blob: b62db4d566e0746a8688c650d05c0f90842dc8a6 [file] [log] [blame]
/*
* AArch64 translation
*
* Copyright (c) 2013 Alexander Graf <agraf@suse.de>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "cpu.h"
#include "tcg-op.h"
#include "qemu/log.h"
#include "translate.h"
#include "internals.h"
#include "qemu/host-utils.h"
#include "exec/gen-icount.h"
#include "helper.h"
#define GEN_HELPER 1
#include "helper.h"
static TCGv_i64 cpu_X[32];
static TCGv_i64 cpu_pc;
static TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF;
/* Load/store exclusive handling */
static TCGv_i64 cpu_exclusive_addr;
static TCGv_i64 cpu_exclusive_val;
static TCGv_i64 cpu_exclusive_high;
#ifdef CONFIG_USER_ONLY
static TCGv_i64 cpu_exclusive_test;
static TCGv_i32 cpu_exclusive_info;
#endif
static const char *regnames[] = {
"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
"x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
"x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
"x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
};
enum a64_shift_type {
A64_SHIFT_TYPE_LSL = 0,
A64_SHIFT_TYPE_LSR = 1,
A64_SHIFT_TYPE_ASR = 2,
A64_SHIFT_TYPE_ROR = 3
};
/* Table based decoder typedefs - used when the relevant bits for decode
* are too awkwardly scattered across the instruction (eg SIMD).
*/
typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
typedef struct AArch64DecodeTable {
uint32_t pattern;
uint32_t mask;
AArch64DecodeFn *disas_fn;
} AArch64DecodeTable;
/* Function prototype for gen_ functions for calling Neon helpers */
typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);
/* initialize TCG globals. */
void a64_translate_init(void)
{
int i;
cpu_pc = tcg_global_mem_new_i64(TCG_AREG0,
offsetof(CPUARMState, pc),
"pc");
for (i = 0; i < 32; i++) {
cpu_X[i] = tcg_global_mem_new_i64(TCG_AREG0,
offsetof(CPUARMState, xregs[i]),
regnames[i]);
}
cpu_NF = tcg_global_mem_new_i32(TCG_AREG0, offsetof(CPUARMState, NF), "NF");
cpu_ZF = tcg_global_mem_new_i32(TCG_AREG0, offsetof(CPUARMState, ZF), "ZF");
cpu_CF = tcg_global_mem_new_i32(TCG_AREG0, offsetof(CPUARMState, CF), "CF");
cpu_VF = tcg_global_mem_new_i32(TCG_AREG0, offsetof(CPUARMState, VF), "VF");
cpu_exclusive_addr = tcg_global_mem_new_i64(TCG_AREG0,
offsetof(CPUARMState, exclusive_addr), "exclusive_addr");
cpu_exclusive_val = tcg_global_mem_new_i64(TCG_AREG0,
offsetof(CPUARMState, exclusive_val), "exclusive_val");
cpu_exclusive_high = tcg_global_mem_new_i64(TCG_AREG0,
offsetof(CPUARMState, exclusive_high), "exclusive_high");
#ifdef CONFIG_USER_ONLY
cpu_exclusive_test = tcg_global_mem_new_i64(TCG_AREG0,
offsetof(CPUARMState, exclusive_test), "exclusive_test");
cpu_exclusive_info = tcg_global_mem_new_i32(TCG_AREG0,
offsetof(CPUARMState, exclusive_info), "exclusive_info");
#endif
}
void aarch64_cpu_dump_state(CPUState *cs, FILE *f,
fprintf_function cpu_fprintf, int flags)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint32_t psr = pstate_read(env);
int i;
cpu_fprintf(f, "PC=%016"PRIx64" SP=%016"PRIx64"\n",
env->pc, env->xregs[31]);
for (i = 0; i < 31; i++) {
cpu_fprintf(f, "X%02d=%016"PRIx64, i, env->xregs[i]);
if ((i % 4) == 3) {
cpu_fprintf(f, "\n");
} else {
cpu_fprintf(f, " ");
}
}
cpu_fprintf(f, "PSTATE=%08x (flags %c%c%c%c)\n",
psr,
psr & PSTATE_N ? 'N' : '-',
psr & PSTATE_Z ? 'Z' : '-',
psr & PSTATE_C ? 'C' : '-',
psr & PSTATE_V ? 'V' : '-');
cpu_fprintf(f, "\n");
if (flags & CPU_DUMP_FPU) {
int numvfpregs = 32;
for (i = 0; i < numvfpregs; i += 2) {
uint64_t vlo = float64_val(env->vfp.regs[i * 2]);
uint64_t vhi = float64_val(env->vfp.regs[(i * 2) + 1]);
cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 " ",
i, vhi, vlo);
vlo = float64_val(env->vfp.regs[(i + 1) * 2]);
vhi = float64_val(env->vfp.regs[((i + 1) * 2) + 1]);
cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 "\n",
i + 1, vhi, vlo);
}
cpu_fprintf(f, "FPCR: %08x FPSR: %08x\n",
vfp_get_fpcr(env), vfp_get_fpsr(env));
}
}
static int get_mem_index(DisasContext *s)
{
#ifdef CONFIG_USER_ONLY
return 1;
#else
return s->user;
#endif
}
void gen_a64_set_pc_im(uint64_t val)
{
tcg_gen_movi_i64(cpu_pc, val);
}
static void gen_exception_internal(int excp)
{
TCGv_i32 tcg_excp = tcg_const_i32(excp);
assert(excp_is_internal(excp));
gen_helper_exception_internal(cpu_env, tcg_excp);
tcg_temp_free_i32(tcg_excp);
}
static void gen_exception(int excp, uint32_t syndrome)
{
TCGv_i32 tcg_excp = tcg_const_i32(excp);
TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
gen_helper_exception_with_syndrome(cpu_env, tcg_excp, tcg_syn);
tcg_temp_free_i32(tcg_syn);
tcg_temp_free_i32(tcg_excp);
}
static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
{
gen_a64_set_pc_im(s->pc - offset);
gen_exception_internal(excp);
s->is_jmp = DISAS_EXC;
}
static void gen_exception_insn(DisasContext *s, int offset, int excp,
uint32_t syndrome)
{
gen_a64_set_pc_im(s->pc - offset);
gen_exception(excp, syndrome);
s->is_jmp = DISAS_EXC;
}
static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
{
/* No direct tb linking with singlestep or deterministic io */
if (s->singlestep_enabled || (s->tb->cflags & CF_LAST_IO)) {
return false;
}
/* Only link tbs from inside the same guest page */
if ((s->tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
return false;
}
return true;
}
static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
{
TranslationBlock *tb;
tb = s->tb;
if (use_goto_tb(s, n, dest)) {
tcg_gen_goto_tb(n);
gen_a64_set_pc_im(dest);
tcg_gen_exit_tb((intptr_t)tb + n);
s->is_jmp = DISAS_TB_JUMP;
} else {
gen_a64_set_pc_im(dest);
if (s->singlestep_enabled) {
gen_exception_internal(EXCP_DEBUG);
}
tcg_gen_exit_tb(0);
s->is_jmp = DISAS_JUMP;
}
}
static void unallocated_encoding(DisasContext *s)
{
/* Unallocated and reserved encodings are uncategorized */
gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized());
}
#define unsupported_encoding(s, insn) \
do { \
qemu_log_mask(LOG_UNIMP, \
"%s:%d: unsupported instruction encoding 0x%08x " \
"at pc=%016" PRIx64 "\n", \
__FILE__, __LINE__, insn, s->pc - 4); \
unallocated_encoding(s); \
} while (0);
static void init_tmp_a64_array(DisasContext *s)
{
#ifdef CONFIG_DEBUG_TCG
int i;
for (i = 0; i < ARRAY_SIZE(s->tmp_a64); i++) {
TCGV_UNUSED_I64(s->tmp_a64[i]);
}
#endif
s->tmp_a64_count = 0;
}
static void free_tmp_a64(DisasContext *s)
{
int i;
for (i = 0; i < s->tmp_a64_count; i++) {
tcg_temp_free_i64(s->tmp_a64[i]);
}
init_tmp_a64_array(s);
}
static TCGv_i64 new_tmp_a64(DisasContext *s)
{
assert(s->tmp_a64_count < TMP_A64_MAX);
return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
}
static TCGv_i64 new_tmp_a64_zero(DisasContext *s)
{
TCGv_i64 t = new_tmp_a64(s);
tcg_gen_movi_i64(t, 0);
return t;
}
/*
* Register access functions
*
* These functions are used for directly accessing a register in where
* changes to the final register value are likely to be made. If you
* need to use a register for temporary calculation (e.g. index type
* operations) use the read_* form.
*
* B1.2.1 Register mappings
*
* In instruction register encoding 31 can refer to ZR (zero register) or
* the SP (stack pointer) depending on context. In QEMU's case we map SP
* to cpu_X[31] and ZR accesses to a temporary which can be discarded.
* This is the point of the _sp forms.
*/
static TCGv_i64 cpu_reg(DisasContext *s, int reg)
{
if (reg == 31) {
return new_tmp_a64_zero(s);
} else {
return cpu_X[reg];
}
}
/* register access for when 31 == SP */
static TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
{
return cpu_X[reg];
}
/* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
* representing the register contents. This TCGv is an auto-freed
* temporary so it need not be explicitly freed, and may be modified.
*/
static TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
{
TCGv_i64 v = new_tmp_a64(s);
if (reg != 31) {
if (sf) {
tcg_gen_mov_i64(v, cpu_X[reg]);
} else {
tcg_gen_ext32u_i64(v, cpu_X[reg]);
}
} else {
tcg_gen_movi_i64(v, 0);
}
return v;
}
static TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
{
TCGv_i64 v = new_tmp_a64(s);
if (sf) {
tcg_gen_mov_i64(v, cpu_X[reg]);
} else {
tcg_gen_ext32u_i64(v, cpu_X[reg]);
}
return v;
}
/* We should have at some point before trying to access an FP register
* done the necessary access check, so assert that
* (a) we did the check and
* (b) we didn't then just plough ahead anyway if it failed.
