| /* | 
 |  * General purpose implementation of a simple periodic countdown timer. | 
 |  * | 
 |  * Copyright (c) 2007 CodeSourcery. | 
 |  * | 
 |  * This code is licensed under the GNU LGPL. | 
 |  */ | 
 | #include "hw.h" | 
 | #include "qemu/timer.h" | 
 | #include "ptimer.h" | 
 | #include "qemu/host-utils.h" | 
 |  | 
 | struct ptimer_state | 
 | { | 
 |     uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */ | 
 |     uint64_t limit; | 
 |     uint64_t delta; | 
 |     uint32_t period_frac; | 
 |     int64_t period; | 
 |     int64_t last_event; | 
 |     int64_t next_event; | 
 |     QEMUBH *bh; | 
 |     QEMUTimer *timer; | 
 | }; | 
 |  | 
 | /* Use a bottom-half routine to avoid reentrancy issues.  */ | 
 | static void ptimer_trigger(ptimer_state *s) | 
 | { | 
 |     if (s->bh) { | 
 |         qemu_bh_schedule(s->bh); | 
 |     } | 
 | } | 
 |  | 
 | static void ptimer_reload(ptimer_state *s) | 
 | { | 
 |     if (s->delta == 0) { | 
 |         ptimer_trigger(s); | 
 |         s->delta = s->limit; | 
 |     } | 
 |     if (s->delta == 0 || s->period == 0) { | 
 |         fprintf(stderr, "Timer with period zero, disabling\n"); | 
 |         s->enabled = 0; | 
 |         return; | 
 |     } | 
 |  | 
 |     s->last_event = s->next_event; | 
 |     s->next_event = s->last_event + s->delta * s->period; | 
 |     if (s->period_frac) { | 
 |         s->next_event += ((int64_t)s->period_frac * s->delta) >> 32; | 
 |     } | 
 |     qemu_mod_timer(s->timer, s->next_event); | 
 | } | 
 |  | 
 | static void ptimer_tick(void *opaque) | 
 | { | 
 |     ptimer_state *s = (ptimer_state *)opaque; | 
 |     ptimer_trigger(s); | 
 |     s->delta = 0; | 
 |     if (s->enabled == 2) { | 
 |         s->enabled = 0; | 
 |     } else { | 
 |         ptimer_reload(s); | 
 |     } | 
 | } | 
 |  | 
 | uint64_t ptimer_get_count(ptimer_state *s) | 
 | { | 
 |     int64_t now; | 
 |     uint64_t counter; | 
 |  | 
 |     if (s->enabled) { | 
 |         now = qemu_get_clock_ns(vm_clock); | 
 |         /* Figure out the current counter value.  */ | 
 |         if (now - s->next_event > 0 | 
 |             || s->period == 0) { | 
 |             /* Prevent timer underflowing if it should already have | 
 |                triggered.  */ | 
 |             counter = 0; | 
 |         } else { | 
 |             uint64_t rem; | 
 |             uint64_t div; | 
 |             int clz1, clz2; | 
 |             int shift; | 
 |  | 
 |             /* We need to divide time by period, where time is stored in | 
 |                rem (64-bit integer) and period is stored in period/period_frac | 
 |                (64.32 fixed point). | 
 |                | 
 |                Doing full precision division is hard, so scale values and | 
 |                do a 64-bit division.  The result should be rounded down, | 
 |                so that the rounding error never causes the timer to go | 
 |                backwards. | 
 |             */ | 
 |  | 
 |             rem = s->next_event - now; | 
 |             div = s->period; | 
 |  | 
 |             clz1 = clz64(rem); | 
 |             clz2 = clz64(div); | 
 |             shift = clz1 < clz2 ? clz1 : clz2; | 
 |  | 
 |             rem <<= shift; | 
 |             div <<= shift; | 
 |             if (shift >= 32) { | 
 |                 div |= ((uint64_t)s->period_frac << (shift - 32)); | 
 |             } else { | 
 |                 if (shift != 0) | 
 |                     div |= (s->period_frac >> (32 - shift)); | 
 |                 /* Look at remaining bits of period_frac and round div up if  | 
 |                    necessary.  */ | 
 |                 if ((uint32_t)(s->period_frac << shift)) | 
 |                     div += 1; | 
