|  | /* | 
|  | * QEMU throttling infrastructure | 
|  | * | 
|  | * Copyright (C) Nodalink, EURL. 2013-2014 | 
|  | * Copyright (C) Igalia, S.L. 2015 | 
|  | * | 
|  | * Authors: | 
|  | *   BenoƮt Canet <benoit.canet@nodalink.com> | 
|  | *   Alberto Garcia <berto@igalia.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation; either version 2 or | 
|  | * (at your option) version 3 of the License. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  |  | 
|  | #include "qemu/throttle.h" | 
|  | #include "qemu/timer.h" | 
|  | #include "block/aio.h" | 
|  |  | 
|  | /* This function make a bucket leak | 
|  | * | 
|  | * @bkt:   the bucket to make leak | 
|  | * @delta_ns: the time delta | 
|  | */ | 
|  | void throttle_leak_bucket(LeakyBucket *bkt, int64_t delta_ns) | 
|  | { | 
|  | double leak; | 
|  |  | 
|  | /* compute how much to leak */ | 
|  | leak = (bkt->avg * (double) delta_ns) / NANOSECONDS_PER_SECOND; | 
|  |  | 
|  | /* make the bucket leak */ | 
|  | bkt->level = MAX(bkt->level - leak, 0); | 
|  | } | 
|  |  | 
|  | /* Calculate the time delta since last leak and make proportionals leaks | 
|  | * | 
|  | * @now:      the current timestamp in ns | 
|  | */ | 
|  | static void throttle_do_leak(ThrottleState *ts, int64_t now) | 
|  | { | 
|  | /* compute the time elapsed since the last leak */ | 
|  | int64_t delta_ns = now - ts->previous_leak; | 
|  | int i; | 
|  |  | 
|  | ts->previous_leak = now; | 
|  |  | 
|  | if (delta_ns <= 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* make each bucket leak */ | 
|  | for (i = 0; i < BUCKETS_COUNT; i++) { | 
|  | throttle_leak_bucket(&ts->cfg.buckets[i], delta_ns); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* do the real job of computing the time to wait | 
|  | * | 
|  | * @limit: the throttling limit | 
|  | * @extra: the number of operation to delay | 
|  | * @ret:   the time to wait in ns | 
|  | */ | 
|  | static int64_t throttle_do_compute_wait(double limit, double extra) | 
|  | { | 
|  | double wait = extra * NANOSECONDS_PER_SECOND; | 
|  | wait /= limit; | 
|  | return wait; | 
|  | } | 
|  |  | 
|  | /* This function compute the wait time in ns that a leaky bucket should trigger | 
|  | * | 
|  | * @bkt: the leaky bucket we operate on | 
|  | * @ret: the resulting wait time in ns or 0 if the operation can go through | 
|  | */ | 
|  | int64_t throttle_compute_wait(LeakyBucket *bkt) | 
|  | { | 
|  | double extra; /* the number of extra units blocking the io */ | 
|  |  | 
|  | if (!bkt->avg) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | extra = bkt->level - bkt->max; | 
|  |  | 
|  | if (extra <= 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return throttle_do_compute_wait(bkt->avg, extra); | 
|  | } | 
|  |  | 
|  | /* This function compute the time that must be waited while this IO | 
|  | * | 
|  | * @is_write:   true if the current IO is a write, false if it's a read | 
|  | * @ret:        time to wait | 
|  | */ | 
|  | static int64_t throttle_compute_wait_for(ThrottleState *ts, | 
|  | bool is_write) | 
|  | { | 
|  | BucketType to_check[2][4] = { {THROTTLE_BPS_TOTAL, | 
|  | THROTTLE_OPS_TOTAL, | 
|  | THROTTLE_BPS_READ, | 
|  | THROTTLE_OPS_READ}, | 
|  | {THROTTLE_BPS_TOTAL, | 
|  | THROTTLE_OPS_TOTAL, | 
