|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include "cpu.h" | 
|  | #include "exec-all.h" | 
|  | #include "gdbstub.h" | 
|  | #include "helpers.h" | 
|  | #include "qemu-common.h" | 
|  | #include "host-utils.h" | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | #include "hw/loader.h" | 
|  | #endif | 
|  |  | 
|  | static uint32_t cortexa9_cp15_c0_c1[8] = | 
|  | { 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 }; | 
|  |  | 
|  | static uint32_t cortexa9_cp15_c0_c2[8] = | 
|  | { 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 }; | 
|  |  | 
|  | static uint32_t cortexa8_cp15_c0_c1[8] = | 
|  | { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 }; | 
|  |  | 
|  | static uint32_t cortexa8_cp15_c0_c2[8] = | 
|  | { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 }; | 
|  |  | 
|  | static uint32_t mpcore_cp15_c0_c1[8] = | 
|  | { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 }; | 
|  |  | 
|  | static uint32_t mpcore_cp15_c0_c2[8] = | 
|  | { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 }; | 
|  |  | 
|  | static uint32_t arm1136_cp15_c0_c1[8] = | 
|  | { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 }; | 
|  |  | 
|  | static uint32_t arm1136_cp15_c0_c2[8] = | 
|  | { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 }; | 
|  |  | 
|  | static uint32_t cpu_arm_find_by_name(const char *name); | 
|  |  | 
|  | static inline void set_feature(CPUARMState *env, int feature) | 
|  | { | 
|  | env->features |= 1u << feature; | 
|  | } | 
|  |  | 
|  | static void cpu_reset_model_id(CPUARMState *env, uint32_t id) | 
|  | { | 
|  | env->cp15.c0_cpuid = id; | 
|  | switch (id) { | 
|  | case ARM_CPUID_ARM926: | 
|  | set_feature(env, ARM_FEATURE_VFP); | 
|  | env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090; | 
|  | env->cp15.c0_cachetype = 0x1dd20d2; | 
|  | env->cp15.c1_sys = 0x00090078; | 
|  | break; | 
|  | case ARM_CPUID_ARM946: | 
|  | set_feature(env, ARM_FEATURE_MPU); | 
|  | env->cp15.c0_cachetype = 0x0f004006; | 
|  | env->cp15.c1_sys = 0x00000078; | 
|  | break; | 
|  | case ARM_CPUID_ARM1026: | 
|  | set_feature(env, ARM_FEATURE_VFP); | 
|  | set_feature(env, ARM_FEATURE_AUXCR); | 
|  | env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0; | 
|  | env->cp15.c0_cachetype = 0x1dd20d2; | 
|  | env->cp15.c1_sys = 0x00090078; | 
|  | break; | 
|  | case ARM_CPUID_ARM1136_R2: | 
|  | case ARM_CPUID_ARM1136: | 
|  | set_feature(env, ARM_FEATURE_V6); | 
|  | set_feature(env, ARM_FEATURE_VFP); | 
|  | set_feature(env, ARM_FEATURE_AUXCR); | 
|  | env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4; | 
|  | env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111; | 
|  | env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000; | 
|  | memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t)); | 
|  | memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t)); | 
|  | env->cp15.c0_cachetype = 0x1dd20d2; | 
|  | env->cp15.c1_sys = 0x00050078; | 
|  | break; | 
|  | case ARM_CPUID_ARM11MPCORE: | 
|  | set_feature(env, ARM_FEATURE_V6); | 
|  | set_feature(env, ARM_FEATURE_V6K); | 
|  | set_feature(env, ARM_FEATURE_VFP); | 
|  | set_feature(env, ARM_FEATURE_AUXCR); | 
|  | env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4; | 
|  | env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111; | 
|  | env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000; | 
|  | memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t)); | 
|  | memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t)); | 
|  | env->cp15.c0_cachetype = 0x1dd20d2; | 
|  | break; | 
|  | case ARM_CPUID_CORTEXA8: | 
|  | set_feature(env, ARM_FEATURE_V6); | 
|  | set_feature(env, ARM_FEATURE_V6K); | 
|  | set_feature(env, ARM_FEATURE_V7); | 
|  | set_feature(env, ARM_FEATURE_AUXCR); | 
|  | set_feature(env, ARM_FEATURE_THUMB2); | 
|  | set_feature(env, ARM_FEATURE_VFP); | 
|  | set_feature(env, ARM_FEATURE_VFP3); | 
|  | set_feature(env, ARM_FEATURE_NEON); | 
|  | set_feature(env, ARM_FEATURE_THUMB2EE); | 
|  | env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0; | 
|  | env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222; | 
|  | env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100; | 
|  | memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t)); | 
|  | memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t)); | 
|  | env->cp15.c0_cachetype = 0x82048004; | 
|  | env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3; | 
|  | env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */ | 
|  | env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */ | 
|  | env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */ | 
|  | env->cp15.c1_sys = 0x00c50078; | 
|  | break; | 
|  | case ARM_CPUID_CORTEXA9: | 
|  | set_feature(env, ARM_FEATURE_V6); | 
|  | set_feature(env, ARM_FEATURE_V6K); | 
|  | set_feature(env, ARM_FEATURE_V7); | 
|  | set_feature(env, ARM_FEATURE_AUXCR); | 
|  | set_feature(env, ARM_FEATURE_THUMB2); | 
|  | set_feature(env, ARM_FEATURE_VFP); | 
|  | set_feature(env, ARM_FEATURE_VFP3); | 
|  | set_feature(env, ARM_FEATURE_VFP_FP16); | 
|  | set_feature(env, ARM_FEATURE_NEON); | 
|  | set_feature(env, ARM_FEATURE_THUMB2EE); | 
|  | env->vfp.xregs[ARM_VFP_FPSID] = 0x41034000; /* Guess */ | 
|  | env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222; | 
|  | env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111; | 
|  | memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t)); | 
|  | memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t)); | 
|  | env->cp15.c0_cachetype = 0x80038003; | 
|  | env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3; | 
|  | env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */ | 
|  | env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */ | 
|  | env->cp15.c1_sys = 0x00c50078; | 
|  | break; | 
|  | case ARM_CPUID_CORTEXM3: | 
|  | set_feature(env, ARM_FEATURE_V6); | 
|  | set_feature(env, ARM_FEATURE_THUMB2); | 
|  | set_feature(env, ARM_FEATURE_V7); | 
|  | set_feature(env, ARM_FEATURE_M); | 
|  | set_feature(env, ARM_FEATURE_DIV); | 
|  | break; | 
|  | case ARM_CPUID_ANY: /* For userspace emulation.  */ | 
|  | set_feature(env, ARM_FEATURE_V6); | 
|  | set_feature(env, ARM_FEATURE_V6K); | 
|  | set_feature(env, ARM_FEATURE_V7); | 
|  | set_feature(env, ARM_FEATURE_THUMB2); | 
|  | set_feature(env, ARM_FEATURE_VFP); | 
|  | set_feature(env, ARM_FEATURE_VFP3); | 
|  | set_feature(env, ARM_FEATURE_VFP_FP16); | 
|  | set_feature(env, ARM_FEATURE_NEON); | 
|  | set_feature(env, ARM_FEATURE_THUMB2EE); | 
|  | set_feature(env, ARM_FEATURE_DIV); | 
|  | break; | 
|  | case ARM_CPUID_TI915T: | 
|  | case ARM_CPUID_TI925T: | 
|  | set_feature(env, ARM_FEATURE_OMAPCP); | 
|  | env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring.  */ | 
|  | env->cp15.c0_cachetype = 0x5109149; | 
|  | env->cp15.c1_sys = 0x00000070; | 
|  | env->cp15.c15_i_max = 0x000; | 
|  | env->cp15.c15_i_min = 0xff0; | 
|  | break; | 
|  | case ARM_CPUID_PXA250: | 
|  | case ARM_CPUID_PXA255: | 
|  | case ARM_CPUID_PXA260: | 
|  | case ARM_CPUID_PXA261: | 
|  | case ARM_CPUID_PXA262: | 
|  | set_feature(env, ARM_FEATURE_XSCALE); | 
|  | /* JTAG_ID is ((id << 28) | 0x09265013) */ | 
|  | env->cp15.c0_cachetype = 0xd172172; | 
|  | env->cp15.c1_sys = 0x00000078; | 
|  | break; | 
|  | case ARM_CPUID_PXA270_A0: | 
|  | case ARM_CPUID_PXA270_A1: | 
|  | case ARM_CPUID_PXA270_B0: | 
|  | case ARM_CPUID_PXA270_B1: | 
|  | case ARM_CPUID_PXA270_C0: | 
|  | case ARM_CPUID_PXA270_C5: | 
|  | set_feature(env, ARM_FEATURE_XSCALE); | 
|  | /* JTAG_ID is ((id << 28) | 0x09265013) */ | 
|  | set_feature(env, ARM_FEATURE_IWMMXT); | 
|  | env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q'; | 
|  | env->cp15.c0_cachetype = 0xd172172; | 
|  | env->cp15.c1_sys = 0x00000078; | 
|  | break; | 
|  | default: | 
|  | cpu_abort(env, "Bad CPU ID: %x\n", id); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void cpu_reset(CPUARMState *env) | 
|  | { | 
|  | uint32_t id; | 
|  |  | 
|  | if (qemu_loglevel_mask(CPU_LOG_RESET)) { | 
|  | qemu_log("CPU Reset (CPU %d)\n", env->cpu_index); | 
|  | log_cpu_state(env, 0); | 
|  | } | 
|  |  | 
|  | id = env->cp15.c0_cpuid; | 
|  | memset(env, 0, offsetof(CPUARMState, breakpoints)); | 
|  | if (id) | 
|  | cpu_reset_model_id(env, id); | 
|  | #if defined (CONFIG_USER_ONLY) | 
|  | env->uncached_cpsr = ARM_CPU_MODE_USR; | 
|  | /* For user mode we must enable access to coprocessors */ | 
|  | env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30; | 
|  | if (arm_feature(env, ARM_FEATURE_IWMMXT)) { | 
|  | env->cp15.c15_cpar = 3; | 
|  | } else if (arm_feature(env, ARM_FEATURE_XSCALE)) { | 
|  | env->cp15.c15_cpar = 1; | 
|  | } | 
|  | #else | 
|  | /* SVC mode with interrupts disabled.  */ | 
|  | env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I; | 
|  | /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is | 
|  | clear at reset.  Initial SP and PC are loaded from ROM.  */ | 
|  | if (IS_M(env)) { | 
|  | uint32_t pc; | 
|  | uint8_t *rom; | 
|  | env->uncached_cpsr &= ~CPSR_I; | 
|  | rom = rom_ptr(0); | 
|  | if (rom) { | 
|  | /* We should really use ldl_phys here, in case the guest | 
|  | modified flash and reset itself.  However images | 
|  | loaded via -kenrel have not been copied yet, so load the | 
|  | values directly from there.  */ | 
|  | env->regs[13] = ldl_p(rom); | 
|  | pc = ldl_p(rom + 4); | 
|  | env->thumb = pc & 1; | 
|  | env->regs[15] = pc & ~1; | 
|  | } | 
|  | } | 
|  | env->vfp.xregs[ARM_VFP_FPEXC] = 0; | 
|  | env->cp15.c2_base_mask = 0xffffc000u; | 
|  | #endif | 
|  | set_flush_to_zero(1, &env->vfp.standard_fp_status); | 
|  | set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status); | 
|  | set_default_nan_mode(1, &env->vfp.standard_fp_status); | 
|  | tlb_flush(env, 1); | 
|  | } | 
|  |  | 
|  | static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg) | 
|  | { | 
|  | int nregs; | 
|  |  | 
|  | /* VFP data registers are always little-endian.  */ | 
|  | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | 
|  | if (reg < nregs) { | 
|  | stfq_le_p(buf, env->vfp.regs[reg]); | 
|  | return 8; | 
|  | } | 
|  | if (arm_feature(env, ARM_FEATURE_NEON)) { | 