 |             } | 
 |             counter = rem / div; | 
 |         } | 
 |     } else { | 
 |         counter = s->delta; | 
 |     } | 
 |     return counter; | 
 | } | 
 |  | 
 | void ptimer_set_count(ptimer_state *s, uint64_t count) | 
 | { | 
 |     s->delta = count; | 
 |     if (s->enabled) { | 
 |         s->next_event = qemu_get_clock_ns(vm_clock); | 
 |         ptimer_reload(s); | 
 |     } | 
 | } | 
 |  | 
 | void ptimer_run(ptimer_state *s, int oneshot) | 
 | { | 
 |     if (s->enabled) { | 
 |         return; | 
 |     } | 
 |     if (s->period == 0) { | 
 |         fprintf(stderr, "Timer with period zero, disabling\n"); | 
 |         return; | 
 |     } | 
 |     s->enabled = oneshot ? 2 : 1; | 
 |     s->next_event = qemu_get_clock_ns(vm_clock); | 
 |     ptimer_reload(s); | 
 | } | 
 |  | 
 | /* Pause a timer.  Note that this may cause it to "lose" time, even if it | 
 |    is immediately restarted.  */ | 
 | void ptimer_stop(ptimer_state *s) | 
 | { | 
 |     if (!s->enabled) | 
 |         return; | 
 |  | 
 |     s->delta = ptimer_get_count(s); | 
 |     qemu_del_timer(s->timer); | 
 |     s->enabled = 0; | 
 | } | 
 |  | 
 | /* Set counter increment interval in nanoseconds.  */ | 
 | void ptimer_set_period(ptimer_state *s, int64_t period) | 
 | { | 
 |     s->period = period; | 
 |     s->period_frac = 0; | 
 |     if (s->enabled) { | 
 |         s->next_event = qemu_get_clock_ns(vm_clock); | 
 |         ptimer_reload(s); | 
 |     } | 
 | } | 
 |  | 
 | /* Set counter frequency in Hz.  */ | 
 | void ptimer_set_freq(ptimer_state *s, uint32_t freq) | 
 | { | 
 |     s->period = 1000000000ll / freq; | 
 |     s->period_frac = (1000000000ll << 32) / freq; | 
 |     if (s->enabled) { | 
 |         s->next_event = qemu_get_clock_ns(vm_clock); | 
 |         ptimer_reload(s); | 
 |     } | 
 | } | 
 |  | 
 | /* Set the initial countdown value.  If reload is nonzero then also set | 
 |    count = limit.  */ | 
 | void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload) | 
 | { | 
 |     /* | 
 |      * Artificially limit timeout rate to something | 
 |      * achievable under QEMU.  Otherwise, QEMU spends all | 
 |      * its time generating timer interrupts, and there | 
 |      * is no forward progress. | 
 |      * About ten microseconds is the fastest that really works | 
 |      * on the current generation of host machines. | 
 |      */ | 
 |  | 
 |     if (limit * s->period < 10000 && s->period) { | 
 |         limit = 10000 / s->period; | 
 |     } | 
 |  | 
 |     s->limit = limit; | 
 |     if (reload) | 
 |         s->delta = limit; | 
 |     if (s->enabled && reload) { | 
 |         s->next_event = qemu_get_clock_ns(vm_clock); | 
 |         ptimer_reload(s); | 
 |     } | 
 | } | 
 |  | 
 | const VMStateDescription vmstate_ptimer = { | 
 |     .name = "ptimer", | 
 |     .version_id = 1, | 
 |     .minimum_version_id = 1, | 
 |     .minimum_version_id_old = 1, | 
 |     .fields      = (VMStateField[]) { | 
 |         VMSTATE_UINT8(enabled, ptimer_state), | 
 |         VMSTATE_UINT64(limit, ptimer_state), | 
 |         VMSTATE_UINT64(delta, ptimer_state), | 
 |         VMSTATE_UINT32(period_frac, ptimer_state), | 
 |         VMSTATE_INT64(period, ptimer_state), | 
 |         VMSTATE_INT64(last_event, ptimer_state), | 
 |         VMSTATE_INT64(next_event, ptimer_state), | 
 |         VMSTATE_TIMER(timer, ptimer_state), | 
 |         VMSTATE_END_OF_LIST() | 
 |     } | 
 | }; | 
 |  | 
 | ptimer_state *ptimer_init(QEMUBH *bh) | 
 | { | 
 |     ptimer_state *s; | 
 |  | 
 |     s = (ptimer_state *)g_malloc0(sizeof(ptimer_state)); | 
 |     s->bh = bh; | 
 |     s->timer = qemu_new_timer_ns(vm_clock, ptimer_tick, s); | 
 |     return s; | 
 | } |