* Print the instruction pattern in the abort message so we can figure
* out what we need to fix if a user encounters this problem in the wild.
*/
static inline void assert_fp_access_checked(DisasContext *s)
{
#ifdef CONFIG_DEBUG_TCG
if (unlikely(!s->fp_access_checked || !s->cpacr_fpen)) {
fprintf(stderr, "target-arm: FP access check missing for "
"instruction 0x%08x\n", s->insn);
abort();
}
#endif
}
/* Return the offset into CPUARMState of an element of specified
* size, 'element' places in from the least significant end of
* the FP/vector register Qn.
*/
static inline int vec_reg_offset(DisasContext *s, int regno,
int element, TCGMemOp size)
{
int offs = offsetof(CPUARMState, vfp.regs[regno * 2]);
#ifdef HOST_WORDS_BIGENDIAN
/* This is complicated slightly because vfp.regs[2n] is
* still the low half and vfp.regs[2n+1] the high half
* of the 128 bit vector, even on big endian systems.
* Calculate the offset assuming a fully bigendian 128 bits,
* then XOR to account for the order of the two 64 bit halves.
*/
offs += (16 - ((element + 1) * (1 << size)));
offs ^= 8;
#else
offs += element * (1 << size);
#endif
assert_fp_access_checked(s);
return offs;
}
/* Return the offset into CPUARMState of a slice (from
* the least significant end) of FP register Qn (ie
* Dn, Sn, Hn or Bn).
* (Note that this is not the same mapping as for A32; see cpu.h)
*/
static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size)
{
int offs = offsetof(CPUARMState, vfp.regs[regno * 2]);
#ifdef HOST_WORDS_BIGENDIAN
offs += (8 - (1 << size));
#endif
assert_fp_access_checked(s);
return offs;
}
/* Offset of the high half of the 128 bit vector Qn */
static inline int fp_reg_hi_offset(DisasContext *s, int regno)
{
assert_fp_access_checked(s);
return offsetof(CPUARMState, vfp.regs[regno * 2 + 1]);
}
/* Convenience accessors for reading and writing single and double
* FP registers. Writing clears the upper parts of the associated
* 128 bit vector register, as required by the architecture.
* Note that unlike the GP register accessors, the values returned
* by the read functions must be manually freed.
*/
static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
{
TCGv_i64 v = tcg_temp_new_i64();
tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
return v;
}
static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
{
TCGv_i32 v = tcg_temp_new_i32();
tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
return v;
}
static void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
{
TCGv_i64 tcg_zero = tcg_const_i64(0);
tcg_gen_st_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
tcg_gen_st_i64(tcg_zero, cpu_env, fp_reg_hi_offset(s, reg));
tcg_temp_free_i64(tcg_zero);
}
static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
{
TCGv_i64 tmp = tcg_temp_new_i64();
tcg_gen_extu_i32_i64(tmp, v);
write_fp_dreg(s, reg, tmp);
tcg_temp_free_i64(tmp);
}
static TCGv_ptr get_fpstatus_ptr(void)
{
TCGv_ptr statusptr = tcg_temp_new_ptr();
int offset;
/* In A64 all instructions (both FP and Neon) use the FPCR;
* there is no equivalent of the A32 Neon "standard FPSCR value"
* and all operations use vfp.fp_status.
*/
offset = offsetof(CPUARMState, vfp.fp_status);
tcg_gen_addi_ptr(statusptr, cpu_env, offset);
return statusptr;
}
/* Set ZF and NF based on a 64 bit result. This is alas fiddlier
* than the 32 bit equivalent.
*/
static inline void gen_set_NZ64(TCGv_i64 result)
{
TCGv_i64 flag = tcg_temp_new_i64();
tcg_gen_setcondi_i64(TCG_COND_NE, flag, result, 0);
tcg_gen_trunc_i64_i32(cpu_ZF, flag);
tcg_gen_shri_i64(flag, result, 32);
tcg_gen_trunc_i64_i32(cpu_NF, flag);
tcg_temp_free_i64(flag);
}
/* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
static inline void gen_logic_CC(int sf, TCGv_i64 result)
{
if (sf) {
gen_set_NZ64(result);
} else {
tcg_gen_trunc_i64_i32(cpu_ZF, result);
tcg_gen_trunc_i64_i32(cpu_NF, result);
}
tcg_gen_movi_i32(cpu_CF, 0);
tcg_gen_movi_i32(cpu_VF, 0);
}
/* dest = T0 + T1; compute C, N, V and Z flags */
static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
{
if (sf) {
TCGv_i64 result, flag, tmp;
result = tcg_temp_new_i64();
flag = tcg_temp_new_i64();
tmp = tcg_temp_new_i64();
tcg_gen_movi_i64(tmp, 0);
tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
tcg_gen_trunc_i64_i32(cpu_CF, flag);
gen_set_NZ64(result);
tcg_gen_xor_i64(flag, result, t0);
tcg_gen_xor_i64(tmp, t0, t1);
tcg_gen_andc_i64(flag, flag, tmp);
tcg_temp_free_i64(tmp);
tcg_gen_shri_i64(flag, flag, 32);
tcg_gen_trunc_i64_i32(cpu_VF, flag);
tcg_gen_mov_i64(dest, result);
tcg_temp_free_i64(result);
tcg_temp_free_i64(flag);
} else {
/* 32 bit arithmetic */
TCGv_i32 t0_32 = tcg_temp_new_i32();
TCGv_i32 t1_32 = tcg_temp_new_i32();
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_movi_i32(tmp, 0);
tcg_gen_trunc_i64_i32(t0_32, t0);
tcg_gen_trunc_i64_i32(t1_32, t1);
tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
tcg_gen_mov_i32(cpu_ZF, cpu_NF);
tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
tcg_gen_xor_i32(tmp, t0_32, t1_32);
tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
tcg_gen_extu_i32_i64(dest, cpu_NF);
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(t0_32);
tcg_temp_free_i32(t1_32);
}
}
/* dest = T0 - T1; compute C, N, V and Z flags */
static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
{
if (sf) {
/* 64 bit arithmetic */
TCGv_i64 result, flag, tmp;
result = tcg_temp_new_i64();
flag = tcg_temp_new_i64();
tcg_gen_sub_i64(result, t0, t1);
gen_set_NZ64(result);
tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
tcg_gen_trunc_i64_i32(cpu_CF, flag);
tcg_gen_xor_i64(flag, result, t0);
tmp = tcg_temp_new_i64();
tcg_gen_xor_i64(tmp, t0, t1);
tcg_gen_and_i64(flag, flag, tmp);
tcg_temp_free_i64(tmp);
tcg_gen_shri_i64(flag, flag, 32);
tcg_gen_trunc_i64_i32(cpu_VF, flag);
tcg_gen_mov_i64(dest, result);
tcg_temp_free_i64(flag);
tcg_temp_free_i64(result);
} else {
/* 32 bit arithmetic */
TCGv_i32 t0_32 = tcg_temp_new_i32();
TCGv_i32 t1_32 = tcg_temp_new_i32();
TCGv_i32 tmp;
tcg_gen_trunc_i64_i32(t0_32, t0);
tcg_gen_trunc_i64_i32(t1_32, t1);
tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
tcg_gen_mov_i32(cpu_ZF, cpu_NF);
tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
tmp = tcg_temp_new_i32();
tcg_gen_xor_i32(tmp, t0_32, t1_32);
tcg_temp_free_i32(t0_32);
tcg_temp_free_i32(t1_32);
tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
tcg_temp_free_i32(tmp);
tcg_gen_extu_i32_i64(dest, cpu_NF);
}
}
/* dest = T0 + T1 + CF; do not compute flags. */
static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
{
TCGv_i64 flag = tcg_temp_new_i64();
tcg_gen_extu_i32_i64(flag, cpu_CF);
tcg_gen_add_i64(dest, t0, t1);
tcg_gen_add_i64(dest, dest, flag);
tcg_temp_free_i64(flag);
if (!sf) {
tcg_gen_ext32u_i64(dest, dest);
}
}
/* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
{
if (sf) {
TCGv_i64 result, cf_64, vf_64, tmp;
result = tcg_temp_new_i64();
cf_64 = tcg_temp_new_i64();
vf_64 = tcg_temp_new_i64();
tmp = tcg_const_i64(0);
tcg_gen_extu_i32_i64(cf_64, cpu_CF);
tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
tcg_gen_trunc_i64_i32(cpu_CF, cf_64);
gen_set_NZ64(result);
tcg_gen_xor_i64(vf_64, result, t0);
tcg_gen_xor_i64(tmp, t0, t1);
tcg_gen_andc_i64(vf_64, vf_64, tmp);
tcg_gen_shri_i64(vf_64, vf_64, 32);
tcg_gen_trunc_i64_i32(cpu_VF, vf_64);
tcg_gen_mov_i64(dest, result);
tcg_temp_free_i64(tmp);
tcg_temp_free_i64(vf_64);
tcg_temp_free_i64(cf_64);
tcg_temp_free_i64(result);
} else {
TCGv_i32 t0_32, t1_32, tmp;
t0_32 = tcg_temp_new_i32();
t1_32 = tcg_temp_new_i32();
tmp = tcg_const_i32(0);
tcg_gen_trunc_i64_i32(t0_32, t0);
tcg_gen_trunc_i64_i32(t1_32, t1);
tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
tcg_gen_mov_i32(cpu_ZF, cpu_NF);
tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
tcg_gen_xor_i32(tmp, t0_32, t1_32);
tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
tcg_gen_extu_i32_i64(dest, cpu_NF);
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(t1_32);
tcg_temp_free_i32(t0_32);
}
}
/*
* Load/Store generators
*/
/*
* Store from GPR register to memory.