|  | /* Aliases for Q regs.  */ | 
|  | nregs += 16; | 
|  | if (reg < nregs) { | 
|  | stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); | 
|  | stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); | 
|  | return 16; | 
|  | } | 
|  | } | 
|  | switch (reg - nregs) { | 
|  | case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; | 
|  | case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; | 
|  | case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg) | 
|  | { | 
|  | int nregs; | 
|  |  | 
|  | nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; | 
|  | if (reg < nregs) { | 
|  | env->vfp.regs[reg] = ldfq_le_p(buf); | 
|  | return 8; | 
|  | } | 
|  | if (arm_feature(env, ARM_FEATURE_NEON)) { | 
|  | nregs += 16; | 
|  | if (reg < nregs) { | 
|  | env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); | 
|  | env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); | 
|  | return 16; | 
|  | } | 
|  | } | 
|  | switch (reg - nregs) { | 
|  | case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; | 
|  | case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; | 
|  | case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | CPUARMState *cpu_arm_init(const char *cpu_model) | 
|  | { | 
|  | CPUARMState *env; | 
|  | uint32_t id; | 
|  | static int inited = 0; | 
|  |  | 
|  | id = cpu_arm_find_by_name(cpu_model); | 
|  | if (id == 0) | 
|  | return NULL; | 
|  | env = qemu_mallocz(sizeof(CPUARMState)); | 
|  | cpu_exec_init(env); | 
|  | if (!inited) { | 
|  | inited = 1; | 
|  | arm_translate_init(); | 
|  | } | 
|  |  | 
|  | env->cpu_model_str = cpu_model; | 
|  | env->cp15.c0_cpuid = id; | 
|  | cpu_reset(env); | 
|  | if (arm_feature(env, ARM_FEATURE_NEON)) { | 
|  | gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg, | 
|  | 51, "arm-neon.xml", 0); | 
|  | } else if (arm_feature(env, ARM_FEATURE_VFP3)) { | 
|  | gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg, | 
|  | 35, "arm-vfp3.xml", 0); | 
|  | } else if (arm_feature(env, ARM_FEATURE_VFP)) { | 
|  | gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg, | 
|  | 19, "arm-vfp.xml", 0); | 
|  | } | 
|  | qemu_init_vcpu(env); | 
|  | return env; | 
|  | } | 
|  |  | 
|  | struct arm_cpu_t { | 
|  | uint32_t id; | 
|  | const char *name; | 
|  | }; | 
|  |  | 
|  | static const struct arm_cpu_t arm_cpu_names[] = { | 
|  | { ARM_CPUID_ARM926, "arm926"}, | 
|  | { ARM_CPUID_ARM946, "arm946"}, | 
|  | { ARM_CPUID_ARM1026, "arm1026"}, | 
|  | { ARM_CPUID_ARM1136, "arm1136"}, | 
|  | { ARM_CPUID_ARM1136_R2, "arm1136-r2"}, | 
|  | { ARM_CPUID_ARM11MPCORE, "arm11mpcore"}, | 
|  | { ARM_CPUID_CORTEXM3, "cortex-m3"}, | 
|  | { ARM_CPUID_CORTEXA8, "cortex-a8"}, | 
|  | { ARM_CPUID_CORTEXA9, "cortex-a9"}, | 
|  | { ARM_CPUID_TI925T, "ti925t" }, | 
|  | { ARM_CPUID_PXA250, "pxa250" }, | 
|  | { ARM_CPUID_PXA255, "pxa255" }, | 
|  | { ARM_CPUID_PXA260, "pxa260" }, | 
|  | { ARM_CPUID_PXA261, "pxa261" }, | 
|  | { ARM_CPUID_PXA262, "pxa262" }, | 
|  | { ARM_CPUID_PXA270, "pxa270" }, | 
|  | { ARM_CPUID_PXA270_A0, "pxa270-a0" }, | 
|  | { ARM_CPUID_PXA270_A1, "pxa270-a1" }, | 
|  | { ARM_CPUID_PXA270_B0, "pxa270-b0" }, | 
|  | { ARM_CPUID_PXA270_B1, "pxa270-b1" }, | 
|  | { ARM_CPUID_PXA270_C0, "pxa270-c0" }, | 
|  | { ARM_CPUID_PXA270_C5, "pxa270-c5" }, | 
|  | { ARM_CPUID_ANY, "any"}, | 
|  | { 0, NULL} | 
|  | }; | 
|  |  | 
|  | void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | (*cpu_fprintf)(f, "Available CPUs:\n"); | 
|  | for (i = 0; arm_cpu_names[i].name; i++) { | 
|  | (*cpu_fprintf)(f, "  %s\n", arm_cpu_names[i].name); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* return 0 if not found */ | 
|  | static uint32_t cpu_arm_find_by_name(const char *name) | 
|  | { | 
|  | int i; | 
|  | uint32_t id; | 
|  |  | 
|  | id = 0; | 
|  | for (i = 0; arm_cpu_names[i].name; i++) { | 
|  | if (strcmp(name, arm_cpu_names[i].name) == 0) { | 
|  | id = arm_cpu_names[i].id; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return id; | 
|  | } | 
|  |  | 
|  | void cpu_arm_close(CPUARMState *env) | 
|  | { | 
|  | free(env); | 
|  | } | 
|  |  | 
|  | uint32_t cpsr_read(CPUARMState *env) | 
|  | { | 
|  | int ZF; | 
|  | ZF = (env->ZF == 0); | 
|  | return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | | 
|  | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) | 
|  | | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) | 
|  | | ((env->condexec_bits & 0xfc) << 8) | 
|  | | (env->GE << 16); | 
|  | } | 
|  |  | 
|  | void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) | 
|  | { | 
|  | if (mask & CPSR_NZCV) { | 
|  | env->ZF = (~val) & CPSR_Z; | 
|  | env->NF = val; | 
|  | env->CF = (val >> 29) & 1; | 
|  | env->VF = (val << 3) & 0x80000000; | 
|  | } | 
|  | if (mask & CPSR_Q) | 
|  | env->QF = ((val & CPSR_Q) != 0); | 
|  | if (mask & CPSR_T) | 
|  | env->thumb = ((val & CPSR_T) != 0); | 
|  | if (mask & CPSR_IT_0_1) { | 
|  | env->condexec_bits &= ~3; | 
|  | env->condexec_bits |= (val >> 25) & 3; | 
|  | } | 
|  | if (mask & CPSR_IT_2_7) { | 
|  | env->condexec_bits &= 3; | 
|  | env->condexec_bits |= (val >> 8) & 0xfc; | 
|  | } | 
|  | if (mask & CPSR_GE) { | 
|  | env->GE = (val >> 16) & 0xf; | 
|  | } | 
|  |  | 
|  | if ((env->uncached_cpsr ^ val) & mask & CPSR_M) { | 
|  | switch_mode(env, val & CPSR_M); | 
|  | } | 
|  | mask &= ~CACHED_CPSR_BITS; | 
|  | env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); | 
|  | } | 
|  |  | 
|  | /* Sign/zero extend */ | 
|  | uint32_t HELPER(sxtb16)(uint32_t x) | 
|  | { | 
|  | uint32_t res; | 
|  | res = (uint16_t)(int8_t)x; | 
|  | res |= (uint32_t)(int8_t)(x >> 16) << 16; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(uxtb16)(uint32_t x) | 
|  | { | 
|  | uint32_t res; | 
|  | res = (uint16_t)(uint8_t)x; | 
|  | res |= (uint32_t)(uint8_t)(x >> 16) << 16; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(clz)(uint32_t x) | 
|  | { | 
|  | return clz32(x); | 
|  | } | 
|  |  | 
|  | int32_t HELPER(sdiv)(int32_t num, int32_t den) | 
|  | { | 
|  | if (den == 0) | 
|  | return 0; | 
|  | if (num == INT_MIN && den == -1) | 
|  | return INT_MIN; | 
|  | return num / den; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(udiv)(uint32_t num, uint32_t den) | 
|  | { | 
|  | if (den == 0) | 
|  | return 0; | 
|  | return num / den; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(rbit)(uint32_t x) | 
|  | { | 
|  | x =  ((x & 0xff000000) >> 24) | 
|  | | ((x & 0x00ff0000) >> 8) | 
|  | | ((x & 0x0000ff00) << 8) | 
|  | | ((x & 0x000000ff) << 24); | 
|  | x =  ((x & 0xf0f0f0f0) >> 4) | 
|  | | ((x & 0x0f0f0f0f) << 4); | 
|  | x =  ((x & 0x88888888) >> 3) | 
|  | | ((x & 0x44444444) >> 1) | 
|  | | ((x & 0x22222222) << 1) | 
|  | | ((x & 0x11111111) << 3); | 
|  | return x; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(abs)(uint32_t x) | 
|  | { | 
|  | return ((int32_t)x < 0) ? -x : x; | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  |  | 
|  | void do_interrupt (CPUState *env) | 
|  | { | 
|  | env->exception_index = -1; | 
|  | } | 
|  |  | 
|  | int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw, | 
|  | int mmu_idx, int is_softmmu) | 
|  | { | 
|  | if (rw == 2) { | 
|  | env->exception_index = EXCP_PREFETCH_ABORT; | 
|  | env->cp15.c6_insn = address; | 
|  | } else { | 
|  | env->exception_index = EXCP_DATA_ABORT; | 
|  | env->cp15.c6_data = address; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* These should probably raise undefined insn exceptions.  */ | 
|  | void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val) | 
|  | { | 
|  | int op1 = (insn >> 8) & 0xf; | 
|  | cpu_abort(env, "cp%i insn %08x\n", op1, insn); | 
|  | return; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn) | 
|  | { | 
|  | int op1 = (insn >> 8) & 0xf; | 
|  | cpu_abort(env, "cp%i insn %08x\n", op1, insn); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val) | 
|  | { | 
|  | cpu_abort(env, "cp15 insn %08x\n", insn); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn) | 
|  | { | 
|  | cpu_abort(env, "cp15 insn %08x\n", insn); | 
|  | } | 
|  |  | 
|  | /* These should probably raise undefined insn exceptions.  */ | 
|  | void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val) | 
|  | { | 
|  | cpu_abort(env, "v7m_mrs %d\n", reg); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg) | 
|  | { | 
|  | cpu_abort(env, "v7m_mrs %d\n", reg); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void switch_mode(CPUState *env, int mode) | 
|  | { | 
|  | if (mode != ARM_CPU_MODE_USR) | 
|  | cpu_abort(env, "Tried to switch out of user mode\n"); | 
|  | } | 
|  |  | 
|  | void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val) | 
|  | { | 
|  | cpu_abort(env, "banked r13 write\n"); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode) | 
|  | { | 
|  | cpu_abort(env, "banked r13 read\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | extern int semihosting_enabled; | 
|  |  | 
|  | /* Map CPU modes onto saved register banks.  */ | 
|  | static inline int bank_number (int mode) | 
|  | { | 
|  | switch (mode) { | 
|  | case ARM_CPU_MODE_USR: | 
|  | case ARM_CPU_MODE_SYS: | 
|  | return 0; | 
|  | case ARM_CPU_MODE_SVC: | 
|  | return 1; | 
|  | case ARM_CPU_MODE_ABT: | 
|  | return 2; | 
|  | case ARM_CPU_MODE_UND: | 
|  | return 3; | 
|  | case ARM_CPU_MODE_IRQ: | 
|  | return 4; | 
|  | case ARM_CPU_MODE_FIQ: | 
|  | return 5; | 
|  | } | 
|  | cpu_abort(cpu_single_env, "Bad mode %x\n", mode); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | void switch_mode(CPUState *env, int mode) | 
|  | { | 
|  | int old_mode; | 
|  | int i; | 
|  |  | 
|  | old_mode = env->uncached_cpsr & CPSR_M; | 
|  | if (mode == old_mode) | 
|  | return; | 
|  |  | 
|  | if (old_mode == ARM_CPU_MODE_FIQ) { | 
|  | memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); | 
|  | memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); | 
|  | } else if (mode == ARM_CPU_MODE_FIQ) { | 
|  | memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); | 
|  | memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); | 
|  | } | 
|  |  | 
|  | i = bank_number(old_mode); | 
|  | env->banked_r13[i] = env->regs[13]; | 
|  | env->banked_r14[i] = env->regs[14]; | 
|  | env->banked_spsr[i] = env->spsr; | 
|  |  | 
|  | i = bank_number(mode); | 
|  | env->regs[13] = env->banked_r13[i]; | 
|  | env->regs[14] = env->banked_r14[i]; | 
|  | env->spsr = env->banked_spsr[i]; | 
|  | } | 
|  |  | 
|  | static void v7m_push(CPUARMState *env, uint32_t val) | 
|  | { | 
|  | env->regs[13] -= 4; | 
|  | stl_phys(env->regs[13], val); | 
|  | } | 
|  |  | 
|  | static uint32_t v7m_pop(CPUARMState *env) | 
|  | { | 
|  | uint32_t val; | 
|  | val = ldl_phys(env->regs[13]); | 
|  | env->regs[13] += 4; | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* Switch to V7M main or process stack pointer.  */ | 
|  | static void switch_v7m_sp(CPUARMState *env, int process) | 
|  | { | 
|  | uint32_t tmp; | 
|  | if (env->v7m.current_sp != process) { | 
|  | tmp = env->v7m.other_sp; | 
|  | env->v7m.other_sp = env->regs[13]; | 
|  | env->regs[13] = tmp; | 
|  | env->v7m.current_sp = process; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void do_v7m_exception_exit(CPUARMState *env) | 
|  | { | 
|  | uint32_t type; | 
|  | uint32_t xpsr; | 
|  |  | 
|  | type = env->regs[15]; | 
|  | if (env->v7m.exception != 0) | 
|  | armv7m_nvic_complete_irq(env->nvic, env->v7m.exception); | 
|  |  | 
|  | /* Switch to the target stack.  */ | 
|  | switch_v7m_sp(env, (type & 4) != 0); | 
|  | /* Pop registers.  */ | 
|  | env->regs[0] = v7m_pop(env); | 
|  | env->regs[1] = v7m_pop(env); | 
|  | env->regs[2] = v7m_pop(env); | 
|  | env->regs[3] = v7m_pop(env); | 
|  | env->regs[12] = v7m_pop(env); | 
|  | env->regs[14] = v7m_pop(env); | 
|  | env->regs[15] = v7m_pop(env); | 
|  | xpsr = v7m_pop(env); | 
|  | xpsr_write(env, xpsr, 0xfffffdff); | 
|  | /* Undo stack alignment.  */ | 
|  | if (xpsr & 0x200) | 
|  | env->regs[13] |= 4; | 
|  | /* ??? The exception return type specifies Thread/Handler mode.  However | 
|  | this is also implied by the xPSR value. Not sure what to do | 
|  | if there is a mismatch.  */ | 
|  | /* ??? Likewise for mismatches between the CONTROL register and the stack | 
|  | pointer.  */ | 
|  | } | 
|  |  | 
|  | static void do_interrupt_v7m(CPUARMState *env) | 
|  | { | 
|  | uint32_t xpsr = xpsr_read(env); | 
|  | uint32_t lr; | 
|  | uint32_t addr; | 
|  |  | 
|  | lr = 0xfffffff1; | 
|  | if (env->v7m.current_sp) | 
|  | lr |= 4; | 
|  | if (env->v7m.exception == 0) | 
|  | lr |= 8; | 
|  |  | 
|  | /* For exceptions we just mark as pending on the NVIC, and let that | 
|  | handle it.  */ | 
|  | /* TODO: Need to escalate if the current priority is higher than the | 
|  | one we're raising.  */ | 
|  | switch (env->exception_index) { | 
|  | case EXCP_UDEF: | 
|  | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE); | 
|  | return; | 
|  | case EXCP_SWI: | 
|  | env->regs[15] += 2; | 
|  | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC); | 
|  | return; | 
|  | case EXCP_PREFETCH_ABORT: | 
|  | case EXCP_DATA_ABORT: | 
|  | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM); | 
|  | return; | 
|  | case EXCP_BKPT: | 
|  | if (semihosting_enabled) { | 
|  | int nr; | 
|  | nr = lduw_code(env->regs[15]) & 0xff; | 
|  | if (nr == 0xab) { | 
|  | env->regs[15] += 2; | 
|  | env->regs[0] = do_arm_semihosting(env); | 
|  | return; | 
|  | } | 
|  | } | 
|  | armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG); | 
|  | return; | 
|  | case EXCP_IRQ: | 
|  | env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic); | 
|  | break; | 
|  | case EXCP_EXCEPTION_EXIT: | 
|  | do_v7m_exception_exit(env); | 
|  | return; | 
|  | default: | 
|  | cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); | 
|  | return; /* Never happens.  Keep compiler happy.  */ | 
|  | } | 
|  |  | 
|  | /* Align stack pointer.  */ | 
|  | /* ??? Should only do this if Configuration Control Register | 
|  | STACKALIGN bit is set.  */ | 
|  | if (env->regs[13] & 4) { | 
|  | env->regs[13] -= 4; | 
|  | xpsr |= 0x200; | 
|  | } | 
|  | /* Switch to the handler mode.  */ | 
|  | v7m_push(env, xpsr); | 
|  | v7m_push(env, env->regs[15]); | 
|  | v7m_push(env, env->regs[14]); | 
|  | v7m_push(env, env->regs[12]); | 
|  | v7m_push(env, env->regs[3]); | 
|  | v7m_push(env, env->regs[2]); | 
|  | v7m_push(env, env->regs[1]); | 
|  | v7m_push(env, env->regs[0]); | 
|  | switch_v7m_sp(env, 0); | 
|  | env->uncached_cpsr &= ~CPSR_IT; | 
|  | env->regs[14] = lr; | 
|  | addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4); | 
|  | env->regs[15] = addr & 0xfffffffe; | 
|  | env->thumb = addr & 1; | 
|  | } | 
|  |  | 
|  | /* Handle a CPU exception.  */ | 
|  | void do_interrupt(CPUARMState *env) | 
|  | { | 
|  | uint32_t addr; | 
|  | uint32_t mask; | 
|  | int new_mode; | 
|  | uint32_t offset; | 
|  |  | 
|  | if (IS_M(env)) { | 
|  | do_interrupt_v7m(env); | 
|  | return; | 
|  | } | 
|  | /* TODO: Vectored interrupt controller.  */ | 
|  | switch (env->exception_index) { | 
|  | case EXCP_UDEF: | 
|  | new_mode = ARM_CPU_MODE_UND; | 
|  | addr = 0x04; | 
|  | mask = CPSR_I; | 
|  | if (env->thumb) | 
|  | offset = 2; | 
|  | else | 
|  | offset = 4; | 
|  | break; | 
|  | case EXCP_SWI: | 
|  | if (semihosting_enabled) { | 
|  | /* Check for semihosting interrupt.  */ | 
|  | if (env->thumb) { | 
|  | mask = lduw_code(env->regs[15] - 2) & 0xff; | 
|  | } else { | 
|  | mask = ldl_code(env->regs[15] - 4) & 0xffffff; | 
|  | } | 
|  | /* Only intercept calls from privileged modes, to provide some | 
|  | semblance of security.  */ | 
|  | if (((mask == 0x123456 && !env->thumb) | 
|  | || (mask == 0xab && env->thumb)) | 
|  | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | 
|  | env->regs[0] = do_arm_semihosting(env); | 
|  | return; | 
|  | } | 
|  | } | 
|  | new_mode = ARM_CPU_MODE_SVC; | 
|  | addr = 0x08; | 
|  | mask = CPSR_I; | 
|  | /* The PC already points to the next instruction.  */ | 
|  | offset = 0; | 
|  | break; | 
|  | case EXCP_BKPT: | 
|  | /* See if this is a semihosting syscall.  */ | 
|  | if (env->thumb && semihosting_enabled) { | 
|  | mask = lduw_code(env->regs[15]) & 0xff; | 
|  | if (mask == 0xab | 
|  | && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) { | 
|  | env->regs[15] += 2; | 
|  | env->regs[0] = do_arm_semihosting(env); | 
|  | return; | 
|  | } | 
|  | } | 
|  | /* Fall through to prefetch abort.  */ | 
|  | case EXCP_PREFETCH_ABORT: | 
|  | new_mode = ARM_CPU_MODE_ABT; | 
|  | addr = 0x0c; | 
|  | mask = CPSR_A | CPSR_I; | 
|  | offset = 4; | 
|  | break; | 
|  | case EXCP_DATA_ABORT: | 
|  | new_mode = ARM_CPU_MODE_ABT; | 
|  | addr = 0x10; | 
|  | mask = CPSR_A | CPSR_I; | 
|  | offset = 8; | 
|  | break; | 
|  | case EXCP_IRQ: | 
|  | new_mode = ARM_CPU_MODE_IRQ; | 
|  | addr = 0x18; | 
|  | /* Disable IRQ and imprecise data aborts.  */ | 
|  | mask = CPSR_A | CPSR_I; | 
|  | offset = 4; | 
|  | break; | 
|  | case EXCP_FIQ: | 
|  | new_mode = ARM_CPU_MODE_FIQ; | 
|  | addr = 0x1c; | 
|  | /* Disable FIQ, IRQ and imprecise data aborts.  */ | 
|  | mask = CPSR_A | CPSR_I | CPSR_F; | 
|  | offset = 4; | 
|  | break; | 
|  | default: | 
|  | cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index); | 
|  | return; /* Never happens.  Keep compiler happy.  */ | 
|  | } | 
|  | /* High vectors.  */ | 
|  | if (env->cp15.c1_sys & (1 << 13)) { | 
|  | addr += 0xffff0000; | 
|  | } | 
|  | switch_mode (env, new_mode); | 
|  | env->spsr = cpsr_read(env); | 
|  | /* Clear IT bits.  */ | 
|  | env->condexec_bits = 0; | 
|  | /* Switch to the new mode, and to the correct instruction set.  */ | 
|  | env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; | 
|  | env->uncached_cpsr |= mask; | 
|  | env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0; | 
|  | env->regs[14] = env->regs[15] + offset; | 
|  | env->regs[15] = addr; | 
|  | env->interrupt_request |= CPU_INTERRUPT_EXITTB; | 
|  | } | 
|  |  | 
|  | /* Check section/page access permissions. | 
|  | Returns the page protection flags, or zero if the access is not | 
|  | permitted.  */ | 
|  | static inline int check_ap(CPUState *env, int ap, int domain, int access_type, | 
|  | int is_user) | 
|  | { | 
|  | int prot_ro; | 
|  |  | 
|  | if (domain == 3) | 
|  | return PAGE_READ | PAGE_WRITE; | 
|  |  | 
|  | if (access_type == 1) | 
|  | prot_ro = 0; | 
|  | else | 
|  | prot_ro = PAGE_READ; | 
|  |  | 
|  | switch (ap) { | 
|  | case 0: | 
|  | if (access_type == 1) | 
|  | return 0; | 
|  | switch ((env->cp15.c1_sys >> 8) & 3) { | 
|  | case 1: | 
|  | return is_user ? 0 : PAGE_READ; | 
|  | case 2: | 
|  | return PAGE_READ; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | case 1: | 
|  | return is_user ? 0 : PAGE_READ | PAGE_WRITE; | 
|  | case 2: | 
|  | if (is_user) | 
|  | return prot_ro; | 
|  | else | 
|  | return PAGE_READ | PAGE_WRITE; | 
|  | case 3: | 
|  | return PAGE_READ | PAGE_WRITE; | 
|  | case 4: /* Reserved.  */ | 
|  | return 0; | 
|  | case 5: | 
|  | return is_user ? 0 : prot_ro; | 
|  | case 6: | 
|  | return prot_ro; | 
|  | case 7: | 
|  | if (!arm_feature (env, ARM_FEATURE_V7)) | 
|  | return 0; | 
|  | return prot_ro; | 
|  | default: | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint32_t get_level1_table_address(CPUState *env, uint32_t address) | 
|  | { | 
|  | uint32_t table; | 
|  |  | 
|  | if (address & env->cp15.c2_mask) | 
|  | table = env->cp15.c2_base1 & 0xffffc000; | 
|  | else | 
|  | table = env->cp15.c2_base0 & env->cp15.c2_base_mask; | 
|  |  | 
|  | table |= (address >> 18) & 0x3ffc; | 
|  | return table; | 
|  | } | 
|  |  | 
|  | static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type, | 
|  | int is_user, uint32_t *phys_ptr, int *prot, | 
|  | target_ulong *page_size) | 
|  | { | 
|  | int code; | 
|  | uint32_t table; | 
|  | uint32_t desc; | 
|  | int type; | 
|  | int ap; | 
|  | int domain; | 
|  | uint32_t phys_addr; | 
|  |  | 
|  | /* Pagetable walk.  */ | 
|  | /* Lookup l1 descriptor.  */ | 
|  | table = get_level1_table_address(env, address); | 
|  | desc = ldl_phys(table); | 
|  | type = (desc & 3); | 
|  | domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3; | 
|  | if (type == 0) { | 
|  | /* Section translation fault.  */ | 
|  | code = 5; | 
|  | goto do_fault; | 
|  | } | 
|  | if (domain == 0 || domain == 2) { | 
|  | if (type == 2) | 
|  | code = 9; /* Section domain fault.  */ | 
|  | else | 
|  | code = 11; /* Page domain fault.  */ | 
|  | goto do_fault; | 
|  | } | 
|  | if (type == 2) { | 
|  | /* 1Mb section.  */ | 
|  | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | 
|  | ap = (desc >> 10) & 3; | 
|  | code = 13; | 
|  | *page_size = 1024 * 1024; | 
|  | } else { | 
|  | /* Lookup l2 entry.  */ | 
|  | if (type == 1) { | 
|  | /* Coarse pagetable.  */ | 
|  | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | 
|  | } else { | 
|  | /* Fine pagetable.  */ | 
|  | table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); | 
|  | } | 
|  | desc = ldl_phys(table); | 
|  | switch (desc & 3) { | 
|  | case 0: /* Page translation fault.  */ | 
|  | code = 7; | 
|  | goto do_fault; | 
|  | case 1: /* 64k page.  */ | 
|  | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | 
|  | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | 
|  | *page_size = 0x10000; | 
|  | break; | 
|  | case 2: /* 4k page.  */ | 
|  | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | 
|  | ap = (desc >> (4 + ((address >> 13) & 6))) & 3; | 
|  | *page_size = 0x1000; | 
|  | break; | 
|  | case 3: /* 1k page.  */ | 
|  | if (type == 1) { | 
|  | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | 
|  | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | 
|  | } else { | 
|  | /* Page translation fault.  */ | 
|  | code = 7; | 
|  | goto do_fault; | 
|  | } | 
|  | } else { | 
|  | phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); | 
|  | } | 
|  | ap = (desc >> 4) & 3; | 
|  | *page_size = 0x400; | 
|  | break; | 
|  | default: | 
|  | /* Never happens, but compiler isn't smart enough to tell.  */ | 
|  | abort(); | 
|  | } | 
|  | code = 15; | 
|  | } | 
|  | *prot = check_ap(env, ap, domain, access_type, is_user); | 
|  | if (!*prot) { | 
|  | /* Access permission fault.  */ | 
|  | goto do_fault; | 
|  | } | 
|  | *prot |= PAGE_EXEC; | 
|  | *phys_ptr = phys_addr; | 
|  | return 0; | 
|  | do_fault: | 
|  | return code | (domain << 4); | 
|  | } | 
|  |  | 
|  | static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type, | 
|  | int is_user, uint32_t *phys_ptr, int *prot, | 
|  | target_ulong *page_size) | 
|  | { | 
|  | int code; | 
|  | uint32_t table; | 
|  | uint32_t desc; | 
|  | uint32_t xn; | 
|  | int type; | 
|  | int ap; | 
|  | int domain; | 
|  | uint32_t phys_addr; | 
|  |  | 
|  | /* Pagetable walk.  */ | 
|  | /* Lookup l1 descriptor.  */ | 
|  | table = get_level1_table_address(env, address); | 
|  | desc = ldl_phys(table); | 
|  | type = (desc & 3); | 
|  | if (type == 0) { | 
|  | /* Section translation fault.  */ | 
|  | code = 5; | 
|  | domain = 0; | 
|  | goto do_fault; | 
|  | } else if (type == 2 && (desc & (1 << 18))) { | 
|  | /* Supersection.  */ | 
|  | domain = 0; | 
|  | } else { | 
|  | /* Section or page.  */ | 
|  | domain = (desc >> 4) & 0x1e; | 
|  | } | 
|  | domain = (env->cp15.c3 >> domain) & 3; | 
|  | if (domain == 0 || domain == 2) { | 
|  | if (type == 2) | 
|  | code = 9; /* Section domain fault.  */ | 
|  | else | 
|  | code = 11; /* Page domain fault.  */ | 
|  | goto do_fault; | 
|  | } | 
|  | if (type == 2) { | 
|  | if (desc & (1 << 18)) { | 
|  | /* Supersection.  */ | 
|  | phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); | 
|  | *page_size = 0x1000000; | 
|  | } else { | 
|  | /* Section.  */ | 
|  | phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); | 
|  | *page_size = 0x100000; | 
|  | } | 
|  | ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); | 
|  | xn = desc & (1 << 4); | 
|  | code = 13; | 
|  | } else { | 
|  | /* Lookup l2 entry.  */ | 
|  | table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); | 
|  | desc = ldl_phys(table); | 
|  | ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); | 
|  | switch (desc & 3) { | 
|  | case 0: /* Page translation fault.  */ | 
|  | code = 7; | 
|  | goto do_fault; | 
|  | case 1: /* 64k page.  */ | 
|  | phys_addr = (desc & 0xffff0000) | (address & 0xffff); | 
|  | xn = desc & (1 << 15); | 
|  | *page_size = 0x10000; | 
|  | break; | 
|  | case 2: case 3: /* 4k page.  */ | 
|  | phys_addr = (desc & 0xfffff000) | (address & 0xfff); | 
|  | xn = desc & 1; | 
|  | *page_size = 0x1000; | 
|  | break; | 
|  | default: | 
|  | /* Never happens, but compiler isn't smart enough to tell.  */ | 
|  | abort(); | 
|  | } | 
|  | code = 15; | 
|  | } | 
|  | if (domain == 3) { | 
|  | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | 
|  | } else { | 
|  | if (xn && access_type == 2) | 
|  | goto do_fault; | 
|  |  | 
|  | /* The simplified model uses AP[0] as an access control bit.  */ | 
|  | if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) { | 
|  | /* Access flag fault.  */ | 
|  | code = (code == 15) ? 6 : 3; | 
|  | goto do_fault; | 
|  | } | 
|  | *prot = check_ap(env, ap, domain, access_type, is_user); | 
|  | if (!*prot) { | 
|  | /* Access permission fault.  */ | 
|  | goto do_fault; | 
|  | } | 
|  | if (!xn) { | 
|  | *prot |= PAGE_EXEC; | 
|  | } | 
|  | } | 
|  | *phys_ptr = phys_addr; | 
|  | return 0; | 
|  | do_fault: | 
|  | return code | (domain << 4); | 
|  | } | 
|  |  | 
|  | static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type, | 
|  | int is_user, uint32_t *phys_ptr, int *prot) | 
|  | { | 
|  | int n; | 
|  | uint32_t mask; | 
|  | uint32_t base; | 
|  |  | 
|  | *phys_ptr = address; | 
|  | for (n = 7; n >= 0; n--) { | 
|  | base = env->cp15.c6_region[n]; | 
|  | if ((base & 1) == 0) | 
|  | continue; | 
|  | mask = 1 << ((base >> 1) & 0x1f); | 
|  | /* Keep this shift separate from the above to avoid an | 
|  | (undefined) << 32.  */ | 
|  | mask = (mask << 1) - 1; | 
|  | if (((base ^ address) & ~mask) == 0) | 
|  | break; | 
|  | } | 
|  | if (n < 0) | 
|  | return 2; | 
|  |  | 
|  | if (access_type == 2) { | 
|  | mask = env->cp15.c5_insn; | 
|  | } else { | 
|  | mask = env->cp15.c5_data; | 
|  | } | 
|  | mask = (mask >> (n * 4)) & 0xf; | 
|  | switch (mask) { | 
|  | case 0: | 
|  | return 1; | 
|  | case 1: | 
|  | if (is_user) | 
|  | return 1; | 
|  | *prot = PAGE_READ | PAGE_WRITE; | 
|  | break; | 
|  | case 2: | 
|  | *prot = PAGE_READ; | 
|  | if (!is_user) | 
|  | *prot |= PAGE_WRITE; | 
|  | break; | 
|  | case 3: | 
|  | *prot = PAGE_READ | PAGE_WRITE; | 
|  | break; | 
|  | case 5: | 
|  | if (is_user) | 
|  | return 1; | 
|  | *prot = PAGE_READ; | 
|  | break; | 
|  | case 6: | 
|  | *prot = PAGE_READ; | 
|  | break; | 
|  | default: | 
|  | /* Bad permission.  */ | 
|  | return 1; | 
|  | } | 
|  | *prot |= PAGE_EXEC; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int get_phys_addr(CPUState *env, uint32_t address, | 
|  | int access_type, int is_user, | 
|  | uint32_t *phys_ptr, int *prot, | 
|  | target_ulong *page_size) | 
|  | { | 
|  | /* Fast Context Switch Extension.  */ | 
|  | if (address < 0x02000000) | 
|  | address += env->cp15.c13_fcse; | 
|  |  | 
|  | if ((env->cp15.c1_sys & 1) == 0) { | 
|  | /* MMU/MPU disabled.  */ | 
|  | *phys_ptr = address; | 
|  | *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | 
|  | *page_size = TARGET_PAGE_SIZE; | 
|  | return 0; | 
|  | } else if (arm_feature(env, ARM_FEATURE_MPU)) { | 
|  | *page_size = TARGET_PAGE_SIZE; | 
|  | return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr, | 
|  | prot); | 
|  | } else if (env->cp15.c1_sys & (1 << 23)) { | 
|  | return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr, | 
|  | prot, page_size); | 
|  | } else { | 
|  | return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr, | 
|  | prot, page_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, | 
|  | int access_type, int mmu_idx, int is_softmmu) | 
|  | { | 
|  | uint32_t phys_addr; | 
|  | target_ulong page_size; | 
|  | int prot; | 
|  | int ret, is_user; | 
|  |  | 
|  | is_user = mmu_idx == MMU_USER_IDX; | 
|  | ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot, | 
|  | &page_size); | 
|  | if (ret == 0) { | 
|  | /* Map a single [sub]page.  */ | 
|  | phys_addr &= ~(uint32_t)0x3ff; | 
|  | address &= ~(uint32_t)0x3ff; | 
|  | tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (access_type == 2) { | 
|  | env->cp15.c5_insn = ret; | 
|  | env->cp15.c6_insn = address; | 
|  | env->exception_index = EXCP_PREFETCH_ABORT; | 
|  | } else { | 
|  | env->cp15.c5_data = ret; | 
|  | if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) | 
|  | env->cp15.c5_data |= (1 << 11); | 
|  | env->cp15.c6_data = address; | 
|  | env->exception_index = EXCP_DATA_ABORT; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr) | 
|  | { | 
|  | uint32_t phys_addr; | 
|  | target_ulong page_size; | 
|  | int prot; | 
|  | int ret; | 
|  |  | 
|  | ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size); | 
|  |  | 
|  | if (ret != 0) | 
|  | return -1; | 
|  |  | 
|  | return phys_addr; | 
|  | } | 
|  |  | 
|  | void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val) | 
|  | { | 
|  | int cp_num = (insn >> 8) & 0xf; | 
|  | int cp_info = (insn >> 5) & 7; | 
|  | int src = (insn >> 16) & 0xf; | 
|  | int operand = insn & 0xf; | 
|  |  | 
|  | if (env->cp[cp_num].cp_write) | 
|  | env->cp[cp_num].cp_write(env->cp[cp_num].opaque, | 
|  | cp_info, src, operand, val); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn) | 
|  | { | 
|  | int cp_num = (insn >> 8) & 0xf; | 
|  | int cp_info = (insn >> 5) & 7; | 
|  | int dest = (insn >> 16) & 0xf; | 
|  | int operand = insn & 0xf; | 
|  |  | 
|  | if (env->cp[cp_num].cp_read) | 
|  | return env->cp[cp_num].cp_read(env->cp[cp_num].opaque, | 
|  | cp_info, dest, operand); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Return basic MPU access permission bits.  */ | 
|  | static uint32_t simple_mpu_ap_bits(uint32_t val) | 
|  | { | 
|  | uint32_t ret; | 
|  | uint32_t mask; | 
|  | int i; | 
|  | ret = 0; | 
|  | mask = 3; | 
|  | for (i = 0; i < 16; i += 2) { | 
|  | ret |= (val >> i) & mask; | 
|  | mask <<= 2; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Pad basic MPU access permission bits to extended format.  */ | 
|  | static uint32_t extended_mpu_ap_bits(uint32_t val) | 
|  | { | 
|  | uint32_t ret; | 
|  | uint32_t mask; | 
|  | int i; | 
