results | 
|  | * carefully filter out these unused bits from impacting their | 
|  | * results. | 
|  | * | 
|  | * These operations actually hold to a slightly stronger rule: | 
|  | * if you don't input any bitmaps to these ops that have some | 
|  | * unused bits set, then they won't output any set unused bits | 
|  | * in output bitmaps. | 
|  | * | 
|  | * The byte ordering of bitmaps is more natural on little | 
|  | * endian architectures. | 
|  | */ | 
|  |  | 
|  | int slow_bitmap_empty(const unsigned long *bitmap, int bits) | 
|  | { | 
|  | int k, lim = bits/BITS_PER_LONG; | 
|  |  | 
|  | for (k = 0; k < lim; ++k) { | 
|  | if (bitmap[k]) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | if (bits % BITS_PER_LONG) { | 
|  | if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int slow_bitmap_full(const unsigned long *bitmap, int bits) | 
|  | { | 
|  | int k, lim = bits/BITS_PER_LONG; | 
|  |  | 
|  | for (k = 0; k < lim; ++k) { | 
|  | if (~bitmap[k]) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (bits % BITS_PER_LONG) { | 
|  | if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int slow_bitmap_equal(const unsigned long *bitmap1, | 
|  | const unsigned long *bitmap2, int bits) | 
|  | { | 
|  | int k, lim = bits/BITS_PER_LONG; | 
|  |  | 
|  | for (k = 0; k < lim; ++k) { | 
|  | if (bitmap1[k] != bitmap2[k]) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (bits % BITS_PER_LONG) { | 
|  | if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void slow_bitmap_complement(unsigned long *dst, const unsigned long *src, | 
|  | int bits) | 
|  | { | 
|  | int k, lim = bits/BITS_PER_LONG; | 
|  |  | 
|  | for (k = 0; k < lim; ++k) { | 
|  | dst[k] = ~src[k]; | 
|  | } | 
|  |  | 
|  | if (bits % BITS_PER_LONG) { | 
|  | dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits); | 
|  | } | 
|  | } | 
|  |  | 
|  | int slow_bitmap_and(unsigned long *dst, const unsigned long *bitmap1, | 
|  | const unsigned long *bitmap2, int bits) | 
|  | { | 
|  | int k; | 
|  | int nr = BITS_TO_LONGS(bits); | 
|  | unsigned long result = 0; | 
|  |  | 
|  | for (k = 0; k < nr; k++) { | 
|  | result |= (dst[k] = bitmap1[k] & bitmap2[k]); | 
|  | } | 
|  | return result != 0; | 
|  | } | 
|  |  | 
|  | void slow_bitmap_or(unsigned long *dst, const unsigned long *bitmap1, | 
|  | const unsigned long *bitmap2, int bits) | 
|  | { | 
|  | int k; | 
|  | int nr = BITS_TO_LONGS(bits); | 
|  |  | 
|  | for (k = 0; k < nr; k++) { | 
|  | dst[k] = bitmap1[k] | bitmap2[k]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void slow_bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, | 
|  | const unsigned long *bitmap2, int bits) | 
|  | { | 
|  | int k; | 
|  | int nr = BITS_TO_LONGS(bits); | 
|  |  | 
|  | for (k = 0; k < nr; k++) { | 
|  | dst[k] = bitmap1[k] ^ bitmap2[k]; | 
|  | } | 
|  | } | 
|  |  | 
|  | int slow_bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, | 
|  | const unsigned long *bitmap2, int bits) | 
|  | { | 
|  | int k; | 
|  | int nr = BITS_TO_LONGS(bits); | 
|  | unsigned long result = 0; | 
|  |  | 
|  | for (k = 0; k < nr; k++) { | 
|  | result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); | 
|  | } | 
|  | return result != 0; | 
|  | } | 
|  |  | 
|  | #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) % BITS_PER_LONG)) | 
|  |  | 
|  | void bitmap_set(unsigned long *map, int start, int nr) | 
|  | { | 
|  | unsigned long *p = map + BIT_WORD(start); | 
|  | const int size = start + nr; | 
|  | int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); | 
|  | unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); | 
|  |  | 
|  | while (nr - bits_to_set >= 0) { | 
|  | *p |= mask_to_set; | 
|  | nr -= bits_to_set; | 
|  | bits_to_set = BITS_PER_LONG; | 
|  | mask_to_set = ~0UL; | 
|  | p++; | 
|  | } | 
|  | if (nr) { | 
|  | mask_to_set &= BITMAP_LAST_WORD_MASK(size); | 
|  | *p |= mask_to_set; | 
|  | } | 
|  | } | 
|  |  | 
|  | void bitmap_clear(unsigned long *map, int start, int nr) | 
|  | { | 
|  | unsigned long *p = map + BIT_WORD(start); | 
|  | const int size = start + nr; | 
|  | int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); | 
|  | unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); | 
|  |  | 
|  | while (nr - bits_to_clear >= 0) { | 
|  | *p &= ~mask_to_clear; | 
|  | nr -= bits_to_clear; | 
|  | bits_to_clear = BITS_PER_LONG; | 
|  | mask_to_clear = ~0UL; | 
|  | p++; | 
|  | } | 
|  | if (nr) { | 
|  | mask_to_clear &= BITMAP_LAST_WORD_MASK(size); | 
|  | *p &= ~mask_to_clear; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define ALIGN_MASK(x,mask)      (((x)+(mask))&~(mask)) | 
|  |  | 
|  | /** | 
|  | * bitmap_find_next_zero_area - find a contiguous aligned zero area | 
|  | * @map: The address to base the search on | 
|  | * @size: The bitmap size in bits | 
|  | * @start: The bitnumber to start searching at | 
|  | * @nr: The number of zeroed bits we're looking for | 
|  | * @align_mask: Alignment mask for zero area | 
|  | * | 
|  | * The @align_mask should be one less than a power of 2; the effect is that | 
|  | * the bit offset of all zero areas this function finds is multiples of that | 
|  | * power of 2. A @align_mask of 0 means no alignment is required. | 
|  | */ | 
|  | unsigned long bitmap_find_next_zero_area(unsigned long *map, | 
|  | unsigned long size, | 
|  | unsigned long start, | 
|  | unsigned int nr, | 
|  | unsigned long align_mask) | 
|  | { | 
|  | unsigned long index, end, i; | 
|  | again: | 
|  | index = find_next_zero_bit(map, size, start); | 
|  |  | 
|  | /* Align allocation */ | 
|  | index = ALIGN_MASK(index, align_mask); | 
|  |  | 
|  | end = index + nr; | 
|  | if (end > size) { | 
|  | return end; | 
|  | } | 
|  | i = find_next_bit(map, end, index); | 
|  | if (i < end) { | 
|  | start = i + 1; | 
|  | goto again; | 
|  | } | 
|  | return index; | 
|  | } | 
|  |  | 
|  | int slow_bitmap_intersects(const unsigned long *bitmap1, | 
|  | const unsigned long *bitmap2, int bits) | 
|  | { | 
|  | int k, lim = bits/BITS_PER_LONG; | 
|  |  | 
|  | for (k = 0; k < lim; ++k) { | 
|  | if (bitmap1[k] & bitmap2[k]) { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (bits % BITS_PER_LONG) { | 
|  | if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } |