blob: ac759494844934663fdef95c50be3881f904dae1 [file] [log] [blame]
/*
* Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the Open Source and Linux Lab nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu-common.h"
#include "cpu.h"
#include "sysemu/sysemu.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "elf.h"
#include "exec/memory.h"
#include "exec/address-spaces.h"
#include "hw/char/serial.h"
#include "net/net.h"
#include "hw/sysbus.h"
#include "hw/block/flash.h"
#include "sysemu/block-backend.h"
#include "sysemu/char.h"
#include "sysemu/device_tree.h"
#include "qemu/error-report.h"
#include "bootparam.h"
typedef struct LxBoardDesc {
hwaddr flash_base;
size_t flash_size;
size_t flash_boot_base;
size_t flash_sector_size;
size_t sram_size;
} LxBoardDesc;
typedef struct Lx60FpgaState {
MemoryRegion iomem;
uint32_t leds;
uint32_t switches;
} Lx60FpgaState;
static void lx60_fpga_reset(void *opaque)
{
Lx60FpgaState *s = opaque;
s->leds = 0;
s->switches = 0;
}
static uint64_t lx60_fpga_read(void *opaque, hwaddr addr,
unsigned size)
{
Lx60FpgaState *s = opaque;
switch (addr) {
case 0x0: /*build date code*/
return 0x09272011;
case 0x4: /*processor clock frequency, Hz*/
return 10000000;
case 0x8: /*LEDs (off = 0, on = 1)*/
return s->leds;
case 0xc: /*DIP switches (off = 0, on = 1)*/
return s->switches;
}
return 0;
}
static void lx60_fpga_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
Lx60FpgaState *s = opaque;
switch (addr) {
case 0x8: /*LEDs (off = 0, on = 1)*/
s->leds = val;
break;
case 0x10: /*board reset*/
if (val == 0xdead) {
qemu_system_reset_request();
}
break;
}
}
static const MemoryRegionOps lx60_fpga_ops = {
.read = lx60_fpga_read,
.write = lx60_fpga_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static Lx60FpgaState *lx60_fpga_init(MemoryRegion *address_space,
hwaddr base)
{
Lx60FpgaState *s = g_malloc(sizeof(Lx60FpgaState));
memory_region_init_io(&s->iomem, NULL, &lx60_fpga_ops, s,
"lx60.fpga", 0x10000);
memory_region_add_subregion(address_space, base, &s->iomem);
lx60_fpga_reset(s);
qemu_register_reset(lx60_fpga_reset, s);
return s;
}
static void lx60_net_init(MemoryRegion *address_space,
hwaddr base,
hwaddr descriptors,
hwaddr buffers,
qemu_irq irq, NICInfo *nd)
{
DeviceState *dev;
SysBusDevice *s;
MemoryRegion *ram;
dev = qdev_create(NULL, "open_eth");
qdev_set_nic_properties(dev, nd);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
sysbus_connect_irq(s, 0, irq);
memory_region_add_subregion(address_space, base,
sysbus_mmio_get_region(s, 0));
memory_region_add_subregion(address_space, descriptors,
sysbus_mmio_get_region(s, 1));
ram = g_malloc(sizeof(*ram));
memory_region_init_ram(ram, OBJECT(s), "open_eth.ram", 16384,
&error_fatal);
vmstate_register_ram_global(ram);
memory_region_add_subregion(address_space, buffers, ram);
}
static pflash_t *xtfpga_flash_init(MemoryRegion *address_space,
const LxBoardDesc *board,
DriveInfo *dinfo, int be)
{
SysBusDevice *s;
DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
&error_abort);
qdev_prop_set_uint32(dev, "num-blocks",
board->flash_size / board->flash_sector_size);
qdev_prop_set_uint64(dev, "sector-length", board->flash_sector_size);
qdev_prop_set_uint8(dev, "width", 2);
qdev_prop_set_bit(dev, "big-endian", be);
qdev_prop_set_string(dev, "name", "lx60.io.flash");
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
memory_region_add_subregion(address_space, board->flash_base,
sysbus_mmio_get_region(s, 0));
return OBJECT_CHECK(pflash_t, (dev), "cfi.pflash01");
}
static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
{
XtensaCPU *cpu = opaque;
return cpu_get_phys_page_debug(CPU(cpu), addr);
}
static void lx60_reset(void *opaque)
{
XtensaCPU *cpu = opaque;
cpu_reset(CPU(cpu));
}
static uint64_t lx60_io_read(void *opaque, hwaddr addr,
unsigned size)
{
return 0;
}
static void lx60_io_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
}
static const MemoryRegionOps lx60_io_ops = {
.read = lx60_io_read,
.write = lx60_io_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void lx_init(const LxBoardDesc *board, MachineState *machine)
{
#ifdef TARGET_WORDS_BIGENDIAN
int be = 1;
#else
int be = 0;
#endif
MemoryRegion *system_memory = get_system_memory();
XtensaCPU *cpu = NULL;
CPUXtensaState *env = NULL;
MemoryRegion *ram, *rom, *system_io;
DriveInfo *dinfo;
pflash_t *flash = NULL;
QemuOpts *machine_opts = qemu_get_machine_opts();
const char *cpu_model = machine->cpu_model;
const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
int n;
if (!cpu_model) {
cpu_model = XTENSA_DEFAULT_CPU_MODEL;
}
for (n = 0; n < smp_cpus; n++) {
cpu = cpu_xtensa_init(cpu_model);
if (cpu == NULL) {
error_report("unable to find CPU definition '%s'",
cpu_model);
exit(EXIT_FAILURE);
}
env = &cpu->env;
env->sregs[PRID] = n;
qemu_register_reset(lx60_reset, cpu);
/* Need MMU initialized prior to ELF loading,
* so that ELF gets loaded into virtual addresses
*/
cpu_reset(CPU(cpu));
}
ram = g_malloc(sizeof(*ram));
memory_region_init_ram(ram, NULL, "lx60.dram", machine->ram_size,
&error_fatal);
vmstate_register_ram_global(ram);
memory_region_add_subregion(system_memory, 0, ram);
system_io = g_malloc(sizeof(*system_io));
memory_region_init_io(system_io, NULL, &lx60_io_ops, NULL, "lx60.io",
224 * 1024 * 1024);
memory_region_add_subregion(system_memory, 0xf0000000, system_io);
lx60_fpga_init(system_io, 0x0d020000);
if (nd_table[0].used) {
lx60_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
xtensa_get_extint(env, 1), nd_table);
}
if (!serial_hds[0]) {
serial_hds[0] = qemu_chr_new("serial0", "null", NULL);
}
serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
115200, serial_hds[0], DEVICE_NATIVE_ENDIAN);
dinfo = drive_get(IF_PFLASH, 0, 0);
if (dinfo) {
flash = xtfpga_flash_init(system_io, board, dinfo, be);
}
/* Use presence of kernel file name as 'boot from SRAM' switch. */
if (kernel_filename) {
uint32_t entry_point = env->pc;
size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
uint32_t tagptr = 0xfe000000 + board->sram_size;
uint32_t cur_tagptr;
BpMemInfo memory_location = {
.type = tswap32(MEMORY_TYPE_CONVENTIONAL),
.start = tswap32(0),
.end = tswap32(machine->ram_size),
};
uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
machine->ram_size : 0x08000000;
uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
rom = g_malloc(sizeof(*rom));
memory_region_init_ram(rom, NULL, "lx60.sram", board->sram_size,
&error_fatal);
vmstate_register_ram_global(rom);
memory_region_add_subregion(system_memory, 0xfe000000, rom);
if (kernel_cmdline) {
bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
}
if (dtb_filename) {
bp_size += get_tag_size(sizeof(uint32_t));
}
if (initrd_filename) {
bp_size += get_tag_size(sizeof(BpMemInfo));
}
/* Put kernel bootparameters to the end of that SRAM */
tagptr = (tagptr - bp_size) & ~0xff;
cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
sizeof(memory_location), &memory_location);
if (kernel_cmdline) {
cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
strlen(kernel_cmdline) + 1, kernel_cmdline);
}
if (dtb_filename) {
int fdt_size;
void *fdt = load_device_tree(dtb_filename, &fdt_size);
uint32_t dtb_addr = tswap32(cur_lowmem);
if (!fdt) {
error_report("could not load DTB '%s'", dtb_filename);
exit(EXIT_FAILURE);
}
cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
sizeof(dtb_addr), &dtb_addr);
cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096);
}
if (initrd_filename) {
BpMemInfo initrd_location = { 0 };
int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
lowmem_end - cur_lowmem);
if (initrd_size < 0) {
initrd_size = load_image_targphys(initrd_filename,
cur_lowmem,
lowmem_end - cur_lowmem);
}
if (initrd_size < 0) {
error_report("could not load initrd '%s'", initrd_filename);
exit(EXIT_FAILURE);
}
initrd_location.start = tswap32(cur_lowmem);
initrd_location.end = tswap32(cur_lowmem + initrd_size);
cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
sizeof(initrd_location), &initrd_location);
cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096);
}
cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
env->regs[2] = tagptr;
uint64_t elf_entry;
uint64_t elf_lowaddr;
int success = load_elf(kernel_filename, translate_phys_addr, cpu,
&elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0, 0);
if (success > 0) {
entry_point = elf_entry;
} else {
hwaddr ep;
int is_linux;
success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
translate_phys_addr, cpu);
if (success > 0 && is_linux) {
entry_point = ep;
} else {
error_report("could not load kernel '%s'",
kernel_filename);
exit(EXIT_FAILURE);
}
}
if (entry_point != env->pc) {
static const uint8_t jx_a0[] = {
#ifdef TARGET_WORDS_BIGENDIAN
0x0a, 0, 0,
#else
0xa0, 0, 0,
#endif
};
env->regs[0] = entry_point;
cpu_physical_memory_write(env->pc, jx_a0, sizeof(jx_a0));
}
} else {
if (flash) {
MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
memory_region_init_alias(flash_io, NULL, "lx60.flash",
flash_mr, board->flash_boot_base,
board->flash_size - board->flash_boot_base < 0x02000000 ?
board->flash_size - board->flash_boot_base : 0x02000000);
memory_region_add_subregion(system_memory, 0xfe000000,
flash_io);
}
}
}
static void xtensa_lx60_init(MachineState *machine)
{
static const LxBoardDesc lx60_board = {
.flash_base = 0x08000000,
.flash_size = 0x00400000,
.flash_sector_size = 0x10000,
.sram_size = 0x20000,
};
lx_init(&lx60_board, machine);
}
static void xtensa_lx200_init(MachineState *machine)
{
static const LxBoardDesc lx200_board = {
.flash_base = 0x08000000,
.flash_size = 0x01000000,
.flash_sector_size = 0x20000,
.sram_size = 0x2000000,
};
lx_init(&lx200_board, machine);
}
static void xtensa_ml605_init(MachineState *machine)
{
static const LxBoardDesc ml605_board = {
.flash_base = 0x08000000,
.flash_size = 0x01000000,
.flash_sector_size = 0x20000,
.sram_size = 0x2000000,
};
lx_init(&ml605_board, machine);
}
static void xtensa_kc705_init(MachineState *machine)
{
static const LxBoardDesc kc705_board = {
.flash_base = 0x00000000,
.flash_size = 0x08000000,
.flash_boot_base = 0x06000000,
.flash_sector_size = 0x20000,
.sram_size = 0x2000000,
};
lx_init(&kc705_board, machine);
}
static void xtensa_lx60_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
mc->init = xtensa_lx60_init;
mc->max_cpus = 4;
}
static const TypeInfo xtensa_lx60_type = {
.name = MACHINE_TYPE_NAME("lx60"),
.parent = TYPE_MACHINE,
.class_init = xtensa_lx60_class_init,
};
static void xtensa_lx200_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
mc->init = xtensa_lx200_init;
mc->max_cpus = 4;
}
static const TypeInfo xtensa_lx200_type = {
.name = MACHINE_TYPE_NAME("lx200"),
.parent = TYPE_MACHINE,
.class_init = xtensa_lx200_class_init,
};
static void xtensa_ml605_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
mc->init = xtensa_ml605_init;
mc->max_cpus = 4;
}
static const TypeInfo xtensa_ml605_type = {
.name = MACHINE_TYPE_NAME("ml605"),
.parent = TYPE_MACHINE,
.class_init = xtensa_ml605_class_init,
};
static void xtensa_kc705_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
mc->init = xtensa_kc705_init;
mc->max_cpus = 4;
}
static const TypeInfo xtensa_kc705_type = {
.name = MACHINE_TYPE_NAME("kc705"),
.parent = TYPE_MACHINE,
.class_init = xtensa_kc705_class_init,
};
static void xtensa_lx_machines_init(void)
{
type_register_static(&xtensa_lx60_type);
type_register_static(&xtensa_lx200_type);
type_register_static(&xtensa_ml605_type);
type_register_static(&xtensa_kc705_type);
}
type_init(xtensa_lx_machines_init)