|  | ret = 0; | 
|  | mask = 3; | 
|  | for (i = 0; i < 16; i += 2) { | 
|  | ret |= (val & mask) << i; | 
|  | mask <<= 2; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val) | 
|  | { | 
|  | int op1; | 
|  | int op2; | 
|  | int crm; | 
|  |  | 
|  | op1 = (insn >> 21) & 7; | 
|  | op2 = (insn >> 5) & 7; | 
|  | crm = insn & 0xf; | 
|  | switch ((insn >> 16) & 0xf) { | 
|  | case 0: | 
|  | /* ID codes.  */ | 
|  | if (arm_feature(env, ARM_FEATURE_XSCALE)) | 
|  | break; | 
|  | if (arm_feature(env, ARM_FEATURE_OMAPCP)) | 
|  | break; | 
|  | if (arm_feature(env, ARM_FEATURE_V7) | 
|  | && op1 == 2 && crm == 0 && op2 == 0) { | 
|  | env->cp15.c0_cssel = val & 0xf; | 
|  | break; | 
|  | } | 
|  | goto bad_reg; | 
|  | case 1: /* System configuration.  */ | 
|  | if (arm_feature(env, ARM_FEATURE_OMAPCP)) | 
|  | op2 = 0; | 
|  | switch (op2) { | 
|  | case 0: | 
|  | if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0) | 
|  | env->cp15.c1_sys = val; | 
|  | /* ??? Lots of these bits are not implemented.  */ | 
|  | /* This may enable/disable the MMU, so do a TLB flush.  */ | 
|  | tlb_flush(env, 1); | 
|  | break; | 
|  | case 1: /* Auxiliary cotrol register.  */ | 
|  | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | 
|  | env->cp15.c1_xscaleauxcr = val; | 
|  | break; | 
|  | } | 
|  | /* Not implemented.  */ | 
|  | break; | 
|  | case 2: | 
|  | if (arm_feature(env, ARM_FEATURE_XSCALE)) | 
|  | goto bad_reg; | 
|  | if (env->cp15.c1_coproc != val) { | 
|  | env->cp15.c1_coproc = val; | 
|  | /* ??? Is this safe when called from within a TB?  */ | 
|  | tb_flush(env); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | goto bad_reg; | 
|  | } | 
|  | break; | 
|  | case 2: /* MMU Page table control / MPU cache control.  */ | 
|  | if (arm_feature(env, ARM_FEATURE_MPU)) { | 
|  | switch (op2) { | 
|  | case 0: | 
|  | env->cp15.c2_data = val; | 
|  | break; | 
|  | case 1: | 
|  | env->cp15.c2_insn = val; | 
|  | break; | 
|  | default: | 
|  | goto bad_reg; | 
|  | } | 
|  | } else { | 
|  | switch (op2) { | 
|  | case 0: | 
|  | env->cp15.c2_base0 = val; | 
|  | break; | 
|  | case 1: | 
|  | env->cp15.c2_base1 = val; | 
|  | break; | 
|  | case 2: | 
|  | val &= 7; | 
|  | env->cp15.c2_control = val; | 
|  | env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val); | 
|  | env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val); | 
|  | break; | 
|  | default: | 
|  | goto bad_reg; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 3: /* MMU Domain access control / MPU write buffer control.  */ | 
|  | env->cp15.c3 = val; | 
|  | tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */ | 
|  | break; | 
|  | case 4: /* Reserved.  */ | 
|  | goto bad_reg; | 
|  | case 5: /* MMU Fault status / MPU access permission.  */ | 
|  | if (arm_feature(env, ARM_FEATURE_OMAPCP)) | 
|  | op2 = 0; | 
|  | switch (op2) { | 
|  | case 0: | 
|  | if (arm_feature(env, ARM_FEATURE_MPU)) | 
|  | val = extended_mpu_ap_bits(val); | 
|  | env->cp15.c5_data = val; | 
|  | break; | 
|  | case 1: | 
|  | if (arm_feature(env, ARM_FEATURE_MPU)) | 
|  | val = extended_mpu_ap_bits(val); | 
|  | env->cp15.c5_insn = val; | 
|  | break; | 
|  | case 2: | 
|  | if (!arm_feature(env, ARM_FEATURE_MPU)) | 
|  | goto bad_reg; | 
|  | env->cp15.c5_data = val; | 
|  | break; | 
|  | case 3: | 
|  | if (!arm_feature(env, ARM_FEATURE_MPU)) | 
|  | goto bad_reg; | 
|  | env->cp15.c5_insn = val; | 
|  | break; | 
|  | default: | 
|  | goto bad_reg; | 
|  | } | 
|  | break; | 
|  | case 6: /* MMU Fault address / MPU base/size.  */ | 
|  | if (arm_feature(env, ARM_FEATURE_MPU)) { | 
|  | if (crm >= 8) | 
|  | goto bad_reg; | 
|  | env->cp15.c6_region[crm] = val; | 
|  | } else { | 
|  | if (arm_feature(env, ARM_FEATURE_OMAPCP)) | 
|  | op2 = 0; | 
|  | switch (op2) { | 
|  | case 0: | 
|  | env->cp15.c6_data = val; | 
|  | break; | 
|  | case 1: /* ??? This is WFAR on armv6 */ | 
|  | case 2: | 
|  | env->cp15.c6_insn = val; | 
|  | break; | 
|  | default: | 
|  | goto bad_reg; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 7: /* Cache control.  */ | 
|  | env->cp15.c15_i_max = 0x000; | 
|  | env->cp15.c15_i_min = 0xff0; | 
|  | /* No cache, so nothing to do.  */ | 
|  | /* ??? MPCore has VA to PA translation functions.  */ | 
|  | break; | 
|  | case 8: /* MMU TLB control.  */ | 
|  | switch (op2) { | 
|  | case 0: /* Invalidate all.  */ | 
|  | tlb_flush(env, 0); | 
|  | break; | 
|  | case 1: /* Invalidate single TLB entry.  */ | 
|  | tlb_flush_page(env, val & TARGET_PAGE_MASK); | 
|  | break; | 
|  | case 2: /* Invalidate on ASID.  */ | 
|  | tlb_flush(env, val == 0); | 
|  | break; | 
|  | case 3: /* Invalidate single entry on MVA.  */ | 
|  | /* ??? This is like case 1, but ignores ASID.  */ | 
|  | tlb_flush(env, 1); | 
|  | break; | 
|  | default: | 
|  | goto bad_reg; | 
|  | } | 
|  | break; | 
|  | case 9: | 
|  | if (arm_feature(env, ARM_FEATURE_OMAPCP)) | 
|  | break; | 
|  | switch (crm) { | 
|  | case 0: /* Cache lockdown.  */ | 
|  | switch (op1) { | 
|  | case 0: /* L1 cache.  */ | 
|  | switch (op2) { | 
|  | case 0: | 
|  | env->cp15.c9_data = val; | 
|  | break; | 
|  | case 1: | 
|  | env->cp15.c9_insn = val; | 
|  | break; | 
|  | default: | 
|  | goto bad_reg; | 
|  | } | 
|  | break; | 
|  | case 1: /* L2 cache.  */ | 
|  | /* Ignore writes to L2 lockdown/auxiliary registers.  */ | 
|  | break; | 
|  | default: | 
|  | goto bad_reg; | 
|  | } | 
|  | break; | 
|  | case 1: /* TCM memory region registers.  */ | 
|  | /* Not implemented.  */ | 
|  | goto bad_reg; | 
|  | default: | 
|  | goto bad_reg; | 
|  | } | 
|  | break; | 
|  | case 10: /* MMU TLB lockdown.  */ | 
|  | /* ??? TLB lockdown not implemented.  */ | 
|  | break; | 
|  | case 12: /* Reserved.  */ | 
|  | goto bad_reg; | 
|  | case 13: /* Process ID.  */ | 
|  | switch (op2) { | 
|  | case 0: | 
|  | /* Unlike real hardware the qemu TLB uses virtual addresses, | 
|  | not modified virtual addresses, so this causes a TLB flush. | 
|  | */ | 
|  | if (env->cp15.c13_fcse != val) | 
|  | tlb_flush(env, 1); | 
|  | env->cp15.c13_fcse = val; | 
|  | break; | 
|  | case 1: | 
|  | /* This changes the ASID, so do a TLB flush.  */ | 
|  | if (env->cp15.c13_context != val | 
|  | && !arm_feature(env, ARM_FEATURE_MPU)) | 
|  | tlb_flush(env, 0); | 
|  | env->cp15.c13_context = val; | 
|  | break; | 
|  | default: | 
|  | goto bad_reg; | 
|  | } | 
|  | break; | 
|  | case 14: /* Reserved.  */ | 
|  | goto bad_reg; | 
|  | case 15: /* Implementation specific.  */ | 
|  | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | 
|  | if (op2 == 0 && crm == 1) { | 
|  | if (env->cp15.c15_cpar != (val & 0x3fff)) { | 
|  | /* Changes cp0 to cp13 behavior, so needs a TB flush.  */ | 
|  | tb_flush(env); | 
|  | env->cp15.c15_cpar = val & 0x3fff; | 
|  | } | 
|  | break; | 
|  | } | 
|  | goto bad_reg; | 
|  | } | 
|  | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { | 
|  | switch (crm) { | 
|  | case 0: | 
|  | break; | 
|  | case 1: /* Set TI925T configuration.  */ | 
|  | env->cp15.c15_ticonfig = val & 0xe7; | 
|  | env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */ | 
|  | ARM_CPUID_TI915T : ARM_CPUID_TI925T; | 
|  | break; | 
|  | case 2: /* Set I_max.  */ | 
|  | env->cp15.c15_i_max = val; | 
|  | break; | 
|  | case 3: /* Set I_min.  */ | 
|  | env->cp15.c15_i_min = val; | 
|  | break; | 
|  | case 4: /* Set thread-ID.  */ | 
|  | env->cp15.c15_threadid = val & 0xffff; | 
|  | break; | 
|  | case 8: /* Wait-for-interrupt (deprecated).  */ | 
|  | cpu_interrupt(env, CPU_INTERRUPT_HALT); | 
|  | break; | 
|  | default: | 
|  | goto bad_reg; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | return; | 
|  | bad_reg: | 
|  | /* ??? For debugging only.  Should raise illegal instruction exception.  */ | 
|  | cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n", | 
|  | (insn >> 16) & 0xf, crm, op1, op2); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn) | 
|  | { | 
|  | int op1; | 
|  | int op2; | 
|  | int crm; | 
|  |  | 
|  | op1 = (insn >> 21) & 7; | 
|  | op2 = (insn >> 5) & 7; | 
|  | crm = insn & 0xf; | 
|  | switch ((insn >> 16) & 0xf) { | 
|  | case 0: /* ID codes.  */ | 
|  | switch (op1) { | 
|  | case 0: | 
|  | switch (crm) { | 
|  | case 0: | 
|  | switch (op2) { | 
|  | case 0: /* Device ID.  */ | 
|  | return env->cp15.c0_cpuid; | 
|  | case 1: /* Cache Type.  */ | 
|  | return env->cp15.c0_cachetype; | 
|  | case 2: /* TCM status.  */ | 
|  | return 0; | 
|  | case 3: /* TLB type register.  */ | 
|  | return 0; /* No lockable TLB entries.  */ | 
|  | case 5: /* CPU ID */ | 
|  | if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) { | 
|  | return env->cpu_index | 0x80000900; | 
|  | } else { | 
|  | return env->cpu_index; | 
|  | } | 
|  | default: | 
|  | goto bad_reg; | 
|  | } | 
|  | case 1: | 
|  | if (!arm_feature(env, ARM_FEATURE_V6)) | 
|  | goto bad_reg; | 
|  | return env->cp15.c0_c1[op2]; | 
|  | case 2: | 
|  | if (!arm_feature(env, ARM_FEATURE_V6)) | 
|  | goto bad_reg; | 
|  | return env->cp15.c0_c2[op2]; | 
|  | case 3: case 4: case 5: case 6: case 7: | 
|  | return 0; | 
|  | default: | 
|  | goto bad_reg; | 
|  | } | 
|  | case 1: | 
|  | /* These registers aren't documented on arm11 cores.  However | 
|  | Linux looks at them anyway.  */ | 
|  | if (!arm_feature(env, ARM_FEATURE_V6)) | 
|  | goto bad_reg; | 
|  | if (crm != 0) | 
|  | goto bad_reg; | 
|  | if (!arm_feature(env, ARM_FEATURE_V7)) | 
|  | return 0; | 
|  |  | 
|  | switch (op2) { | 
|  | case 0: | 
|  | return env->cp15.c0_ccsid[env->cp15.c0_cssel]; | 
|  | case 1: | 
|  | return env->cp15.c0_clid; | 
|  | case 7: | 
|  | return 0; | 
|  | } | 
|  | goto bad_reg; | 
|  | case 2: | 
|  | if (op2 != 0 || crm != 0) | 
|  | goto bad_reg; | 
|  | return env->cp15.c0_cssel; | 
|  | default: | 
|  | goto bad_reg; | 
|  | } | 
|  | case 1: /* System configuration.  */ | 
|  | if (arm_feature(env, ARM_FEATURE_OMAPCP)) | 
|  | op2 = 0; | 
|  | switch (op2) { | 
|  | case 0: /* Control register.  */ | 
|  | return env->cp15.c1_sys; | 
|  | case 1: /* Auxiliary control register.  */ | 
|  | if (arm_feature(env, ARM_FEATURE_XSCALE)) | 
|  | return env->cp15.c1_xscaleauxcr; | 
|  | if (!arm_feature(env, ARM_FEATURE_AUXCR)) | 
|  | goto bad_reg; | 
|  | switch (ARM_CPUID(env)) { | 
|  | case ARM_CPUID_ARM1026: | 
|  | return 1; | 
|  | case ARM_CPUID_ARM1136: | 
|  | case ARM_CPUID_ARM1136_R2: | 
|  | return 7; | 
|  | case ARM_CPUID_ARM11MPCORE: | 
|  | return 1; | 
|  | case ARM_CPUID_CORTEXA8: | 
|  | return 2; | 
|  | case ARM_CPUID_CORTEXA9: | 
|  | return 0; | 
|  | default: | 
|  | goto bad_reg; | 
|  | } | 
|  | case 2: /* Coprocessor access register.  */ | 
|  | if (arm_feature(env, ARM_FEATURE_XSCALE)) | 
|  | goto bad_reg; | 
|  | return env->cp15.c1_coproc; | 
|  | default: | 
|  | goto bad_reg; | 
|  | } | 
|  | case 2: /* MMU Page table control / MPU cache control.  */ | 
|  | if (arm_feature(env, ARM_FEATURE_MPU)) { | 
|  | switch (op2) { | 
|  | case 0: | 
|  | return env->cp15.c2_data; | 
|  | break; | 
|  | case 1: | 
|  | return env->cp15.c2_insn; | 
|  | break; | 
|  | default: | 
|  | goto bad_reg; | 
|  | } | 
|  | } else { | 
|  | switch (op2) { | 
|  | case 0: | 
|  | return env->cp15.c2_base0; | 
|  | case 1: | 
|  | return env->cp15.c2_base1; | 
|  | case 2: | 
|  | return env->cp15.c2_control; | 
|  | default: | 
|  | goto bad_reg; | 
|  | } | 
|  | } | 
|  | case 3: /* MMU Domain access control / MPU write buffer control.  */ | 
|  | return env->cp15.c3; | 
|  | case 4: /* Reserved.  */ | 
|  | goto bad_reg; | 
|  | case 5: /* MMU Fault status / MPU access permission.  */ | 
|  | if (arm_feature(env, ARM_FEATURE_OMAPCP)) | 
|  | op2 = 0; | 
|  | switch (op2) { | 
|  | case 0: | 
|  | if (arm_feature(env, ARM_FEATURE_MPU)) | 
|  | return simple_mpu_ap_bits(env->cp15.c5_data); | 
|  | return env->cp15.c5_data; | 
|  | case 1: | 
|  | if (arm_feature(env, ARM_FEATURE_MPU)) | 
|  | return simple_mpu_ap_bits(env->cp15.c5_data); | 
|  | return env->cp15.c5_insn; | 
|  | case 2: | 
|  | if (!arm_feature(env, ARM_FEATURE_MPU)) | 
|  | goto bad_reg; | 
|  | return env->cp15.c5_data; | 
|  | case 3: | 
|  | if (!arm_feature(env, ARM_FEATURE_MPU)) | 
|  | goto bad_reg; | 
|  | return env->cp15.c5_insn; | 
|  | default: | 
|  | goto bad_reg; | 
|  | } | 
|  | case 6: /* MMU Fault address.  */ | 
|  | if (arm_feature(env, ARM_FEATURE_MPU)) { | 
|  | if (crm >= 8) | 
|  | goto bad_reg; | 
|  | return env->cp15.c6_region[crm]; | 
|  | } else { | 
|  | if (arm_feature(env, ARM_FEATURE_OMAPCP)) | 
|  | op2 = 0; | 
|  | switch (op2) { | 
|  | case 0: | 
|  | return env->cp15.c6_data; | 
|  | case 1: | 
|  | if (arm_feature(env, ARM_FEATURE_V6)) { | 
|  | /* Watchpoint Fault Adrress.  */ | 
|  | return 0; /* Not implemented.  */ | 
|  | } else { | 
|  | /* Instruction Fault Adrress.  */ | 
|  | /* Arm9 doesn't have an IFAR, but implementing it anyway | 
|  | shouldn't do any harm.  */ | 
|  | return env->cp15.c6_insn; | 
|  | } | 
|  | case 2: | 
|  | if (arm_feature(env, ARM_FEATURE_V6)) { | 
|  | /* Instruction Fault Adrress.  */ | 
|  | return env->cp15.c6_insn; | 
|  | } else { | 
|  | goto bad_reg; | 
|  | } | 
|  | default: | 
|  | goto bad_reg; | 
|  | } | 
|  | } | 
|  | case 7: /* Cache control.  */ | 
|  | /* FIXME: Should only clear Z flag if destination is r15.  */ | 
|  | env->ZF = 0; | 
|  | return 0; | 
|  | case 8: /* MMU TLB control.  */ | 
|  | goto bad_reg; | 
|  | case 9: /* Cache lockdown.  */ | 
|  | switch (op1) { | 
|  | case 0: /* L1 cache.  */ | 
|  | if (arm_feature(env, ARM_FEATURE_OMAPCP)) | 
|  | return 0; | 
|  | switch (op2) { | 
|  | case 0: | 
|  | return env->cp15.c9_data; | 
|  | case 1: | 
|  | return env->cp15.c9_insn; | 
|  | default: | 
|  | goto bad_reg; | 
|  | } | 
|  | case 1: /* L2 cache */ | 
|  | if (crm != 0) | 
|  | goto bad_reg; | 
|  | /* L2 Lockdown and Auxiliary control.  */ | 
|  | return 0; | 
|  | default: | 
|  | goto bad_reg; | 
|  | } | 
|  | case 10: /* MMU TLB lockdown.  */ | 
|  | /* ??? TLB lockdown not implemented.  */ | 
|  | return 0; | 
|  | case 11: /* TCM DMA control.  */ | 
|  | case 12: /* Reserved.  */ | 
|  | goto bad_reg; | 
|  | case 13: /* Process ID.  */ | 
|  | switch (op2) { | 
|  | case 0: | 
|  | return env->cp15.c13_fcse; | 
|  | case 1: | 
|  | return env->cp15.c13_context; | 
|  | default: | 
|  | goto bad_reg; | 
|  | } | 
|  | case 14: /* Reserved.  */ | 
|  | goto bad_reg; | 
|  | case 15: /* Implementation specific.  */ | 
|  | if (arm_feature(env, ARM_FEATURE_XSCALE)) { | 
|  | if (op2 == 0 && crm == 1) | 
|  | return env->cp15.c15_cpar; | 
|  |  | 
|  | goto bad_reg; | 
|  | } | 
|  | if (arm_feature(env, ARM_FEATURE_OMAPCP)) { | 
|  | switch (crm) { | 
|  | case 0: | 
|  | return 0; | 
|  | case 1: /* Read TI925T configuration.  */ | 
|  | return env->cp15.c15_ticonfig; | 
|  | case 2: /* Read I_max.  */ | 
|  | return env->cp15.c15_i_max; | 
|  | case 3: /* Read I_min.  */ | 
|  | return env->cp15.c15_i_min; | 
|  | case 4: /* Read thread-ID.  */ | 
|  | return env->cp15.c15_threadid; | 
|  | case 8: /* TI925T_status */ | 
|  | return 0; | 
|  | } | 
|  | /* TODO: Peripheral port remap register: | 
|  | * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt | 
|  | * controller base address at $rn & ~0xfff and map size of | 
|  | * 0x200 << ($rn & 0xfff), when MMU is off.  */ | 
|  | goto bad_reg; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | bad_reg: | 
|  | /* ??? For debugging only.  Should raise illegal instruction exception.  */ | 
|  | cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n", | 
|  | (insn >> 16) & 0xf, crm, op1, op2); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val) | 
|  | { | 
|  | if ((env->uncached_cpsr & CPSR_M) == mode) { | 
|  | env->regs[13] = val; | 
|  | } else { | 
|  | env->banked_r13[bank_number(mode)] = val; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode) | 
|  | { | 
|  | if ((env->uncached_cpsr & CPSR_M) == mode) { | 
|  | return env->regs[13]; | 
|  | } else { | 
|  | return env->banked_r13[bank_number(mode)]; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg) | 
|  | { | 
|  | switch (reg) { | 
|  | case 0: /* APSR */ | 
|  | return xpsr_read(env) & 0xf8000000; | 
|  | case 1: /* IAPSR */ | 
|  | return xpsr_read(env) & 0xf80001ff; | 
|  | case 2: /* EAPSR */ | 
|  | return xpsr_read(env) & 0xff00fc00; | 
|  | case 3: /* xPSR */ | 
|  | return xpsr_read(env) & 0xff00fdff; | 
|  | case 5: /* IPSR */ | 
|  | return xpsr_read(env) & 0x000001ff; | 
|  | case 6: /* EPSR */ | 
|  | return xpsr_read(env) & 0x0700fc00; | 
|  | case 7: /* IEPSR */ | 
|  | return xpsr_read(env) & 0x0700edff; | 
|  | case 8: /* MSP */ | 
|  | return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13]; | 
|  | case 9: /* PSP */ | 
|  | return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp; | 
|  | case 16: /* PRIMASK */ | 
|  | return (env->uncached_cpsr & CPSR_I) != 0; | 
|  | case 17: /* FAULTMASK */ | 
|  | return (env->uncached_cpsr & CPSR_F) != 0; | 
|  | case 18: /* BASEPRI */ | 
|  | case 19: /* BASEPRI_MAX */ | 
|  | return env->v7m.basepri; | 
|  | case 20: /* CONTROL */ | 
|  | return env->v7m.control; | 
|  | default: | 
|  | /* ??? For debugging only.  */ | 
|  | cpu_abort(env, "Unimplemented system register read (%d)\n", reg); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val) | 
|  | { | 
|  | switch (reg) { | 
|  | case 0: /* APSR */ | 
|  | xpsr_write(env, val, 0xf8000000); | 
|  | break; | 
|  | case 1: /* IAPSR */ | 
|  | xpsr_write(env, val, 0xf8000000); | 
|  | break; | 
|  | case 2: /* EAPSR */ | 
|  | xpsr_write(env, val, 0xfe00fc00); | 
|  | break; | 
|  | case 3: /* xPSR */ | 
|  | xpsr_write(env, val, 0xfe00fc00); | 
|  | break; | 
|  | case 5: /* IPSR */ | 
|  | /* IPSR bits are readonly.  */ | 
|  | break; | 
|  | case 6: /* EPSR */ | 
|  | xpsr_write(env, val, 0x0600fc00); | 
|  | break; | 
|  | case 7: /* IEPSR */ | 
|  | xpsr_write(env, val, 0x0600fc00); | 
|  | break; | 
|  | case 8: /* MSP */ | 
|  | if (env->v7m.current_sp) | 
|  | env->v7m.other_sp = val; | 
|  | else | 
|  | env->regs[13] = val; | 
|  | break; | 
|  | case 9: /* PSP */ | 
|  | if (env->v7m.current_sp) | 
|  | env->regs[13] = val; | 
|  | else | 
|  | env->v7m.other_sp = val; | 
|  | break; | 
|  | case 16: /* PRIMASK */ | 
|  | if (val & 1) | 
|  | env->uncached_cpsr |= CPSR_I; | 
|  | else | 
|  | env->uncached_cpsr &= ~CPSR_I; | 
|  | break; | 
|  | case 17: /* FAULTMASK */ | 
|  | if (val & 1) | 
|  | env->uncached_cpsr |= CPSR_F; | 
|  | else | 
|  | env->uncached_cpsr &= ~CPSR_F; | 
|  | break; | 
|  | case 18: /* BASEPRI */ | 
|  | env->v7m.basepri = val & 0xff; | 
|  | break; | 
|  | case 19: /* BASEPRI_MAX */ | 
|  | val &= 0xff; | 
|  | if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0)) | 
|  | env->v7m.basepri = val; | 
|  | break; | 
|  | case 20: /* CONTROL */ | 
|  | env->v7m.control = val & 3; | 
|  | switch_v7m_sp(env, (val & 2) != 0); | 
|  | break; | 
|  | default: | 
|  | /* ??? For debugging only.  */ | 
|  | cpu_abort(env, "Unimplemented system register write (%d)\n", reg); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | void cpu_arm_set_cp_io(CPUARMState *env, int cpnum, | 
|  | ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write, | 
|  | void *opaque) | 
|  | { | 
|  | if (cpnum < 0 || cpnum > 14) { | 
|  | cpu_abort(env, "Bad coprocessor number: %i\n", cpnum); | 
|  | return; | 
|  | } | 
|  |  | 
|  | env->cp[cpnum].cp_read = cp_read; | 
|  | env->cp[cpnum].cp_write = cp_write; | 
|  | env->cp[cpnum].opaque = opaque; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* Note that signed overflow is undefined in C.  The following routines are | 
|  | careful to use unsigned types where modulo arithmetic is required. | 
|  | Failure to do so _will_ break on newer gcc.  */ | 
|  |  | 
|  | /* Signed saturating arithmetic.  */ | 
|  |  | 
|  | /* Perform 16-bit signed saturating addition.  */ | 
|  | static inline uint16_t add16_sat(uint16_t a, uint16_t b) | 
|  | { | 
|  | uint16_t res; | 
|  |  | 
|  | res = a + b; | 
|  | if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { | 
|  | if (a & 0x8000) | 
|  | res = 0x8000; | 
|  | else | 
|  | res = 0x7fff; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* Perform 8-bit signed saturating addition.  */ | 
|  | static inline uint8_t add8_sat(uint8_t a, uint8_t b) | 
|  | { | 
|  | uint8_t res; | 