|  | THROTTLE_BPS_WRITE, | 
|  | THROTTLE_OPS_WRITE}, }; | 
|  | int64_t wait, max_wait = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | BucketType index = to_check[is_write][i]; | 
|  | wait = throttle_compute_wait(&ts->cfg.buckets[index]); | 
|  | if (wait > max_wait) { | 
|  | max_wait = wait; | 
|  | } | 
|  | } | 
|  |  | 
|  | return max_wait; | 
|  | } | 
|  |  | 
|  | /* compute the timer for this type of operation | 
|  | * | 
|  | * @is_write:   the type of operation | 
|  | * @now:        the current clock timestamp | 
|  | * @next_timestamp: the resulting timer | 
|  | * @ret:        true if a timer must be set | 
|  | */ | 
|  | bool throttle_compute_timer(ThrottleState *ts, | 
|  | bool is_write, | 
|  | int64_t now, | 
|  | int64_t *next_timestamp) | 
|  | { | 
|  | int64_t wait; | 
|  |  | 
|  | /* leak proportionally to the time elapsed */ | 
|  | throttle_do_leak(ts, now); | 
|  |  | 
|  | /* compute the wait time if any */ | 
|  | wait = throttle_compute_wait_for(ts, is_write); | 
|  |  | 
|  | /* if the code must wait compute when the next timer should fire */ | 
|  | if (wait) { | 
|  | *next_timestamp = now + wait; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* else no need to wait at all */ | 
|  | *next_timestamp = now; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Add timers to event loop */ | 
|  | void throttle_timers_attach_aio_context(ThrottleTimers *tt, | 
|  | AioContext *new_context) | 
|  | { | 
|  | tt->timers[0] = aio_timer_new(new_context, tt->clock_type, SCALE_NS, | 
|  | tt->read_timer_cb, tt->timer_opaque); | 
|  | tt->timers[1] = aio_timer_new(new_context, tt->clock_type, SCALE_NS, | 
|  | tt->write_timer_cb, tt->timer_opaque); | 
|  | } | 
|  |  | 
|  | /* To be called first on the ThrottleState */ | 
|  | void throttle_init(ThrottleState *ts) | 
|  | { | 
|  | memset(ts, 0, sizeof(ThrottleState)); | 
|  | } | 
|  |  | 
|  | /* To be called first on the ThrottleTimers */ | 
|  | void throttle_timers_init(ThrottleTimers *tt, | 
|  | AioContext *aio_context, | 
|  | QEMUClockType clock_type, | 
|  | QEMUTimerCB *read_timer_cb, | 
|  | QEMUTimerCB *write_timer_cb, | 
|  | void *timer_opaque) | 
|  | { | 
|  | memset(tt, 0, sizeof(ThrottleTimers)); | 
|  |  | 
|  | tt->clock_type = clock_type; | 
|  | tt->read_timer_cb = read_timer_cb; | 
|  | tt->write_timer_cb = write_timer_cb; | 
|  | tt->timer_opaque = timer_opaque; | 
|  | throttle_timers_attach_aio_context(tt, aio_context); | 
|  | } | 
|  |  | 
|  | /* destroy a timer */ | 
|  | static void throttle_timer_destroy(QEMUTimer **timer) | 
|  | { | 
|  | assert(*timer != NULL); | 
|  |  | 
|  | timer_del(*timer); | 
|  | timer_free(*timer); | 
|  | *timer = NULL; | 
|  | } | 
|  |  | 
|  | /* Remove timers from event loop */ | 
|  | void throttle_timers_detach_aio_context(ThrottleTimers *tt) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 2; i++) { | 
|  | throttle_timer_destroy(&tt->timers[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* To be called last on the ThrottleTimers */ | 
|  | void throttle_timers_destroy(ThrottleTimers *tt) | 
|  | { | 
|  | throttle_timers_detach_aio_context(tt); | 
|  | } | 
|  |  | 
|  | /* is any throttling timer configured */ | 
|  | bool throttle_timers_are_initialized(ThrottleTimers *tt) | 