*/
static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
TCGv_i64 tcg_addr, int size, int memidx)
{
g_assert(size <= 3);
tcg_gen_qemu_st_i64(source, tcg_addr, memidx, MO_TE + size);
}
static void do_gpr_st(DisasContext *s, TCGv_i64 source,
TCGv_i64 tcg_addr, int size)
{
do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s));
}
/*
* Load from memory to GPR register
*/
static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
int size, bool is_signed, bool extend, int memidx)
{
TCGMemOp memop = MO_TE + size;
g_assert(size <= 3);
if (is_signed) {
memop += MO_SIGN;
}
tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
if (extend && is_signed) {
g_assert(size < 3);
tcg_gen_ext32u_i64(dest, dest);
}
}
static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
int size, bool is_signed, bool extend)
{
do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
get_mem_index(s));
}
/*
* Store from FP register to memory
*/
static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
{
/* This writes the bottom N bits of a 128 bit wide vector to memory */
TCGv_i64 tmp = tcg_temp_new_i64();
tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
if (size < 4) {
tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s), MO_TE + size);
} else {
TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s), MO_TEQ);
tcg_gen_qemu_st64(tmp, tcg_addr, get_mem_index(s));
tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
tcg_gen_qemu_st_i64(tmp, tcg_hiaddr, get_mem_index(s), MO_TEQ);
tcg_temp_free_i64(tcg_hiaddr);
}
tcg_temp_free_i64(tmp);
}
/*
* Load from memory to FP register
*/
static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
{
/* This always zero-extends and writes to a full 128 bit wide vector */
TCGv_i64 tmplo = tcg_temp_new_i64();
TCGv_i64 tmphi;
if (size < 4) {
TCGMemOp memop = MO_TE + size;
tmphi = tcg_const_i64(0);
tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
} else {
TCGv_i64 tcg_hiaddr;
tmphi = tcg_temp_new_i64();
tcg_hiaddr = tcg_temp_new_i64();
tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), MO_TEQ);
tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
tcg_gen_qemu_ld_i64(tmphi, tcg_hiaddr, get_mem_index(s), MO_TEQ);
tcg_temp_free_i64(tcg_hiaddr);
}
tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
tcg_temp_free_i64(tmplo);
tcg_temp_free_i64(tmphi);
}
/*
* Vector load/store helpers.
*
* The principal difference between this and a FP load is that we don't
* zero extend as we are filling a partial chunk of the vector register.
* These functions don't support 128 bit loads/stores, which would be
* normal load/store operations.
*
* The _i32 versions are useful when operating on 32 bit quantities
* (eg for floating point single or using Neon helper functions).
*/
/* Get value of an element within a vector register */
static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
int element, TCGMemOp memop)
{
int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
switch (memop) {
case MO_8:
tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
break;
case MO_16:
tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
break;
case MO_32:
tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
break;
case MO_8|MO_SIGN:
tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
break;
case MO_16|MO_SIGN:
tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
break;
case MO_32|MO_SIGN:
tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
break;
case MO_64:
case MO_64|MO_SIGN:
tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
break;
default:
g_assert_not_reached();
}
}
static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
int element, TCGMemOp memop)
{
int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
switch (memop) {
case MO_8:
tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
break;
case MO_16:
tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
break;
case MO_8|MO_SIGN:
tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
break;
case MO_16|MO_SIGN:
tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
break;
case MO_32:
case MO_32|MO_SIGN:
tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
break;
default:
g_assert_not_reached();
}
}
/* Set value of an element within a vector register */
static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
int element, TCGMemOp memop)
{
int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
switch (memop) {
case MO_8:
tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
break;
case MO_16:
tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
break;
case MO_32:
tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
break;
case MO_64:
tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
break;
default:
g_assert_not_reached();
}
}
static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
int destidx, int element, TCGMemOp memop)
{
int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
switch (memop) {
case MO_8:
tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
break;
case MO_16:
tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
break;
case MO_32:
tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
break;
default:
g_assert_not_reached();
}
}
/* Clear the high 64 bits of a 128 bit vector (in general non-quad
* vector ops all need to do this).
*/
static void clear_vec_high(DisasContext *s, int rd)
{
TCGv_i64 tcg_zero = tcg_const_i64(0);
write_vec_element(s, tcg_zero, rd, 1, MO_64);
tcg_temp_free_i64(tcg_zero);
}
/* Store from vector register to memory */
static void do_vec_st(DisasContext *s, int srcidx, int element,
TCGv_i64 tcg_addr, int size)
{
TCGMemOp memop = MO_TE + size;
TCGv_i64 tcg_tmp = tcg_temp_new_i64();
read_vec_element(s, tcg_tmp, srcidx, element, size);
tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
tcg_temp_free_i64(tcg_tmp);
}
/* Load from memory to vector register */
static void do_vec_ld(DisasContext *s, int destidx, int element,
TCGv_i64 tcg_addr, int size)
{
TCGMemOp memop = MO_TE + size;
TCGv_i64 tcg_tmp = tcg_temp_new_i64();
tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
write_vec_element(s, tcg_tmp, destidx, element, size);
tcg_temp_free_i64(tcg_tmp);
}
/* Check that FP/Neon access is enabled. If it is, return
* true. If not, emit code to generate an appropriate exception,
* and return false; the caller should not emit any code for
* the instruction. Note that this check must happen after all
* unallocated-encoding checks (otherwise the syndrome information
* for the resulting exception will be incorrect).
*/
static inline bool fp_access_check(DisasContext *s)
{
assert(!s->fp_access_checked);
s->fp_access_checked = true;
if (s->cpacr_fpen) {
return true;
}
gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false));
return false;
}
/*
* This utility function is for doing register extension with an
* optional shift. You will likely want to pass a temporary for the
* destination register. See DecodeRegExtend() in the ARM ARM.
*/
static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
int option, unsigned int shift)
{
int extsize = extract32(option, 0, 2);
bool is_signed = extract32(option, 2, 1);
if (is_signed) {
switch (extsize) {
case 0:
tcg_gen_ext8s_i64(tcg_out, tcg_in);
break;
case 1:
tcg_gen_ext16s_i64(tcg_out, tcg_in);
break;
case 2:
tcg_gen_ext32s_i64(tcg_out, tcg_in);
break;
case 3:
tcg_gen_mov_i64(tcg_out, tcg_in);
break;
}
} else {
switch (extsize) {
case 0:
tcg_gen_ext8u_i64(tcg_out, tcg_in);
break;
case 1:
tcg_gen_ext16u_i64(tcg_out, tcg_in);
break;
case 2:
tcg_gen_ext32u_i64(tcg_out, tcg_in);
break;
case 3:
tcg_gen_mov_i64(tcg_out, tcg_in);
break;
}
}
if (shift) {
tcg_gen_shli_i64(tcg_out, tcg_out, shift);
}
}
static inline void gen_check_sp_alignment(DisasContext *s)
{
/* The AArch64 architecture mandates that (if enabled via PSTATE
* or SCTLR bits) there is a check that SP is 16-aligned on every
* SP-relative load or store (with an exception generated if it is not).
* In line with general QEMU practice regarding misaligned accesses,
* we omit these checks for the sake of guest program performance.
* This function is provided as a hook so we can more easily add these
* checks in future (possibly as a "favour catching guest program bugs
* over speed" user selectable option).
*/
}
/*
* This provides a simple table based table lookup decoder. It is
* intended to be used when the relevant bits for decode are too
* awkwardly placed and switch/if based logic would be confusing and
* deeply nested. Since it's a linear search through the table, tables
* should be kept small.
*
* It returns the first handler where insn & mask == pattern, or
* NULL if there is no match.
* The table is terminated by an empty mask (i.e. 0)
*/
static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
uint32_t insn)
{
const AArch64DecodeTable *tptr = table;
while (tptr->mask) {
if ((insn & tptr->mask) == tptr->pattern) {
return tptr->disas_fn;
}
tptr++;
}
return NULL;
}
/*
* the instruction disassembly implemented here matches
* the instruction encoding classifications in chapter 3 (C3)
* of the ARM Architecture Reference Manual (DDI0487A_a)
*/
/* C3.2.7 Unconditional branch (immediate)
* 31 30 26 25 0
* +----+-----------+-------------------------------------+
* | op | 0 0 1 0 1 | imm26 |
* +----+-----------+-------------------------------------+
*/
static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
{
uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4;
if (insn & (1 << 31)) {
/* C5.6.26 BL Branch with link */
tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
}
/* C5.6.20 B Branch / C5.6.26 BL Branch with link */
gen_goto_tb(s, 0, addr);
}
/* C3.2.1 Compare & branch (immediate)
* 31 30 25 24 23 5 4 0
* +----+-------------+----+---------------------+--------+
* | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
* +----+-------------+----+---------------------+--------+
*/
static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
{
unsigned int sf, op, rt;
uint64_t addr;
int label_match;
TCGv_i64 tcg_cmp;
sf = extract32(insn, 31, 1);
op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
rt = extract32(insn, 0, 5);
addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
tcg_cmp = read_cpu_reg(s, rt, sf);
label_match = gen_new_label();
tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
tcg_cmp, 0, label_match);
gen_goto_tb(s, 0, s->pc);
gen_set_label(label_match);
gen_goto_tb(s, 1, addr);
}
/* C3.2.5 Test & branch (immediate)
* 31 30 25 24 23 19 18 5 4 0
* +----+-------------+----+-------+-------------+------+
* | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
* +----+-------------+----+-------+-------------+------+
*/
static void disas_test_b_imm(DisasContext *s, uint32_t insn)
{
unsigned int bit_pos, op, rt;
uint64_t addr;
int label_match;
TCGv_i64 tcg_cmp;
bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
addr = s->pc + sextract32(insn, 5, 14) * 4 - 4;
rt = extract32(insn, 0, 5);
tcg_cmp = tcg_temp_new_i64();
tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
label_match = gen_new_label();
tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
tcg_cmp, 0, label_match);
tcg_temp_free_i64(tcg_cmp);
gen_goto_tb(s, 0, s->pc);
gen_set_label(label_match);
gen_goto_tb(s, 1, addr);
}
/* C3.2.2 / C5.6.19 Conditional branch (immediate)
* 31 25 24 23 5 4 3 0
* +---------------+----+---------------------+----+------+
* | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
* +---------------+----+---------------------+----+------+
*/
static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
{
unsigned int cond;
uint64_t addr;
if ((insn & (1 << 4)) || (insn & (1 << 24))) {
unallocated_encoding(s);
return;
}
addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
cond = extract32(insn, 0, 4);
if (cond < 0x0e) {
/* genuinely conditional branches */
int label_match = gen_new_label();
arm_gen_test_cc(cond, label_match);
gen_goto_tb(s, 0, s->pc);
gen_set_label(label_match);
gen_goto_tb(s, 1, addr);
} else {
/* 0xe and 0xf are both "always" conditions */
gen_goto_tb(s, 0, addr);
}
}
/* C5.6.68 HINT */
static void handle_hint(DisasContext *s, uint32_t insn,
unsigned int op1, unsigned int op2, unsigned int crm)
{
unsigned int selector = crm << 3 | op2;
if (op1 != 3) {
unallocated_encoding(s);
return;
}
switch (selector) {
case 0: /* NOP */
return;
case 3: /* WFI */
s->is_jmp = DISAS_WFI;
return;
case 1: /* YIELD */
case 2: /* WFE */
s->is_jmp = DISAS_WFE;
return;
case 4: /* SEV */
case 5: /* SEVL */
/* we treat all as NOP at least for now */
return;
default:
/* default specified as NOP equivalent */
return;
}
}
static void gen_clrex(DisasContext *s, uint32_t insn)
{
tcg_gen_movi_i64(cpu_exclusive_addr, -1);
}
/* CLREX, DSB, DMB, ISB */
static void handle_sync(DisasContext *s, uint32_t insn,
unsigned int op1, unsigned int op2, unsigned int crm)
{
if (op1 != 3) {
unallocated_encoding(s);
return;
}
switch (op2) {
case 2: /* CLREX */
gen_clrex(s, insn);
return;
case 4: /* DSB */
case 5: /* DMB */
case 6: /* ISB */
/* We don't emulate caches so barriers are no-ops */
return;
default:
unallocated_encoding(s);
return;
}
}
/* C5.6.130 MSR (immediate) - move immediate to processor state field */
static void handle_msr_i(DisasContext *s, uint32_t insn,
unsigned int op1, unsigned int op2, unsigned int crm)
{
int op = op1 << 3 | op2;
switch (op) {
case 0x05: /* SPSel */
if (s->current_pl == 0) {
unallocated_encoding(s);
return;
}
/* fall through */
case 0x1e: /* DAIFSet */
case 0x1f: /* DAIFClear */
{
TCGv_i32 tcg_imm = tcg_const_i32(crm);
TCGv_i32 tcg_op = tcg_const_i32(op);
gen_a64_set_pc_im(s->pc - 4);
gen_helper_msr_i_pstate(cpu_env, tcg_op, tcg_imm);
tcg_temp_free_i32(tcg_imm);
tcg_temp_free_i32(tcg_op);
s->is_jmp = DISAS_UPDATE;
break;
}
default:
unallocated_encoding(s);
return;
}
}
static void gen_get_nzcv(TCGv_i64 tcg_rt)
{
TCGv_i32 tmp = tcg_temp_new_i32();
TCGv_i32 nzcv = tcg_temp_new_i32();
/* build bit 31, N */
tcg_gen_andi_i32(nzcv, cpu_NF, (1 << 31));
/* build bit 30, Z */
tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
/* build bit 29, C */
tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
/* build bit 28, V */
tcg_gen_shri_i32(tmp, cpu_VF, 31);
tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
/* generate result */
tcg_gen_extu_i32_i64(tcg_rt, nzcv);
tcg_temp_free_i32(nzcv);
tcg_temp_free_i32(tmp);
}
static void gen_set_nzcv(TCGv_i64 tcg_rt)
{
TCGv_i32 nzcv = tcg_temp_new_i32();
/* take NZCV from R[t] */
tcg_gen_trunc_i64_i32(nzcv, tcg_rt);
/* bit 31, N */
tcg_gen_andi_i32(cpu_NF, nzcv, (1 << 31));
/* bit 30, Z */
tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
/* bit 29, C */
tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
/* bit 28, V */
tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
tcg_temp_free_i32(nzcv);
}
/* C5.6.129 MRS - move from system register
* C5.6.131 MSR (register) - move to system register
* C5.6.204 SYS
* C5.6.205 SYSL
* These are all essentially the same insn in 'read' and 'write'
* versions, with varying op0 fields.
*/
static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
unsigned int op0, unsigned int op1, unsigned int op2,
unsigned int crn, unsigned int crm, unsigned int rt)
{
const ARMCPRegInfo *ri;
TCGv_i64 tcg_rt;
ri = get_arm_cp_reginfo(s->cp_regs,
ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
crn, crm, op0, op1, op2));
if (!ri) {
/* Unknown register; this might be a guest error or a QEMU
* unimplemented feature.
*/
qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
"system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
isread ? "read" : "write", op0, op1, crn, crm, op2);
unallocated_encoding(s);
return;
}
/* Check access permissions */
if (!cp_access_ok(s->current_pl, ri, isread)) {
unallocated_encoding(s);
return;
}
if (ri->accessfn) {
/* Emit code to perform further access permissions checks at
* runtime; this may result in an exception.
*/
TCGv_ptr tmpptr;
TCGv_i32 tcg_syn;
uint32_t syndrome;
gen_a64_set_pc_im(s->pc - 4);
tmpptr = tcg_const_ptr(ri);
syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
tcg_syn = tcg_const_i32(syndrome);
gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn);
tcg_temp_free_ptr(tmpptr);
tcg_temp_free_i32(tcg_syn);
}
/* Handle special cases first */
switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
case ARM_CP_NOP:
return;
case ARM_CP_NZCV:
tcg_rt = cpu_reg(s, rt);
if (isread) {
gen_get_nzcv(tcg_rt);
} else {
gen_set_nzcv(tcg_rt);
}
return;
case ARM_CP_CURRENTEL:
/* Reads as current EL value from pstate, which is
* guaranteed to be constant by the tb flags.
*/
tcg_rt = cpu_reg(s, rt);
tcg_gen_movi_i64(tcg_rt, s->current_pl << 2);
return;
case ARM_CP_DC_ZVA:
/* Writes clear the aligned block of memory which rt points into. */
tcg_rt = cpu_reg(s, rt);
gen_helper_dc_zva(cpu_env, tcg_rt);
return;
default:
break;
}
if (use_icount && (ri->type & ARM_CP_IO)) {
gen_io_start();
}
tcg_rt = cpu_reg(s, rt);
if (isread) {
if (ri->type & ARM_CP_CONST) {
tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
} else if (ri->readfn) {
TCGv_ptr tmpptr;
tmpptr = tcg_const_ptr(ri);
gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
tcg_temp_free_ptr(tmpptr);
} else {
tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
}
} else {
if (ri->type & ARM_CP_CONST) {
/* If not forbidden by access permissions, treat as WI */
return;
} else if (ri->writefn) {
TCGv_ptr tmpptr;
tmpptr = tcg_const_ptr(ri);
gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
tcg_temp_free_ptr(tmpptr);
} else {
tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
}
}
if (use_icount && (ri->type & ARM_CP_IO)) {
/* I/O operations must end the TB here (whether read or write) */
gen_io_end();
s->is_jmp = DISAS_UPDATE;
} else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
/* We default to ending the TB on a coprocessor register write,
* but allow this to be suppressed by the register definition
* (usually only necessary to work around guest bugs).
*/
s->is_jmp = DISAS_UPDATE;
}
}
/* C3.2.4 System
* 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
* +---------------------+---+-----+-----+-------+-------+-----+------+
* | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
* +---------------------+---+-----+-----+-------+-------+-----+------+
*/
static void disas_system(DisasContext *s, uint32_t insn)
{
unsigned int l, op0, op1, crn, crm, op2, rt;
l = extract32(insn, 21, 1);
op0 = extract32(insn, 19, 2);
op1 = extract32(insn, 16, 3);
crn = extract32(insn, 12, 4);
crm = extract32(insn, 8, 4);
op2 = extract32(insn, 5, 3);
rt = extract32(insn, 0, 5);
if (op0 == 0) {
if (l || rt != 31) {
unallocated_encoding(s);
return;
}
switch (crn) {
case 2: /* C5.6.68 HINT */
handle_hint(s, insn, op1, op2, crm);
break;
case 3: /* CLREX, DSB, DMB, ISB */
handle_sync(s, insn, op1, op2, crm);
break;
case 4: /* C5.6.130 MSR (immediate) */
handle_msr_i(s, insn, op1, op2, crm);
break;
default:
unallocated_encoding(s);
break;
}
return;
}
handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
}
/* C3.2.3 Exception generation
*
* 31 24 23 21 20 5 4 2 1 0
* +-----------------+-----+------------------------+-----+----+
* | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
* +-----------------------+------------------------+----------+
*/
static void disas_exc(DisasContext *s, uint32_t insn)
{
int opc = extract32(insn, 21, 3);
int op2_ll = extract32(insn, 0, 5);
int imm16 = extract32(insn, 5, 16);
switch (opc) {
case 0:
/* SVC, HVC, SMC; since we don't support the Virtualization
* or TrustZone extensions these all UNDEF except SVC.
*/
if (op2_ll != 1) {
unallocated_encoding(s);
break;
}
gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16));
break;
case 1:
if (op2_ll != 0) {
unallocated_encoding(s);
break;
}
/* BRK */
gen_exception_insn(s, 0, EXCP_BKPT, syn_aa64_bkpt(imm16));
break;
case 2:
if (op2_ll != 0) {
unallocated_encoding(s);
break;
}
/* HLT */
unsupported_encoding(s, insn);
break;
case 5:
if (op2_ll < 1 || op2_ll > 3) {
unallocated_encoding(s);
break;
}
/* DCPS1, DCPS2, DCPS3 */
unsupported_encoding(s, insn);
break;
default:
unallocated_encoding(s);
break;
}
}
/* C3.2.7 Unconditional branch (register)
* 31 25 24 21 20 16 15 10 9 5 4 0
* +---------------+-------+-------+-------+------+-------+
* | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
* +---------------+-------+-------+-------+------+-------+
*/
static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
{
unsigned int opc, op2, op3, rn, op4;
opc = extract32(insn, 21, 4);
op2 = extract32(insn, 16, 5);
op3 = extract32(insn, 10, 6);
rn = extract32(insn, 5, 5);
op4 = extract32(insn, 0, 5);
if (op4 != 0x0 || op3 != 0x0 || op2 != 0x1f) {
unallocated_encoding(s);
return;
}
switch (opc) {
case 0: /* BR */
case 2: /* RET */
tcg_gen_mov_i64(cpu_pc, cpu_reg(s, rn));
break;
case 1: /* BLR */
tcg_gen_mov_i64(cpu_pc, cpu_reg(s, rn));
tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
break;
case 4: /* ERET */
gen_helper_exception_return(cpu_env);
s->is_jmp = DISAS_JUMP;
return;
case 5: /* DRPS */
if (rn != 0x1f) {
unallocated_encoding(s);
} else {
unsupported_encoding(s, insn);
}
return;
default:
unallocated_encoding(s);
return;
}
s->is_jmp = DISAS_JUMP;
}
/* C3.2 Branches, exception generating and system instructions */
static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
{
switch (extract32(insn, 25, 7)) {
case 0x0a: case 0x0b:
case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
disas_uncond_b_imm(s, insn);
break;
case 0x1a: case 0x5a: /* Compare & branch (immediate) */
disas_comp_b_imm(s, insn);
break;
case 0x1b: case 0x5b: /* Test & branch (immediate) */
disas_test_b_imm(s, insn);
break;
case 0x2a: /* Conditional branch (immediate) */
disas_cond_b_imm(s, insn);
break;
case 0x6a: /* Exception generation / System */
if (insn & (1 << 24)) {
disas_system(s, insn);
} else {
disas_exc(s, insn);
}
break;
case 0x6b: /* Unconditional branch (register) */
disas_uncond_b_reg(s, insn);
break;
default:
unallocated_encoding(s);
break;
}
}
/*
* Load/Store exclusive instructions are implemented by remembering
* the value/address loaded, and seeing if these are the same
* when the store is performed. This is not actually the architecturally
* mandated semantics, but it works for typical guest code sequences
* and avoids having to monitor regular stores.
*
* In system emulation mode only one CPU will be running at once, so
* this sequence is effectively atomic. In user emulation mode we
* throw an exception and handle the atomic operation elsewhere.
*/
static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
TCGv_i64 addr, int size, bool is_pair)
{
TCGv_i64 tmp = tcg_temp_new_i64();
TCGMemOp memop = MO_TE + size;
g_assert(size <= 3);
tcg_gen_qemu_ld_i64(tmp, addr, get_mem_index(s), memop);
if (is_pair) {
TCGv_i64 addr2 = tcg_temp_new_i64();
TCGv_i64 hitmp = tcg_temp_new_i64();
g_assert(size >= 2);
tcg_gen_addi_i64(addr2, addr, 1 << size);
tcg_gen_qemu_ld_i64(hitmp, addr2, get_mem_index(s), memop);
tcg_temp_free_i64(addr2);
tcg_gen_mov_i64(cpu_exclusive_high, hitmp);
tcg_gen_mov_i64(cpu_reg(s, rt2), hitmp);
tcg_temp_free_i64(hitmp);
}
tcg_gen_mov_i64(cpu_exclusive_val, tmp);
tcg_gen_mov_i64(cpu_reg(s, rt), tmp);
tcg_temp_free_i64(tmp);
tcg_gen_mov_i64(cpu_exclusive_addr, addr);
}
#ifdef CONFIG_USER_ONLY
static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
TCGv_i64 addr, int size, int is_pair)
{
tcg_gen_mov_i64(cpu_exclusive_test, addr);
tcg_gen_movi_i32(cpu_exclusive_info,
size | is_pair << 2 | (rd << 4) | (rt << 9) | (rt2 << 14));
gen_exception_internal_insn(s, 4, EXCP_STREX);
}
#else
static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
TCGv_i64 inaddr, int size, int is_pair)
{
/* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
* && (!is_pair || env->exclusive_high == [addr + datasize])) {
* [addr] = {Rt};
* if (is_pair) {
* [addr + datasize] = {Rt2};
* }
* {Rd} = 0;
* } else {
* {Rd} = 1;
* }
* env->exclusive_addr = -1;
*/
int fail_label = gen_new_label();
int done_label = gen_new_label();
TCGv_i64 addr = tcg_temp_local_new_i64();
TCGv_i64 tmp;
/* Copy input into a local temp so it is not trashed when the
* basic block ends at the branch insn.
*/
tcg_gen_mov_i64(addr, inaddr);
tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
tmp = tcg_temp_new_i64();
tcg_gen_qemu_ld_i64(tmp, addr, get_mem_index(s), MO_TE + size);
tcg_gen_brcond_i64(TCG_COND_NE, tmp, cpu_exclusive_val, fail_label);
tcg_temp_free_i64(tmp);
if (is_pair) {
TCGv_i64 addrhi = tcg_temp_new_i64();
TCGv_i64 tmphi = tcg_temp_new_i64();
tcg_gen_addi_i64(addrhi, addr, 1 << size);
tcg_gen_qemu_ld_i64(tmphi, addrhi, get_mem_index(s), MO_TE + size);
tcg_gen_brcond_i64(TCG_COND_NE, tmphi, cpu_exclusive_high, fail_label);
tcg_temp_free_i64(tmphi);
tcg_temp_free_i64(addrhi);
}
/* We seem to still have the exclusive monitor, so do the store */
tcg_gen_qemu_st_i64(cpu_reg(s, rt), addr, get_mem_index(s), MO_TE + size);
if (is_pair) {
TCGv_i64 addrhi = tcg_temp_new_i64();
tcg_gen_addi_i64(addrhi, addr, 1 << size);
tcg_gen_qemu_st_i64(cpu_reg(s, rt2), addrhi,
get_mem_index(s), MO_TE + size);
tcg_temp_free_i64(addrhi);
}
tcg_temp_free_i64(addr);
tcg_gen_movi_i64(cpu_reg(s, rd), 0);
tcg_gen_br(done_label);
gen_set_label(fail_label);
tcg_gen_movi_i64(cpu_reg(s, rd), 1);
gen_set_label(done_label);
tcg_gen_movi_i64(cpu_exclusive_addr, -1);
}
#endif
/* C3.3.6 Load/store exclusive
*
* 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
* +-----+-------------+----+---+----+------+----+-------+------+------+
* | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
* +-----+-------------+----+---+----+------+----+-------+------+------+
*
* sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
* L: 0 -> store, 1 -> load
* o2: 0 -> exclusive, 1 -> not
* o1: 0 -> single register, 1 -> register pair
* o0: 1 -> load-acquire/store-release, 0 -> not
*
* o0 == 0 AND o2 == 1 is un-allocated
* o1 == 1 is un-allocated except for 32 and 64 bit sizes
*/
static void disas_ldst_excl(DisasContext *s, uint32_t insn)
{
int rt = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int rt2 = extract32(insn, 10, 5);
int is_lasr = extract32(insn, 15, 1);
int rs = extract32(insn, 16, 5);
int is_pair = extract32(insn, 21, 1);
int is_store = !extract32(insn, 22, 1);
int is_excl = !extract32(insn, 23, 1);
int size = extract32(insn, 30, 2);
TCGv_i64 tcg_addr;
if ((!is_excl && !is_lasr) ||
(is_pair && size < 2)) {
unallocated_encoding(s);
return;
}
if (rn == 31) {
gen_check_sp_alignment(s);
}
tcg_addr = read_cpu_reg_sp(s, rn, 1);
/* Note that since TCG is single threaded load-acquire/store-release
* semantics require no extra if (is_lasr) { ... } handling.
*/
if (is_excl) {
if (!is_store) {
gen_load_exclusive(s, rt, rt2, tcg_addr, size, is_pair);
} else {
gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, is_pair);
}
} else {
TCGv_i64 tcg_rt = cpu_reg(s, rt);
if (is_store) {
do_gpr_st(s, tcg_rt, tcg_addr, size);
} else {
do_gpr_ld(s, tcg_rt, tcg_addr, size, false, false);
}
if (is_pair) {
TCGv_i64 tcg_rt2 = cpu_reg(s, rt);
tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
if (is_store) {
do_gpr_st(s, tcg_rt2, tcg_addr, size);
} else {
do_gpr_ld(s, tcg_rt2, tcg_addr, size, false, false);
}
}
}
}
/*
* C3.3.5 Load register (literal)
*
* 31 30 29 27 26 25 24 23 5 4 0
* +-----+-------+---+-----+-------------------+-------+
* | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
* +-----+-------+---+-----+-------------------+-------+
*
* V: 1 -> vector (simd/fp)
* opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
* 10-> 32 bit signed, 11 -> prefetch
* opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
*/
static void disas_ld_lit(DisasContext *s, uint32_t insn)
{
int rt = extract32(insn, 0, 5);
int64_t imm = sextract32(insn, 5, 19) << 2;
bool is_vector = extract32(insn, 26, 1);
int opc = extract32(insn, 30, 2);
bool is_signed = false;
int size = 2;
TCGv_i64 tcg_rt, tcg_addr;
if (is_vector) {
if (opc == 3) {
unallocated_encoding(s);
return;
}
size = 2 + opc;
if (!fp_access_check(s)) {
return;
}
} else {
if (opc == 3) {
/* PRFM (literal) : prefetch */
return;
}
size = 2 + extract32(opc, 0, 1);
is_signed = extract32(opc, 1, 1);
}
tcg_rt = cpu_reg(s, rt);
tcg_addr = tcg_const_i64((s->pc - 4) + imm);
if (is_vector) {
do_fp_ld(s, rt, tcg_addr, size);
} else {
do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false);
}
tcg_temp_free_i64(tcg_addr);
}
/*
* C5.6.80 LDNP (Load Pair - non-temporal hint)
* C5.6.81 LDP (Load Pair - non vector)
* C5.6.82 LDPSW (Load Pair Signed Word - non vector)
* C5.6.176 STNP (Store Pair - non-temporal hint)
* C5.6.177 STP (Store Pair - non vector)
* C6.3.165 LDNP (Load Pair of SIMD&FP - non-temporal hint)
* C6.3.165 LDP (Load Pair of SIMD&FP)
* C6.3.284 STNP (Store Pair of SIMD&FP - non-temporal hint)
* C6.3.284 STP (Store Pair of SIMD&FP)
*
* 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
* +-----+-------+---+---+-------+---+-----------------------------+
* | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
* +-----+-------+---+---+-------+---+-------+-------+------+------+
*
* opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
* LDPSW 01
* LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
* V: 0 -> GPR, 1 -> Vector
* idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
* 10 -> signed offset, 11 -> pre-index
* L: 0 -> Store 1 -> Load
*
* Rt, Rt2 = GPR or SIMD registers to be stored
* Rn = general purpose register containing address
* imm7 = signed offset (multiple of 4 or 8 depending on size)
*/
static void disas_ldst_pair(DisasContext *s, uint32_t insn)
{
int rt = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int rt2 = extract32(insn, 10, 5);
int64_t offset = sextract32(insn, 15, 7);
int index = extract32(insn, 23, 2);
bool is_vector = extract32(insn, 26, 1);
bool is_load = extract32(insn, 22, 1);
int opc = extract32(insn, 30, 2);
bool is_signed = false;
bool postindex = false;
bool wback = false;
TCGv_i64 tcg_addr; /* calculated address */
int size;
if (opc == 3) {
unallocated_encoding(s);
return;
}
if (is_vector) {
size = 2 + opc;
} else {
size = 2 + extract32(opc, 1, 1);
is_signed = extract32(opc, 0, 1);
if (!is_load && is_signed) {
unallocated_encoding(s);
return;
}
}
switch (index) {
case 1: /* post-index */
postindex = true;
wback = true;
break;
case 0:
/* signed offset with "non-temporal" hint. Since we don't emulate
* caches we don't care about hints to the cache system about
* data access patterns, and handle this identically to plain
* signed offset.
*/
if (is_signed) {
/* There is no non-temporal-hint version of LDPSW */
unallocated_encoding(s);
return;
}
postindex = false;
break;
case 2: /* signed offset, rn not updated */
postindex = false;
break;
case 3: /* pre-index */
postindex = false;
wback = true;
break;
}
if (is_vector && !fp_access_check(s)) {
return;
}
offset <<= size;
if (rn == 31) {
gen_check_sp_alignment(s);
}
tcg_addr = read_cpu_reg_sp(s, rn, 1);
if (!postindex) {
tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
}
if (is_vector) {
if (is_load) {
do_fp_ld(s, rt, tcg_addr, size);
} else {
do_fp_st(s, rt, tcg_addr, size);
}
} else {
TCGv_i64 tcg_rt = cpu_reg(s, rt);
if (is_load) {
do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false);
} else {
do_gpr_st(s, tcg_rt, tcg_addr, size);
}
}
tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
if (is_vector) {
if (is_load) {
do_fp_ld(s, rt2, tcg_addr, size);
} else {
do_fp_st(s, rt2, tcg_addr, size);
}
} else {
TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
if (is_load) {
do_gpr_ld(s, tcg_rt2, tcg_addr, size, is_signed, false);
} else {
do_gpr_st(s, tcg_rt2, tcg_addr, size);
}
}
if (wback) {
if (postindex) {
tcg_gen_addi_i64(tcg_addr, tcg_addr, offset - (1 << size));
} else {
tcg_gen_subi_i64(tcg_addr, tcg_addr, 1 << size);
}
tcg_gen_mov_i64(cpu_reg_sp(s, rn), tcg_addr);
}
}
/*
* C3.3.8 Load/store (immediate post-indexed)
* C3.3.9 Load/store (immediate pre-indexed)
* C3.3.12 Load/store (unscaled immediate)
*
* 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
* +----+-------+---+-----+-----+---+--------+-----+------+------+
* |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
* +----+-------+---+-----+-----+---+--------+-----+------+------+
*
* idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
10 -> unprivileged
* V = 0 -> non-vector
* size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
* opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
*/
static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn)
{
int rt = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int imm9 = sextract32(insn, 12, 9);
int opc = extract32(insn, 22, 2);
int size = extract32(insn, 30, 2);
int idx = extract32(insn, 10, 2);
bool is_signed = false;
bool is_store = false;
bool is_extended = false;
bool is_unpriv = (idx == 2);
bool is_vector = extract32(insn, 26, 1);
bool post_index;
bool writeback;
TCGv_i64 tcg_addr;
if (is_vector) {
size |= (opc & 2) << 1;
if (size > 4 || is_unpriv) {
unallocated_encoding(s);
return;
}
is_store = ((opc & 1) == 0);
if (!fp_access_check(s)) {
return;
}
} else {
if (size == 3 && opc == 2) {
/* PRFM - prefetch */
if (is_unpriv) {
unallocated_encoding(s);
return;
}
return;
}
if (opc == 3 && size > 1) {
unallocated_encoding(s);
return;
}
is_store = (opc == 0);
is_signed = opc & (1<<1);
is_extended = (size < 3) && (opc & 1);
}
switch (idx) {
case 0:
case 2:
post_index = false;
writeback = false;
break;
case 1:
post_index = true;
writeback = true;
break;
case 3:
post_index = false;
writeback = true;
break;
}
if (rn == 31) {
gen_check_sp_alignment(s);
}
tcg_addr = read_cpu_reg_sp(s, rn, 1);
if (!post_index) {
tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
}
if (is_vector) {
if (is_store) {
do_fp_st(s, rt, tcg_addr, size);
} else {
do_fp_ld(s, rt, tcg_addr, size);
}
} else {
TCGv_i64 tcg_rt = cpu_reg(s, rt);
int memidx = is_unpriv ? 1 : get_mem_index(s);
if (is_store) {
do_gpr_st_memidx(s, tcg_rt, tcg_addr, size, memidx);
} else {
do_gpr_ld_memidx(s, tcg_rt, tcg_addr, size,
is_signed, is_extended, memidx);
}
}
if (writeback) {
TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
if (post_index) {
tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
}
tcg_gen_mov_i64(tcg_rn, tcg_addr);
}
}
/*
* C3.3.10 Load/store (register offset)
*
* 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
* +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
* |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
* +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
*
* For non-vector:
* size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
* opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
* For vector:
* size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
* opc<0>: 0 -> store, 1 -> load
* V: 1 -> vector/simd
* opt: extend encoding (see DecodeRegExtend)
* S: if S=1 then scale (essentially index by sizeof(size))
* Rt: register to transfer into/out of
* Rn: address register or SP for base
* Rm: offset register or ZR for offset
*/
static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn)
{
int rt = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int shift = extract32(insn, 12, 1);
int rm = extract32(insn, 16, 5);
int opc = extract32(insn, 22, 2);
int opt = extract32(insn, 13, 3);
int size = extract32(insn, 30, 2);
bool is_signed = false;
bool is_store = false;
bool is_extended = false;
bool is_vector = extract32(insn, 26, 1);
TCGv_i64 tcg_rm;
TCGv_i64 tcg_addr;
if (extract32(opt, 1, 1) == 0) {
unallocated_encoding(s);
return;
}
if (is_vector) {
size |= (opc & 2) << 1;
if (size > 4) {
unallocated_encoding(s);
return;
}
is_store = !extract32(opc, 0, 1);
if (!fp_access_check(s)) {
return;
}
} else {
if (size == 3 && opc == 2) {
/* PRFM - prefetch */
return;
}
if (opc == 3 && size > 1) {
unallocated_encoding(s);
return;
}
is_store = (opc == 0);
is_signed = extract32(opc, 1, 1);
is_extended = (size < 3) && extract32(opc, 0, 1);
}
if (rn == 31) {
gen_check_sp_alignment(s);
}
tcg_addr = read_cpu_reg_sp(s, rn, 1);
tcg_rm = read_cpu_reg(s, rm, 1);
ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_rm);
if (is_vector) {
if (is_store) {
do_fp_st(s, rt, tcg_addr, size);
} else {
do_fp_ld(s, rt, tcg_addr, size);
}
} else {
TCGv_i64 tcg_rt = cpu_reg(s, rt);
if (is_store) {
do_gpr_st(s, tcg_rt, tcg_addr, size);
} else {
do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended);
}
}
}
/*
* C3.3.13 Load/store (unsigned immediate)
*
* 31 30 29 27 26 25 24 23 22 21 10 9 5
* +----+-------+---+-----+-----+------------+-------+------+
* |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
* +----+-------+---+-----+-----+------------+-------+------+
*
* For non-vector:
* size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
* opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
* For vector:
* size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
* opc<0>: 0 -> store, 1 -> load
* Rn: base address register (inc SP)
* Rt: target register
*/
static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn)
{
int rt = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
unsigned int imm12 = extract32(insn, 10, 12);
bool is_vector = extract32(insn, 26, 1);
int size = extract32(insn, 30, 2);
int opc = extract32(insn, 22, 2);