|  |  | 
|  | res = a + b; | 
|  | if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { | 
|  | if (a & 0x80) | 
|  | res = 0x80; | 
|  | else | 
|  | res = 0x7f; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* Perform 16-bit signed saturating subtraction.  */ | 
|  | static inline uint16_t sub16_sat(uint16_t a, uint16_t b) | 
|  | { | 
|  | uint16_t res; | 
|  |  | 
|  | res = a - b; | 
|  | if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { | 
|  | if (a & 0x8000) | 
|  | res = 0x8000; | 
|  | else | 
|  | res = 0x7fff; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* Perform 8-bit signed saturating subtraction.  */ | 
|  | static inline uint8_t sub8_sat(uint8_t a, uint8_t b) | 
|  | { | 
|  | uint8_t res; | 
|  |  | 
|  | res = a - b; | 
|  | if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { | 
|  | if (a & 0x80) | 
|  | res = 0x80; | 
|  | else | 
|  | res = 0x7f; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); | 
|  | #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); | 
|  | #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8); | 
|  | #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8); | 
|  | #define PFX q | 
|  |  | 
|  | #include "op_addsub.h" | 
|  |  | 
|  | /* Unsigned saturating arithmetic.  */ | 
|  | static inline uint16_t add16_usat(uint16_t a, uint16_t b) | 
|  | { | 
|  | uint16_t res; | 
|  | res = a + b; | 
|  | if (res < a) | 
|  | res = 0xffff; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static inline uint16_t sub16_usat(uint16_t a, uint16_t b) | 
|  | { | 
|  | if (a > b) | 
|  | return a - b; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline uint8_t add8_usat(uint8_t a, uint8_t b) | 
|  | { | 
|  | uint8_t res; | 
|  | res = a + b; | 
|  | if (res < a) | 
|  | res = 0xff; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static inline uint8_t sub8_usat(uint8_t a, uint8_t b) | 
|  | { | 
|  | if (a > b) | 
|  | return a - b; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); | 
|  | #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); | 
|  | #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8); | 
|  | #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8); | 
|  | #define PFX uq | 
|  |  | 
|  | #include "op_addsub.h" | 
|  |  | 
|  | /* Signed modulo arithmetic.  */ | 
|  | #define SARITH16(a, b, n, op) do { \ | 
|  | int32_t sum; \ | 
|  | sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \ | 
|  | RESULT(sum, n, 16); \ | 
|  | if (sum >= 0) \ | 
|  | ge |= 3 << (n * 2); \ | 
|  | } while(0) | 
|  |  | 
|  | #define SARITH8(a, b, n, op) do { \ | 
|  | int32_t sum; \ | 
|  | sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \ | 
|  | RESULT(sum, n, 8); \ | 
|  | if (sum >= 0) \ | 
|  | ge |= 1 << n; \ | 
|  | } while(0) | 
|  |  | 
|  |  | 
|  | #define ADD16(a, b, n) SARITH16(a, b, n, +) | 
|  | #define SUB16(a, b, n) SARITH16(a, b, n, -) | 
|  | #define ADD8(a, b, n)  SARITH8(a, b, n, +) | 
|  | #define SUB8(a, b, n)  SARITH8(a, b, n, -) | 
|  | #define PFX s | 
|  | #define ARITH_GE | 
|  |  | 
|  | #include "op_addsub.h" | 
|  |  | 
|  | /* Unsigned modulo arithmetic.  */ | 
|  | #define ADD16(a, b, n) do { \ | 
|  | uint32_t sum; \ | 
|  | sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ | 
|  | RESULT(sum, n, 16); \ | 
|  | if ((sum >> 16) == 1) \ | 
|  | ge |= 3 << (n * 2); \ | 
|  | } while(0) | 
|  |  | 
|  | #define ADD8(a, b, n) do { \ | 
|  | uint32_t sum; \ | 
|  | sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ | 
|  | RESULT(sum, n, 8); \ | 
|  | if ((sum >> 8) == 1) \ | 
|  | ge |= 1 << n; \ | 
|  | } while(0) | 
|  |  | 
|  | #define SUB16(a, b, n) do { \ | 
|  | uint32_t sum; \ | 
|  | sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ | 
|  | RESULT(sum, n, 16); \ | 
|  | if ((sum >> 16) == 0) \ | 
|  | ge |= 3 << (n * 2); \ | 
|  | } while(0) | 
|  |  | 
|  | #define SUB8(a, b, n) do { \ | 
|  | uint32_t sum; \ | 
|  | sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ | 
|  | RESULT(sum, n, 8); \ | 
|  | if ((sum >> 8) == 0) \ | 
|  | ge |= 1 << n; \ | 
|  | } while(0) | 
|  |  | 
|  | #define PFX u | 
|  | #define ARITH_GE | 
|  |  | 
|  | #include "op_addsub.h" | 
|  |  | 
|  | /* Halved signed arithmetic.  */ | 
|  | #define ADD16(a, b, n) \ | 
|  | RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) | 
|  | #define SUB16(a, b, n) \ | 
|  | RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) | 
|  | #define ADD8(a, b, n) \ | 
|  | RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) | 
|  | #define SUB8(a, b, n) \ | 
|  | RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) | 
|  | #define PFX sh | 
|  |  | 
|  | #include "op_addsub.h" | 
|  |  | 
|  | /* Halved unsigned arithmetic.  */ | 
|  | #define ADD16(a, b, n) \ | 
|  | RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) | 
|  | #define SUB16(a, b, n) \ | 
|  | RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) | 
|  | #define ADD8(a, b, n) \ | 
|  | RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) | 
|  | #define SUB8(a, b, n) \ | 
|  | RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) | 
|  | #define PFX uh | 
|  |  | 
|  | #include "op_addsub.h" | 
|  |  | 
|  | static inline uint8_t do_usad(uint8_t a, uint8_t b) | 
|  | { | 
|  | if (a > b) | 
|  | return a - b; | 
|  | else | 
|  | return b - a; | 
|  | } | 
|  |  | 
|  | /* Unsigned sum of absolute byte differences.  */ | 
|  | uint32_t HELPER(usad8)(uint32_t a, uint32_t b) | 
|  | { | 
|  | uint32_t sum; | 
|  | sum = do_usad(a, b); | 
|  | sum += do_usad(a >> 8, b >> 8); | 
|  | sum += do_usad(a >> 16, b >>16); | 
|  | sum += do_usad(a >> 24, b >> 24); | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | /* For ARMv6 SEL instruction.  */ | 
|  | uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) | 
|  | { | 
|  | uint32_t mask; | 
|  |  | 
|  | mask = 0; | 
|  | if (flags & 1) | 
|  | mask |= 0xff; | 
|  | if (flags & 2) | 
|  | mask |= 0xff00; | 
|  | if (flags & 4) | 
|  | mask |= 0xff0000; | 
|  | if (flags & 8) | 
|  | mask |= 0xff000000; | 
|  | return (a & mask) | (b & ~mask); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(logicq_cc)(uint64_t val) | 
|  | { | 
|  | return (val >> 32) | (val != 0); | 
|  | } | 
|  |  | 
|  | /* VFP support.  We follow the convention used for VFP instrunctions: | 
|  | Single precition routines have a "s" suffix, double precision a | 
|  | "d" suffix.  */ | 
|  |  | 
|  | /* Convert host exception flags to vfp form.  */ | 
|  | static inline int vfp_exceptbits_from_host(int host_bits) | 
|  | { | 
|  | int target_bits = 0; | 
|  |  | 
|  | if (host_bits & float_flag_invalid) | 
|  | target_bits |= 1; | 
|  | if (host_bits & float_flag_divbyzero) | 
|  | target_bits |= 2; | 
|  | if (host_bits & float_flag_overflow) | 
|  | target_bits |= 4; | 
|  | if (host_bits & float_flag_underflow) | 
|  | target_bits |= 8; | 
|  | if (host_bits & float_flag_inexact) | 
|  | target_bits |= 0x10; | 
|  | if (host_bits & float_flag_input_denormal) | 
|  | target_bits |= 0x80; | 
|  | return target_bits; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(vfp_get_fpscr)(CPUState *env) | 
|  | { | 
|  | int i; | 
|  | uint32_t fpscr; | 
|  |  | 
|  | fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | 
|  | | (env->vfp.vec_len << 16) | 
|  | | (env->vfp.vec_stride << 20); | 
|  | i = get_float_exception_flags(&env->vfp.fp_status); | 
|  | i |= get_float_exception_flags(&env->vfp.standard_fp_status); | 
|  | fpscr |= vfp_exceptbits_from_host(i); | 
|  | return fpscr; | 
|  | } | 
|  |  | 
|  | uint32_t vfp_get_fpscr(CPUState *env) | 
|  | { | 
|  | return HELPER(vfp_get_fpscr)(env); | 
|  | } | 
|  |  | 
|  | /* Convert vfp exception flags to target form.  */ | 
|  | static inline int vfp_exceptbits_to_host(int target_bits) | 
|  | { | 
|  | int host_bits = 0; | 
|  |  | 
|  | if (target_bits & 1) | 
|  | host_bits |= float_flag_invalid; | 
|  | if (target_bits & 2) | 
|  | host_bits |= float_flag_divbyzero; | 
|  | if (target_bits & 4) | 
|  | host_bits |= float_flag_overflow; | 
|  | if (target_bits & 8) | 
|  | host_bits |= float_flag_underflow; | 
|  | if (target_bits & 0x10) | 
|  | host_bits |= float_flag_inexact; | 
|  | if (target_bits & 0x80) | 
|  | host_bits |= float_flag_input_denormal; | 
|  | return host_bits; | 
|  | } | 
|  |  | 
|  | void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val) | 
|  | { | 
|  | int i; | 
|  | uint32_t changed; | 
|  |  | 
|  | changed = env->vfp.xregs[ARM_VFP_FPSCR]; | 
|  | env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); | 
|  | env->vfp.vec_len = (val >> 16) & 7; | 
|  | env->vfp.vec_stride = (val >> 20) & 3; | 
|  |  | 
|  | changed ^= val; | 
|  | if (changed & (3 << 22)) { | 
|  | i = (val >> 22) & 3; | 
|  | switch (i) { | 
|  | case 0: | 
|  | i = float_round_nearest_even; | 
|  | break; | 
|  | case 1: | 
|  | i = float_round_up; | 
|  | break; | 
|  | case 2: | 
|  | i = float_round_down; | 
|  | break; | 
|  | case 3: | 
|  | i = float_round_to_zero; | 
|  | break; | 
|  | } | 
|  | set_float_rounding_mode(i, &env->vfp.fp_status); | 
|  | } | 
|  | if (changed & (1 << 24)) { | 
|  | set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); | 
|  | set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); | 
|  | } | 
|  | if (changed & (1 << 25)) | 
|  | set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); | 
|  |  | 
|  | i = vfp_exceptbits_to_host(val); | 
|  | set_float_exception_flags(i, &env->vfp.fp_status); | 
|  | set_float_exception_flags(0, &env->vfp.standard_fp_status); | 
|  | } | 
|  |  | 
|  | void vfp_set_fpscr(CPUState *env, uint32_t val) | 
|  | { | 
|  | HELPER(vfp_set_fpscr)(env, val); | 
|  | } | 
|  |  | 
|  | #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) | 
|  |  | 
|  | #define VFP_BINOP(name) \ | 
|  | float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \ | 
|  | { \ | 
|  | return float32_ ## name (a, b, &env->vfp.fp_status); \ | 
|  | } \ | 
|  | float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \ | 
|  | { \ | 
|  | return float64_ ## name (a, b, &env->vfp.fp_status); \ | 
|  | } | 
|  | VFP_BINOP(add) | 
|  | VFP_BINOP(sub) | 
|  | VFP_BINOP(mul) | 
|  | VFP_BINOP(div) | 
|  | #undef VFP_BINOP | 