|  | { | 
|  | if (tt->timers[0]) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Does any throttling must be done | 
|  | * | 
|  | * @cfg: the throttling configuration to inspect | 
|  | * @ret: true if throttling must be done else false | 
|  | */ | 
|  | bool throttle_enabled(ThrottleConfig *cfg) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < BUCKETS_COUNT; i++) { | 
|  | if (cfg->buckets[i].avg > 0) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* return true if any two throttling parameters conflicts | 
|  | * | 
|  | * @cfg: the throttling configuration to inspect | 
|  | * @ret: true if any conflict detected else false | 
|  | */ | 
|  | bool throttle_conflicting(ThrottleConfig *cfg) | 
|  | { | 
|  | bool bps_flag, ops_flag; | 
|  | bool bps_max_flag, ops_max_flag; | 
|  |  | 
|  | bps_flag = cfg->buckets[THROTTLE_BPS_TOTAL].avg && | 
|  | (cfg->buckets[THROTTLE_BPS_READ].avg || | 
|  | cfg->buckets[THROTTLE_BPS_WRITE].avg); | 
|  |  | 
|  | ops_flag = cfg->buckets[THROTTLE_OPS_TOTAL].avg && | 
|  | (cfg->buckets[THROTTLE_OPS_READ].avg || | 
|  | cfg->buckets[THROTTLE_OPS_WRITE].avg); | 
|  |  | 
|  | bps_max_flag = cfg->buckets[THROTTLE_BPS_TOTAL].max && | 
|  | (cfg->buckets[THROTTLE_BPS_READ].max  || | 
|  | cfg->buckets[THROTTLE_BPS_WRITE].max); | 
|  |  | 
|  | ops_max_flag = cfg->buckets[THROTTLE_OPS_TOTAL].max && | 
|  | (cfg->buckets[THROTTLE_OPS_READ].max || | 
|  | cfg->buckets[THROTTLE_OPS_WRITE].max); | 
|  |  | 
|  | return bps_flag || ops_flag || bps_max_flag || ops_max_flag; | 
|  | } | 
|  |  | 
|  | /* check if a throttling configuration is valid | 
|  | * @cfg: the throttling configuration to inspect | 
|  | * @ret: true if valid else false | 
|  | */ | 
|  | bool throttle_is_valid(ThrottleConfig *cfg) | 
|  | { | 
|  | bool invalid = false; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < BUCKETS_COUNT; i++) { | 
|  | if (cfg->buckets[i].avg < 0) { | 
|  | invalid = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < BUCKETS_COUNT; i++) { | 
|  | if (cfg->buckets[i].max < 0) { | 
|  | invalid = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return !invalid; | 
|  | } | 
|  |  | 
|  | /* check if bps_max/iops_max is used without bps/iops | 
|  | * @cfg: the throttling configuration to inspect | 
|  | */ | 
|  | bool throttle_max_is_missing_limit(ThrottleConfig *cfg) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < BUCKETS_COUNT; i++) { | 
|  | if (cfg->buckets[i].max && !cfg->buckets[i].avg) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* fix bucket parameters */ | 
|  | static void throttle_fix_bucket(LeakyBucket *bkt) | 
|  | { | 
|  | double min; | 
|  |  | 
|  | /* zero bucket level */ | 
|  | bkt->level = 0; | 
|  |  | 
|  | /* The following is done to cope with the Linux CFQ block scheduler | 
|  | * which regroup reads and writes by block of 100ms in the guest. | 
|  | * When they are two process one making reads and one making writes cfq | 
|  | * make a pattern looking like the following: | 
|  | * WWWWWWWWWWWRRRRRRRRRRRRRRWWWWWWWWWWWWWwRRRRRRRRRRRRRRRRR | 
|  | * Having a max burst value of 100ms of the average will help smooth the | 
|  | * throttling | 
|  | */ | 
|  | min = bkt->avg / 10; | 
|  | if (bkt->avg && !bkt->max) { | 
|  | bkt->max = min; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* take care of canceling a timer */ | 
|  | static void throttle_cancel_timer(QEMUTimer *timer) | 
|  | { | 
|  | assert(timer != NULL); | 
|  |  | 
|  | timer_del(timer); | 
|  | } | 
|  |  | 
|  | /* Used to configure the throttle | 
|  | * | 
|  | * @ts: the throttle state we are working on | 
|  | * @tt: the throttle timers we use in this aio context | 
|  | * @cfg: the config to set | 
|  | */ | 
|  | void throttle_config(ThrottleState *ts, | 
|  | ThrottleTimers *tt, | 
|  | ThrottleConfig *cfg) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | ts->cfg = *cfg; | 
|  |  | 
|  | for (i = 0; i < BUCKETS_COUNT; i++) { | 
|  | throttle_fix_bucket(&ts->cfg.buckets[i]); | 
|  | } | 
|  |  | 
|  | ts->previous_leak = qemu_clock_get_ns(tt->clock_type); | 
|  |  | 
|  | for (i = 0; i < 2; i++) { | 
|  | throttle_cancel_timer(tt->timers[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* used to get config | 
|  | * | 
|  | * @ts:  the throttle state we are working on | 
|  | * @cfg: the config to write | 
|  | */ | 
|  | void throttle_get_config(ThrottleState *ts, ThrottleConfig *cfg) | 
|  | { | 
|  | *cfg = ts->cfg; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Schedule the read or write timer if needed | 
|  | * | 
|  | * NOTE: this function is not unit tested due to it's usage of timer_mod | 
|  | * | 
|  | * @tt:       the timers structure | 
|  | * @is_write: the type of operation (read/write) | 
|  | * @ret:      true if the timer has been scheduled else false | 
|  | */ | 
|  | bool throttle_schedule_timer(ThrottleState *ts, | 
|  | ThrottleTimers *tt, | 
|  | bool is_write) | 
|  | { | 
|  | int64_t now = qemu_clock_get_ns(tt->clock_type); | 
|  | int64_t next_timestamp; | 
|  | bool must_wait; | 
|  |  | 
|  | must_wait = throttle_compute_timer(ts, | 
|  | is_write, | 
|  | now, | 
|  | &next_timestamp); | 
|  |  | 
|  | /* request not throttled */ | 
|  | if (!must_wait) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* request throttled and timer pending -> do nothing */ | 
|  | if (timer_pending(tt->timers[is_write])) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* request throttled and timer not pending -> arm timer */ | 
|  | timer_mod(tt->timers[is_write], next_timestamp); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* do the accounting for this operation | 
|  | * | 
|  | * @is_write: the type of operation (read/write) | 
|  | * @size:     the size of the operation | 
|  | */ | 
|  | void throttle_account(ThrottleState *ts, bool is_write, uint64_t size) | 
|  | { | 
|  | double units = 1.0; | 
|  |  | 
|  | /* if cfg.op_size is defined and smaller than size we compute unit count */ | 
|  | if (ts->cfg.op_size && size > ts->cfg.op_size) { | 
|  | units = (double) size / ts->cfg.op_size; | 
|  | } | 
|  |  | 
|  | ts->cfg.buckets[THROTTLE_BPS_TOTAL].level += size; | 
|  | ts->cfg.buckets[THROTTLE_OPS_TOTAL].level += units; | 
|  |  | 
|  | if (is_write) { | 
|  | ts->cfg.buckets[THROTTLE_BPS_WRITE].level += size; | 
|  | ts->cfg.buckets[THROTTLE_OPS_WRITE].level += units; | 
|  | } else { | 
|  | ts->cfg.buckets[THROTTLE_BPS_READ].level += size; | 
|  | ts->cfg.buckets[THROTTLE_OPS_READ].level += units; | 
|  | } | 
|  | } | 
|  |  |