unsigned int offset;
TCGv_i64 tcg_addr;
bool is_store;
bool is_signed = false;
bool is_extended = false;
if (is_vector) {
size |= (opc & 2) << 1;
if (size > 4) {
unallocated_encoding(s);
return;
}
is_store = !extract32(opc, 0, 1);
if (!fp_access_check(s)) {
return;
}
} else {
if (size == 3 && opc == 2) {
/* PRFM - prefetch */
return;
}
if (opc == 3 && size > 1) {
unallocated_encoding(s);
return;
}
is_store = (opc == 0);
is_signed = extract32(opc, 1, 1);
is_extended = (size < 3) && extract32(opc, 0, 1);
}
if (rn == 31) {
gen_check_sp_alignment(s);
}
tcg_addr = read_cpu_reg_sp(s, rn, 1);
offset = imm12 << size;
tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
if (is_vector) {
if (is_store) {
do_fp_st(s, rt, tcg_addr, size);
} else {
do_fp_ld(s, rt, tcg_addr, size);
}
} else {
TCGv_i64 tcg_rt = cpu_reg(s, rt);
if (is_store) {
do_gpr_st(s, tcg_rt, tcg_addr, size);
} else {
do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended);
}
}
}
/* Load/store register (all forms) */
static void disas_ldst_reg(DisasContext *s, uint32_t insn)
{
switch (extract32(insn, 24, 2)) {
case 0:
if (extract32(insn, 21, 1) == 1 && extract32(insn, 10, 2) == 2) {
disas_ldst_reg_roffset(s, insn);
} else {
/* Load/store register (unscaled immediate)
* Load/store immediate pre/post-indexed
* Load/store register unprivileged
*/
disas_ldst_reg_imm9(s, insn);
}
break;
case 1:
disas_ldst_reg_unsigned_imm(s, insn);
break;
default:
unallocated_encoding(s);
break;
}
}
/* C3.3.1 AdvSIMD load/store multiple structures
*
* 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
* +---+---+---------------+---+-------------+--------+------+------+------+
* | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
* +---+---+---------------+---+-------------+--------+------+------+------+
*
* C3.3.2 AdvSIMD load/store multiple structures (post-indexed)
*
* 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
* +---+---+---------------+---+---+---------+--------+------+------+------+
* | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
* +---+---+---------------+---+---+---------+--------+------+------+------+
*
* Rt: first (or only) SIMD&FP register to be transferred
* Rn: base address or SP
* Rm (post-index only): post-index register (when !31) or size dependent #imm
*/
static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
{
int rt = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int size = extract32(insn, 10, 2);
int opcode = extract32(insn, 12, 4);
bool is_store = !extract32(insn, 22, 1);
bool is_postidx = extract32(insn, 23, 1);
bool is_q = extract32(insn, 30, 1);
TCGv_i64 tcg_addr, tcg_rn;
int ebytes = 1 << size;
int elements = (is_q ? 128 : 64) / (8 << size);
int rpt; /* num iterations */
int selem; /* structure elements */
int r;
if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
unallocated_encoding(s);
return;
}
/* From the shared decode logic */
switch (opcode) {
case 0x0:
rpt = 1;
selem = 4;
break;
case 0x2:
rpt = 4;
selem = 1;
break;
case 0x4:
rpt = 1;
selem = 3;
break;
case 0x6:
rpt = 3;
selem = 1;
break;
case 0x7:
rpt = 1;
selem = 1;
break;
case 0x8:
rpt = 1;
selem = 2;
break;
case 0xa:
rpt = 2;
selem = 1;
break;
default:
unallocated_encoding(s);
return;
}
if (size == 3 && !is_q && selem != 1) {
/* reserved */
unallocated_encoding(s);
return;
}
if (!fp_access_check(s)) {
return;
}
if (rn == 31) {
gen_check_sp_alignment(s);
}
tcg_rn = cpu_reg_sp(s, rn);
tcg_addr = tcg_temp_new_i64();
tcg_gen_mov_i64(tcg_addr, tcg_rn);
for (r = 0; r < rpt; r++) {
int e;
for (e = 0; e < elements; e++) {
int tt = (rt + r) % 32;
int xs;
for (xs = 0; xs < selem; xs++) {
if (is_store) {
do_vec_st(s, tt, e, tcg_addr, size);
} else {
do_vec_ld(s, tt, e, tcg_addr, size);
/* For non-quad operations, setting a slice of the low
* 64 bits of the register clears the high 64 bits (in
* the ARM ARM pseudocode this is implicit in the fact
* that 'rval' is a 64 bit wide variable). We optimize
* by noticing that we only need to do this the first
* time we touch a register.
*/
if (!is_q && e == 0 && (r == 0 || xs == selem - 1)) {
clear_vec_high(s, tt);
}
}
tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
tt = (tt + 1) % 32;
}
}
}
if (is_postidx) {
int rm = extract32(insn, 16, 5);
if (rm == 31) {
tcg_gen_mov_i64(tcg_rn, tcg_addr);
} else {
tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
}
}
tcg_temp_free_i64(tcg_addr);
}
/* C3.3.3 AdvSIMD load/store single structure
*
* 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
* +---+---+---------------+-----+-----------+-----+---+------+------+------+
* | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
* +---+---+---------------+-----+-----------+-----+---+------+------+------+
*
* C3.3.4 AdvSIMD load/store single structure (post-indexed)
*
* 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
* +---+---+---------------+-----+-----------+-----+---+------+------+------+
* | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
* +---+---+---------------+-----+-----------+-----+---+------+------+------+
*
* Rt: first (or only) SIMD&FP register to be transferred
* Rn: base address or SP
* Rm (post-index only): post-index register (when !31) or size dependent #imm
* index = encoded in Q:S:size dependent on size
*
* lane_size = encoded in R, opc
* transfer width = encoded in opc, S, size
*/
static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
{
int rt = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int size = extract32(insn, 10, 2);
int S = extract32(insn, 12, 1);
int opc = extract32(insn, 13, 3);
int R = extract32(insn, 21, 1);
int is_load = extract32(insn, 22, 1);
int is_postidx = extract32(insn, 23, 1);
int is_q = extract32(insn, 30, 1);
int scale = extract32(opc, 1, 2);
int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
bool replicate = false;
int index = is_q << 3 | S << 2 | size;
int ebytes, xs;
TCGv_i64 tcg_addr, tcg_rn;
switch (scale) {
case 3:
if (!is_load || S) {
unallocated_encoding(s);
return;
}
scale = size;
replicate = true;
break;
case 0:
break;
case 1:
if (extract32(size, 0, 1)) {
unallocated_encoding(s);
return;
}
index >>= 1;
break;
case 2:
if (extract32(size, 1, 1)) {
unallocated_encoding(s);
return;
}
if (!extract32(size, 0, 1)) {
index >>= 2;
} else {
if (S) {
unallocated_encoding(s);
return;
}
index >>= 3;
scale = 3;
}
break;
default:
g_assert_not_reached();
}
if (!fp_access_check(s)) {
return;
}
ebytes = 1 << scale;
if (rn == 31) {
gen_check_sp_alignment(s);
}
tcg_rn = cpu_reg_sp(s, rn);
tcg_addr = tcg_temp_new_i64();
tcg_gen_mov_i64(tcg_addr, tcg_rn);
for (xs = 0; xs < selem; xs++) {
if (replicate) {
/* Load and replicate to all elements */
uint64_t mulconst;
TCGv_i64 tcg_tmp = tcg_temp_new_i64();
tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr,
get_mem_index(s), MO_TE + scale);
switch (scale) {
case 0:
mulconst = 0x0101010101010101ULL;
break;
case 1:
mulconst = 0x0001000100010001ULL;
break;
case 2:
mulconst = 0x0000000100000001ULL;
break;
case 3:
mulconst = 0;
break;
default:
g_assert_not_reached();
}
if (mulconst) {
tcg_gen_muli_i64(tcg_tmp, tcg_tmp, mulconst);
}
write_vec_element(s, tcg_tmp, rt, 0, MO_64);
if (is_q) {
write_vec_element(s, tcg_tmp, rt, 1, MO_64);
} else {
clear_vec_high(s, rt);
}
tcg_temp_free_i64(tcg_tmp);
} else {
/* Load/store one element per register */
if (is_load) {
do_vec_ld(s, rt, index, tcg_addr, MO_TE + scale);
} else {
do_vec_st(s, rt, index, tcg_addr, MO_TE + scale);
}
}
tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
rt = (rt + 1) % 32;
}
if (is_postidx) {
int rm = extract32(insn, 16, 5);
if (rm == 31) {
tcg_gen_mov_i64(tcg_rn, tcg_addr);
} else {
tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
}
}
tcg_temp_free_i64(tcg_addr);
}
/* C3.3 Loads and stores */
static void disas_ldst(DisasContext *s, uint32_t insn)
{
switch (extract32(insn, 24, 6)) {
case 0x08: /* Load/store exclusive */
disas_ldst_excl(s, insn);
break;
case 0x18: case 0x1c: /* Load register (literal) */
disas_ld_lit(s, insn);
break;
case 0x28: case 0x29:
case 0x2c: case 0x2d: /* Load/store pair (all forms) */
disas_ldst_pair(s, insn);
break;
case 0x38: case 0x39:
case 0x3c: case 0x3d: /* Load/store register (all forms) */
disas_ldst_reg(s, insn);
break;
case 0x0c: /* AdvSIMD load/store multiple structures */
disas_ldst_multiple_struct(s, insn);
break;
case 0x0d: /* AdvSIMD load/store single structure */
disas_ldst_single_struct(s, insn);
break;
default:
unallocated_encoding(s);
break;
}
}
/* C3.4.6 PC-rel. addressing
* 31 30 29 28 24 23 5 4 0
* +----+-------+-----------+-------------------+------+
* | op | immlo | 1 0 0 0 0 | immhi | Rd |
* +----+-------+-----------+-------------------+------+
*/
static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
{
unsigned int page, rd;
uint64_t base;
int64_t offset;
page = extract32(insn, 31, 1);
/* SignExtend(immhi:immlo) -> offset */
offset = ((int64_t)sextract32(insn, 5, 19) << 2) | extract32(insn, 29, 2);
rd = extract32(insn, 0, 5);
base = s->pc - 4;
if (page) {
/* ADRP (page based) */
base &= ~0xfff;
offset <<= 12;
}
tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
}
/*
* C3.4.1 Add/subtract (immediate)
*
* 31 30 29 28 24 23 22 21 10 9 5 4 0
* +--+--+--+-----------+-----+-------------+-----+-----+
* |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
* +--+--+--+-----------+-----+-------------+-----+-----+
*
* sf: 0 -> 32bit, 1 -> 64bit
* op: 0 -> add , 1 -> sub
* S: 1 -> set flags
* shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
*/
static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
uint64_t imm = extract32(insn, 10, 12);
int shift = extract32(insn, 22, 2);
bool setflags = extract32(insn, 29, 1);
bool sub_op = extract32(insn, 30, 1);
bool is_64bit = extract32(insn, 31, 1);
TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
TCGv_i64 tcg_result;
switch (shift) {
case 0x0:
break;
case 0x1:
imm <<= 12;
break;
default:
unallocated_encoding(s);
return;
}
tcg_result = tcg_temp_new_i64();
if (!setflags) {
if (sub_op) {
tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
} else {
tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
}
} else {
TCGv_i64 tcg_imm = tcg_const_i64(imm);
if (sub_op) {
gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
} else {
gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
}
tcg_temp_free_i64(tcg_imm);
}
if (is_64bit) {
tcg_gen_mov_i64(tcg_rd, tcg_result);
} else {
tcg_gen_ext32u_i64(tcg_rd, tcg_result);
}
tcg_temp_free_i64(tcg_result);
}
/* The input should be a value in the bottom e bits (with higher
* bits zero); returns that value replicated into every element
* of size e in a 64 bit integer.