|  |  | 
|  | float32 VFP_HELPER(neg, s)(float32 a) | 
|  | { | 
|  | return float32_chs(a); | 
|  | } | 
|  |  | 
|  | float64 VFP_HELPER(neg, d)(float64 a) | 
|  | { | 
|  | return float64_chs(a); | 
|  | } | 
|  |  | 
|  | float32 VFP_HELPER(abs, s)(float32 a) | 
|  | { | 
|  | return float32_abs(a); | 
|  | } | 
|  |  | 
|  | float64 VFP_HELPER(abs, d)(float64 a) | 
|  | { | 
|  | return float64_abs(a); | 
|  | } | 
|  |  | 
|  | float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env) | 
|  | { | 
|  | return float32_sqrt(a, &env->vfp.fp_status); | 
|  | } | 
|  |  | 
|  | float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env) | 
|  | { | 
|  | return float64_sqrt(a, &env->vfp.fp_status); | 
|  | } | 
|  |  | 
|  | /* XXX: check quiet/signaling case */ | 
|  | #define DO_VFP_cmp(p, type) \ | 
|  | void VFP_HELPER(cmp, p)(type a, type b, CPUState *env)  \ | 
|  | { \ | 
|  | uint32_t flags; \ | 
|  | switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ | 
|  | case 0: flags = 0x6; break; \ | 
|  | case -1: flags = 0x8; break; \ | 
|  | case 1: flags = 0x2; break; \ | 
|  | default: case 2: flags = 0x3; break; \ | 
|  | } \ | 
|  | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | 
|  | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | 
|  | } \ | 
|  | void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \ | 
|  | { \ | 
|  | uint32_t flags; \ | 
|  | switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ | 
|  | case 0: flags = 0x6; break; \ | 
|  | case -1: flags = 0x8; break; \ | 
|  | case 1: flags = 0x2; break; \ | 
|  | default: case 2: flags = 0x3; break; \ | 
|  | } \ | 
|  | env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ | 
|  | | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ | 
|  | } | 
|  | DO_VFP_cmp(s, float32) | 
|  | DO_VFP_cmp(d, float64) | 
|  | #undef DO_VFP_cmp | 
|  |  | 
|  | /* Helper routines to perform bitwise copies between float and int.  */ | 
|  | static inline float32 vfp_itos(uint32_t i) | 
|  | { | 
|  | union { | 
|  | uint32_t i; | 
|  | float32 s; | 
|  | } v; | 
|  |  | 
|  | v.i = i; | 
|  | return v.s; | 
|  | } | 
|  |  | 
|  | static inline uint32_t vfp_stoi(float32 s) | 
|  | { | 
|  | union { | 
|  | uint32_t i; | 
|  | float32 s; | 
|  | } v; | 
|  |  | 
|  | v.s = s; | 
|  | return v.i; | 
|  | } | 
|  |  | 
|  | static inline float64 vfp_itod(uint64_t i) | 
|  | { | 
|  | union { | 
|  | uint64_t i; | 
|  | float64 d; | 
|  | } v; | 
|  |  | 
|  | v.i = i; | 
|  | return v.d; | 
|  | } | 
|  |  | 
|  | static inline uint64_t vfp_dtoi(float64 d) | 
|  | { | 
|  | union { | 
|  | uint64_t i; | 
|  | float64 d; | 
|  | } v; | 
|  |  | 
|  | v.d = d; | 
|  | return v.i; | 
|  | } | 
|  |  | 
|  | /* Integer to float conversion.  */ | 
|  | float32 VFP_HELPER(uito, s)(float32 x, CPUState *env) | 
|  | { | 
|  | return uint32_to_float32(vfp_stoi(x), &env->vfp.fp_status); | 
|  | } | 
|  |  | 
|  | float64 VFP_HELPER(uito, d)(float32 x, CPUState *env) | 
|  | { | 
|  | return uint32_to_float64(vfp_stoi(x), &env->vfp.fp_status); | 
|  | } | 
|  |  | 
|  | float32 VFP_HELPER(sito, s)(float32 x, CPUState *env) | 
|  | { | 
|  | return int32_to_float32(vfp_stoi(x), &env->vfp.fp_status); | 
|  | } | 
|  |  | 
|  | float64 VFP_HELPER(sito, d)(float32 x, CPUState *env) | 
|  | { | 
|  | return int32_to_float64(vfp_stoi(x), &env->vfp.fp_status); | 
|  | } | 
|  |  | 
|  | /* Float to integer conversion.  */ | 
|  | float32 VFP_HELPER(toui, s)(float32 x, CPUState *env) | 
|  | { | 
|  | if (float32_is_any_nan(x)) { | 
|  | return float32_zero; | 
|  | } | 
|  | return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status)); | 
|  | } | 
|  |  | 
|  | float32 VFP_HELPER(toui, d)(float64 x, CPUState *env) | 
|  | { | 
|  | if (float64_is_any_nan(x)) { | 
|  | return float32_zero; | 
|  | } | 
|  | return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status)); | 
|  | } | 
|  |  | 
|  | float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env) | 
|  | { | 
|  | if (float32_is_any_nan(x)) { | 
|  | return float32_zero; | 
|  | } | 
|  | return vfp_itos(float32_to_int32(x, &env->vfp.fp_status)); | 
|  | } | 
|  |  | 
|  | float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env) | 
|  | { | 
|  | if (float64_is_any_nan(x)) { | 
|  | return float32_zero; | 
|  | } | 
|  | return vfp_itos(float64_to_int32(x, &env->vfp.fp_status)); | 
|  | } | 
|  |  | 
|  | float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env) | 
|  | { | 
|  | if (float32_is_any_nan(x)) { | 
|  | return float32_zero; | 
|  | } | 
|  | return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status)); | 
|  | } | 
|  |  | 
|  | float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env) | 
|  | { | 
|  | if (float64_is_any_nan(x)) { | 
|  | return float32_zero; | 
|  | } | 
|  | return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status)); | 
|  | } | 
|  |  | 
|  | float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env) | 
|  | { | 
|  | if (float32_is_any_nan(x)) { | 
|  | return float32_zero; | 
|  | } | 
|  | return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status)); | 
|  | } | 
|  |  | 
|  | float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env) | 
|  | { | 
|  | if (float64_is_any_nan(x)) { | 
|  | return float32_zero; | 
|  | } | 
|  | return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status)); | 
|  | } | 
|  |  | 
|  | /* floating point conversion */ | 
|  | float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env) | 
|  | { | 
|  | float64 r = float32_to_float64(x, &env->vfp.fp_status); | 
|  | /* ARM requires that S<->D conversion of any kind of NaN generates | 
|  | * a quiet NaN by forcing the most significant frac bit to 1. | 
|  | */ | 
|  | return float64_maybe_silence_nan(r); | 
|  | } | 
|  |  | 
|  | float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env) | 
|  | { | 
|  | float32 r =  float64_to_float32(x, &env->vfp.fp_status); | 
|  | /* ARM requires that S<->D conversion of any kind of NaN generates | 
|  | * a quiet NaN by forcing the most significant frac bit to 1. | 
|  | */ | 
|  | return float32_maybe_silence_nan(r); | 
|  | } | 
|  |  | 
|  | /* VFP3 fixed point conversion.  */ | 
|  | #define VFP_CONV_FIX(name, p, ftype, itype, sign) \ | 
|  | ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \ | 
|  | { \ | 
|  | ftype tmp; \ | 
|  | tmp = sign##int32_to_##ftype ((itype##_t)vfp_##p##toi(x), \ | 
|  | &env->vfp.fp_status); \ | 
|  | return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \ | 
|  | } \ | 
|  | ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \ | 
|  | { \ | 
|  | ftype tmp; \ | 
|  | if (ftype##_is_any_nan(x)) { \ | 
|  | return ftype##_zero; \ | 
|  | } \ | 
|  | tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \ | 
|  | return vfp_ito##p(ftype##_to_##itype##_round_to_zero(tmp, \ | 
|  | &env->vfp.fp_status)); \ | 
|  | } | 
|  |  | 
|  | VFP_CONV_FIX(sh, d, float64, int16, ) | 
|  | VFP_CONV_FIX(sl, d, float64, int32, ) | 
|  | VFP_CONV_FIX(uh, d, float64, uint16, u) | 
|  | VFP_CONV_FIX(ul, d, float64, uint32, u) | 
|  | VFP_CONV_FIX(sh, s, float32, int16, ) | 
|  | VFP_CONV_FIX(sl, s, float32, int32, ) | 
|  | VFP_CONV_FIX(uh, s, float32, uint16, u) | 
|  | VFP_CONV_FIX(ul, s, float32, uint32, u) | 
|  | #undef VFP_CONV_FIX | 
|  |  | 
|  | /* Half precision conversions.  */ | 
|  | float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUState *env) | 
|  | { | 
|  | float_status *s = &env->vfp.fp_status; | 
|  | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | 
|  | return float16_to_float32(a, ieee, s); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUState *env) | 
|  | { | 
|  | float_status *s = &env->vfp.fp_status; | 
|  | int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; | 
|  | return float32_to_float16(a, ieee, s); | 
|  | } | 
|  |  | 
|  | float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env) | 
|  | { | 
|  | float_status *s = &env->vfp.fp_status; | 
|  | float32 two = int32_to_float32(2, s); | 
|  | return float32_sub(two, float32_mul(a, b, s), s); | 
|  | } | 
|  |  | 
|  | float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env) | 
|  | { | 
|  | float_status *s = &env->vfp.standard_fp_status; | 
|  | float32 two = int32_to_float32(2, s); | 
|  | float32 three = int32_to_float32(3, s); | 
|  | float32 product; | 
|  | if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || | 
|  | (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { | 
|  | product = float32_zero; | 
|  | } else { | 
|  | product = float32_mul(a, b, s); | 
|  | } | 
|  | return float32_div(float32_sub(three, product, s), two, s); | 
|  | } | 
|  |  | 
|  | /* NEON helpers.  */ | 
|  |  | 
|  | /* TODO: The architecture specifies the value that the estimate functions | 
|  | should return.  We return the exact reciprocal/root instead.  */ | 
|  | float32 HELPER(recpe_f32)(float32 a, CPUState *env) | 
|  | { | 
|  | float_status *s = &env->vfp.fp_status; | 
|  | float32 one = int32_to_float32(1, s); | 
|  | return float32_div(one, a, s); | 
|  | } | 
|  |  | 
|  | float32 HELPER(rsqrte_f32)(float32 a, CPUState *env) | 
|  | { | 
|  | float_status *s = &env->vfp.fp_status; | 
|  | float32 one = int32_to_float32(1, s); | 
|  | return float32_div(one, float32_sqrt(a, s), s); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env) | 
|  | { | 
|  | float_status *s = &env->vfp.fp_status; | 
|  | float32 tmp; | 
|  | tmp = int32_to_float32(a, s); | 
|  | tmp = float32_scalbn(tmp, -32, s); | 
|  | tmp = helper_recpe_f32(tmp, env); | 
|  | tmp = float32_scalbn(tmp, 31, s); | 
|  | return float32_to_int32(tmp, s); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env) | 
|  | { | 
|  | float_status *s = &env->vfp.fp_status; | 
|  | float32 tmp; | 
|  | tmp = int32_to_float32(a, s); | 
|  | tmp = float32_scalbn(tmp, -32, s); | 
|  | tmp = helper_rsqrte_f32(tmp, env); | 
|  | tmp = float32_scalbn(tmp, 31, s); | 
|  | return float32_to_int32(tmp, s); | 
|  | } | 
|  |  | 
|  | void HELPER(set_teecr)(CPUState *env, uint32_t val) | 
|  | { | 
|  | val &= 1; | 
|  | if (env->teecr != val) { | 
|  | env->teecr = val; | 
|  | tb_flush(env); | 
|  | } | 
|  | } |