*/
static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
{
assert(e != 0);
while (e < 64) {
mask |= mask << e;
e *= 2;
}
return mask;
}
/* Return a value with the bottom len bits set (where 0 < len <= 64) */
static inline uint64_t bitmask64(unsigned int length)
{
assert(length > 0 && length <= 64);
return ~0ULL >> (64 - length);
}
/* Simplified variant of pseudocode DecodeBitMasks() for the case where we
* only require the wmask. Returns false if the imms/immr/immn are a reserved
* value (ie should cause a guest UNDEF exception), and true if they are
* valid, in which case the decoded bit pattern is written to result.
*/
static bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
unsigned int imms, unsigned int immr)
{
uint64_t mask;
unsigned e, levels, s, r;
int len;
assert(immn < 2 && imms < 64 && immr < 64);
/* The bit patterns we create here are 64 bit patterns which
* are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
* 64 bits each. Each element contains the same value: a run
* of between 1 and e-1 non-zero bits, rotated within the
* element by between 0 and e-1 bits.
*
* The element size and run length are encoded into immn (1 bit)
* and imms (6 bits) as follows:
* 64 bit elements: immn = 1, imms = <length of run - 1>
* 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
* 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
* 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
* 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
* 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
* Notice that immn = 0, imms = 11111x is the only combination
* not covered by one of the above options; this is reserved.
* Further, <length of run - 1> all-ones is a reserved pattern.
*
* In all cases the rotation is by immr % e (and immr is 6 bits).
*/
/* First determine the element size */
len = 31 - clz32((immn << 6) | (~imms & 0x3f));
if (len < 1) {
/* This is the immn == 0, imms == 0x11111x case */
return false;
}
e = 1 << len;
levels = e - 1;
s = imms & levels;
r = immr & levels;
if (s == levels) {
/* <length of run - 1> mustn't be all-ones. */
return false;
}
/* Create the value of one element: s+1 set bits rotated
* by r within the element (which is e bits wide)...
*/
mask = bitmask64(s + 1);
mask = (mask >> r) | (mask << (e - r));
/* ...then replicate the element over the whole 64 bit value */
mask = bitfield_replicate(mask, e);
*result = mask;
return true;
}
/* C3.4.4 Logical (immediate)
* 31 30 29 28 23 22 21 16 15 10 9 5 4 0
* +----+-----+-------------+---+------+------+------+------+
* | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
* +----+-----+-------------+---+------+------+------+------+
*/
static void disas_logic_imm(DisasContext *s, uint32_t insn)
{
unsigned int sf, opc, is_n, immr, imms, rn, rd;
TCGv_i64 tcg_rd, tcg_rn;
uint64_t wmask;
bool is_and = false;
sf = extract32(insn, 31, 1);
opc = extract32(insn, 29, 2);
is_n = extract32(insn, 22, 1);
immr = extract32(insn, 16, 6);
imms = extract32(insn, 10, 6);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
if (!sf && is_n) {
unallocated_encoding(s);
return;
}
if (opc == 0x3) { /* ANDS */
tcg_rd = cpu_reg(s, rd);
} else {
tcg_rd = cpu_reg_sp(s, rd);
}
tcg_rn = cpu_reg(s, rn);
if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
/* some immediate field values are reserved */
unallocated_encoding(s);
return;
}
if (!sf) {
wmask &= 0xffffffff;
}
switch (opc) {
case 0x3: /* ANDS */
case 0x0: /* AND */
tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
is_and = true;
break;
case 0x1: /* ORR */
tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
break;
case 0x2: /* EOR */
tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
break;
default:
assert(FALSE); /* must handle all above */
break;
}
if (!sf && !is_and) {
/* zero extend final result; we know we can skip this for AND
* since the immediate had the high 32 bits clear.
*/
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
}
if (opc == 3) { /* ANDS */
gen_logic_CC(sf, tcg_rd);
}
}
/*
* C3.4.5 Move wide (immediate)
*
* 31 30 29 28 23 22 21 20 5 4 0
* +--+-----+-------------+-----+----------------+------+
* |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
* +--+-----+-------------+-----+----------------+------+
*
* sf: 0 -> 32 bit, 1 -> 64 bit
* opc: 00 -> N, 10 -> Z, 11 -> K
* hw: shift/16 (0,16, and sf only 32, 48)
*/
static void disas_movw_imm(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
uint64_t imm = extract32(insn, 5, 16);
int sf = extract32(insn, 31, 1);
int opc = extract32(insn, 29, 2);
int pos = extract32(insn, 21, 2) << 4;
TCGv_i64 tcg_rd = cpu_reg(s, rd);
TCGv_i64 tcg_imm;
if (!sf && (pos >= 32)) {
unallocated_encoding(s);
return;
}
switch (opc) {
case 0: /* MOVN */
case 2: /* MOVZ */
imm <<= pos;
if (opc == 0) {
imm = ~imm;
}
if (!sf) {
imm &= 0xffffffffu;
}
tcg_gen_movi_i64(tcg_rd, imm);
break;
case 3: /* MOVK */
tcg_imm = tcg_const_i64(imm);
tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
tcg_temp_free_i64(tcg_imm);
if (!sf) {
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
}
break;
default:
unallocated_encoding(s);
break;
}
}
/* C3.4.2 Bitfield
* 31 30 29 28 23 22 21 16 15 10 9 5 4 0
* +----+-----+-------------+---+------+------+------+------+
* | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
* +----+-----+-------------+---+------+------+------+------+
*/
static void disas_bitfield(DisasContext *s, uint32_t insn)
{
unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
TCGv_i64 tcg_rd, tcg_tmp;
sf = extract32(insn, 31, 1);
opc = extract32(insn, 29, 2);
n = extract32(insn, 22, 1);
ri = extract32(insn, 16, 6);
si = extract32(insn, 10, 6);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
bitsize = sf ? 64 : 32;
if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
unallocated_encoding(s);
return;
}
tcg_rd = cpu_reg(s, rd);
tcg_tmp = read_cpu_reg(s, rn, sf);
/* OPTME: probably worth recognizing common cases of ext{8,16,32}{u,s} */
if (opc != 1) { /* SBFM or UBFM */
tcg_gen_movi_i64(tcg_rd, 0);
}
/* do the bit move operation */
if (si >= ri) {
/* Wd<s-r:0> = Wn<s:r> */
tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
pos = 0;
len = (si - ri) + 1;
} else {
/* Wd<32+s-r,32-r> = Wn<s:0> */
pos = bitsize - ri;
len = si + 1;
}
tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
if (opc == 0) { /* SBFM - sign extend the destination field */
tcg_gen_shli_i64(tcg_rd, tcg_rd, 64 - (pos + len));
tcg_gen_sari_i64(tcg_rd, tcg_rd, 64 - (pos + len));
}
if (!sf) { /* zero extend final result */
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
}
}
/* C3.4.3 Extract
* 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
* +----+------+-------------+---+----+------+--------+------+------+
* | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
* +----+------+-------------+---+----+------+--------+------+------+
*/
static void disas_extract(DisasContext *s, uint32_t insn)
{
unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
sf = extract32(insn, 31, 1);
n = extract32(insn, 22, 1);
rm = extract32(insn, 16, 5);
imm = extract32(insn, 10, 6);
rn = extract32(insn, 5, 5);
rd = extract32(insn, 0, 5);
op21 = extract32(insn, 29, 2);
op0 = extract32(insn, 21, 1);
bitsize = sf ? 64 : 32;
if (sf != n || op21 || op0 || imm >= bitsize) {
unallocated_encoding(s);
} else {
TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
tcg_rd = cpu_reg(s, rd);
if (imm) {
/* OPTME: we can special case rm==rn as a rotate */
tcg_rm = read_cpu_reg(s, rm, sf);
tcg_rn = read_cpu_reg(s, rn, sf);
tcg_gen_shri_i64(tcg_rm, tcg_rm, imm);
tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm);
tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn);
if (!sf) {
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
}
} else {
/* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
* so an extract from bit 0 is a special case.
*/
if (sf) {
tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
} else {
tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
}
}
}
}
/* C3.4 Data processing - immediate */
static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
{
switch (extract32(insn, 23, 6)) {
case 0x20: case 0x21: /* PC-rel. addressing */
disas_pc_rel_adr(s, insn);
break;
case 0x22: