blob: 42ca923c7de004be225db01857e51c1f4206eb91 [file] [log] [blame]
/*
* QEMU TEWS TPCI200 IndustryPack carrier emulation
*
* Copyright (C) 2012 Igalia, S.L.
* Author: Alberto Garcia <agarcia@igalia.com>
*
* This code is licensed under the GNU GPL v2 or (at your option) any
* later version.
*/
#include "hw/ipack/ipack.h"
#include "hw/pci/pci.h"
#include "qemu/bitops.h"
#include <stdio.h>
/* #define DEBUG_TPCI */
#ifdef DEBUG_TPCI
#define DPRINTF(fmt, ...) \
do { fprintf(stderr, "TPCI200: " fmt, ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) do { } while (0)
#endif
#define N_MODULES 4
#define IP_ID_SPACE 2
#define IP_INT_SPACE 3
#define IP_IO_SPACE_ADDR_MASK 0x7F
#define IP_ID_SPACE_ADDR_MASK 0x3F
#define IP_INT_SPACE_ADDR_MASK 0x3F
#define STATUS_INT(IP, INTNO) BIT((IP) * 2 + (INTNO))
#define STATUS_TIME(IP) BIT((IP) + 12)
#define STATUS_ERR_ANY 0xF00
#define CTRL_CLKRATE BIT(0)
#define CTRL_RECOVER BIT(1)
#define CTRL_TIME_INT BIT(2)
#define CTRL_ERR_INT BIT(3)
#define CTRL_INT_EDGE(INTNO) BIT(4 + (INTNO))
#define CTRL_INT(INTNO) BIT(6 + (INTNO))
#define REG_REV_ID 0x00
#define REG_IP_A_CTRL 0x02
#define REG_IP_B_CTRL 0x04
#define REG_IP_C_CTRL 0x06
#define REG_IP_D_CTRL 0x08
#define REG_RESET 0x0A
#define REG_STATUS 0x0C
#define IP_N_FROM_REG(REG) ((REG) / 2 - 1)
typedef struct {
PCIDevice dev;
IPackBus bus;
MemoryRegion mmio;
MemoryRegion io;
MemoryRegion las0;
MemoryRegion las1;
MemoryRegion las2;
MemoryRegion las3;
bool big_endian[3];
uint8_t ctrl[N_MODULES];
uint16_t status;
uint8_t int_set;
} TPCI200State;
#define TYPE_TPCI200 "tpci200"
#define TPCI200(obj) \
OBJECT_CHECK(TPCI200State, (obj), TYPE_TPCI200)
static const uint8_t local_config_regs[] = {
0x00, 0xFF, 0xFF, 0x0F, 0x00, 0xFC, 0xFF, 0x0F, 0x00, 0x00, 0x00,
0x0E, 0x00, 0x00, 0x00, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00,
0x00, 0x08, 0x01, 0x00, 0x00, 0x04, 0x01, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0xA0, 0x60, 0x41, 0xD4,
0xA2, 0x20, 0x41, 0x14, 0xA2, 0x20, 0x41, 0x14, 0xA2, 0x20, 0x01,
0x14, 0x00, 0x00, 0x00, 0x00, 0x81, 0x00, 0x00, 0x08, 0x01, 0x02,
0x00, 0x04, 0x01, 0x00, 0x00, 0x01, 0x01, 0x00, 0x80, 0x02, 0x41,
0x00, 0x00, 0x00, 0x00, 0x40, 0x7A, 0x00, 0x52, 0x92, 0x24, 0x02
};
static void adjust_addr(bool big_endian, hwaddr *addr, unsigned size)
{
/* During 8 bit access in big endian mode,
odd and even addresses are swapped */
if (big_endian && size == 1) {
*addr ^= 1;
}
}
static uint64_t adjust_value(bool big_endian, uint64_t *val, unsigned size)
{
/* Local spaces only support 8/16 bit access,
* so there's no need to care for sizes > 2 */
if (big_endian && size == 2) {
*val = bswap16(*val);
}
return *val;
}
static void tpci200_set_irq(void *opaque, int intno, int level)
{
IPackDevice *ip = opaque;
IPackBus *bus = IPACK_BUS(qdev_get_parent_bus(DEVICE(ip)));
PCIDevice *pcidev = PCI_DEVICE(BUS(bus)->parent);
TPCI200State *dev = TPCI200(pcidev);
unsigned ip_n = ip->slot;
uint16_t prev_status = dev->status;
assert(ip->slot >= 0 && ip->slot < N_MODULES);
/* The requested interrupt must be enabled in the IP CONTROL
* register */
if (!(dev->ctrl[ip_n] & CTRL_INT(intno))) {
return;
}
/* Update the interrupt status in the IP STATUS register */
if (level) {
dev->status |= STATUS_INT(ip_n, intno);
} else {
dev->status &= ~STATUS_INT(ip_n, intno);
}
/* Return if there are no changes */
if (dev->status == prev_status) {
return;
}
DPRINTF("IP %u INT%u#: %u\n", ip_n, intno, level);
/* Check if the interrupt is edge sensitive */
if (dev->ctrl[ip_n] & CTRL_INT_EDGE(intno)) {
if (level) {
pci_set_irq(&dev->dev, !dev->int_set);
pci_set_irq(&dev->dev, dev->int_set);
}
} else {
unsigned i, j;
uint16_t level_status = dev->status;
/* Check if there are any level sensitive interrupts set by
removing the ones that are edge sensitive from the status
register */
for (i = 0; i < N_MODULES; i++) {
for (j = 0; j < 2; j++) {
if (dev->ctrl[i] & CTRL_INT_EDGE(j)) {
level_status &= ~STATUS_INT(i, j);
}
}
}
if (level_status && !dev->int_set) {
pci_irq_assert(&dev->dev);
dev->int_set = 1;
} else if (!level_status && dev->int_set) {
pci_irq_deassert(&dev->dev);
dev->int_set = 0;
}
}
}
static uint64_t tpci200_read_cfg(void *opaque, hwaddr addr, unsigned size)
{
TPCI200State *s = opaque;
uint8_t ret = 0;
if (addr < ARRAY_SIZE(local_config_regs)) {
ret = local_config_regs[addr];
}
/* Endianness is stored in the first bit of these registers */
if ((addr == 0x2b && s->big_endian[0]) ||
(addr == 0x2f && s->big_endian[1]) ||
(addr == 0x33 && s->big_endian[2])) {
ret |= 1;
}
DPRINTF("Read from LCR 0x%x: 0x%x\n", (unsigned) addr, (unsigned) ret);
return ret;
}
static void tpci200_write_cfg(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
TPCI200State *s = opaque;
/* Endianness is stored in the first bit of these registers */
if (addr == 0x2b || addr == 0x2f || addr == 0x33) {
unsigned las = (addr - 0x2b) / 4;
s->big_endian[las] = val & 1;
DPRINTF("LAS%u big endian mode: %u\n", las, (unsigned) val & 1);
} else {
DPRINTF("Write to LCR 0x%x: 0x%x\n", (unsigned) addr, (unsigned) val);
}
}
static uint64_t tpci200_read_las0(void *opaque, hwaddr addr, unsigned size)
{
TPCI200State *s = opaque;
uint64_t ret = 0;
switch (addr) {
case REG_REV_ID:
DPRINTF("Read REVISION ID\n"); /* Current value is 0x00 */
break;
case REG_IP_A_CTRL:
case REG_IP_B_CTRL:
case REG_IP_C_CTRL:
case REG_IP_D_CTRL:
{
unsigned ip_n = IP_N_FROM_REG(addr);
ret = s->ctrl[ip_n];
DPRINTF("Read IP %c CONTROL: 0x%x\n", 'A' + ip_n, (unsigned) ret);
}
break;
case REG_RESET:
DPRINTF("Read RESET\n"); /* Not implemented */
break;
case REG_STATUS:
ret = s->status;
DPRINTF("Read STATUS: 0x%x\n", (unsigned) ret);
break;
/* Reserved */
default:
DPRINTF("Unsupported read from LAS0 0x%x\n", (unsigned) addr);
break;
}
return adjust_value(s->big_endian[0], &ret, size);
}
static void tpci200_write_las0(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
TPCI200State *s = opaque;
adjust_value(s->big_endian[0], &val, size);
switch (addr) {
case REG_REV_ID:
DPRINTF("Write Revision ID: 0x%x\n", (unsigned) val); /* No effect */
break;
case REG_IP_A_CTRL:
case REG_IP_B_CTRL:
case REG_IP_C_CTRL:
case REG_IP_D_CTRL:
{
unsigned ip_n = IP_N_FROM_REG(addr);
s->ctrl[ip_n] = val;
DPRINTF("Write IP %c CONTROL: 0x%x\n", 'A' + ip_n, (unsigned) val);
}
break;
case REG_RESET:
DPRINTF("Write RESET: 0x%x\n", (unsigned) val); /* Not implemented */
break;
case REG_STATUS:
{
unsigned i;
for (i = 0; i < N_MODULES; i++) {
IPackDevice *ip = ipack_device_find(&s->bus, i);
if (ip != NULL) {
if (val & STATUS_INT(i, 0)) {
DPRINTF("Clear IP %c INT0# status\n", 'A' + i);
qemu_irq_lower(ip->irq[0]);
}
if (val & STATUS_INT(i, 1)) {
DPRINTF("Clear IP %c INT1# status\n", 'A' + i);
qemu_irq_lower(ip->irq[1]);
}
}
if (val & STATUS_TIME(i)) {
DPRINTF("Clear IP %c timeout\n", 'A' + i);
s->status &= ~STATUS_TIME(i);
}
}
if (val & STATUS_ERR_ANY) {
DPRINTF("Unexpected write to STATUS register: 0x%x\n",
(unsigned) val);
}
}
break;
/* Reserved */
default:
DPRINTF("Unsupported write to LAS0 0x%x: 0x%x\n",
(unsigned) addr, (unsigned) val);
break;
}
}
static uint64_t tpci200_read_las1(void *opaque, hwaddr addr, unsigned size)
{
TPCI200State *s = opaque;
IPackDevice *ip;
uint64_t ret = 0;
unsigned ip_n, space;
uint8_t offset;
adjust_addr(s->big_endian[1], &addr, size);
/*
* The address is divided into the IP module number (0-4), the IP
* address space (I/O, ID, INT) and the offset within that space.
*/
ip_n = addr >> 8;
space = (addr >> 6) & 3;
ip = ipack_device_find(&s->bus, ip_n);
if (ip == NULL) {
DPRINTF("Read LAS1: IP module %u not installed\n", ip_n);
} else {
IPackDeviceClass *k = IPACK_DEVICE_GET_CLASS(ip);
switch (space) {
case IP_ID_SPACE:
offset = addr & IP_ID_SPACE_ADDR_MASK;
if (k->id_read) {
ret = k->id_read(ip, offset);
}
break;
case IP_INT_SPACE:
offset = addr & IP_INT_SPACE_ADDR_MASK;
/* Read address 0 to ACK IP INT0# and address 2 to ACK IP INT1# */
if (offset == 0 || offset == 2) {
unsigned intno = offset / 2;
bool int_set = s->status & STATUS_INT(ip_n, intno);
bool int_edge_sensitive = s->ctrl[ip_n] & CTRL_INT_EDGE(intno);
if (int_set && !int_edge_sensitive) {
qemu_irq_lower(ip->irq[intno]);
}
}
if (k->int_read) {
ret = k->int_read(ip, offset);
}
break;
default:
offset = addr & IP_IO_SPACE_ADDR_MASK;
if (k->io_read) {
ret = k->io_read(ip, offset);
}
break;
}
}
return adjust_value(s->big_endian[1], &ret, size);
}
static void tpci200_write_las1(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
TPCI200State *s = opaque;
IPackDevice *ip;
unsigned ip_n, space;
uint8_t offset;
adjust_addr(s->big_endian[1], &addr, size);
adjust_value(s->big_endian[1], &val, size);
/*
* The address is divided into the IP module number, the IP
* address space (I/O, ID, INT) and the offset within that space.
*/
ip_n = addr >> 8;
space = (addr >> 6) & 3;
ip = ipack_device_find(&s->bus, ip_n);
if (ip == NULL) {
DPRINTF("Write LAS1: IP module %u not installed\n", ip_n);
} else {
IPackDeviceClass *k = IPACK_DEVICE_GET_CLASS(ip);
switch (space) {
case IP_ID_SPACE:
offset = addr & IP_ID_SPACE_ADDR_MASK;
if (k->id_write) {
k->id_write(ip, offset, val);
}
break;
case IP_INT_SPACE:
offset = addr & IP_INT_SPACE_ADDR_MASK;
if (k->int_write) {
k->int_write(ip, offset, val);
}
break;
default:
offset = addr & IP_IO_SPACE_ADDR_MASK;
if (k->io_write) {
k->io_write(ip, offset, val);
}
break;
}
}
}
static uint64_t tpci200_read_las2(void *opaque, hwaddr addr, unsigned size)
{
TPCI200State *s = opaque;
IPackDevice *ip;
uint64_t ret = 0;
unsigned ip_n;
uint32_t offset;
adjust_addr(s->big_endian[2], &addr, size);
/*
* The address is divided into the IP module number and the offset
* within the IP module MEM space.
*/
ip_n = addr >> 23;
offset = addr & 0x7fffff;
ip = ipack_device_find(&s->bus, ip_n);
if (ip == NULL) {
DPRINTF("Read LAS2: IP module %u not installed\n", ip_n);
} else {
IPackDeviceClass *k = IPACK_DEVICE_GET_CLASS(ip);
if (k->mem_read16) {
ret = k->mem_read16(ip, offset);
}
}
return adjust_value(s->big_endian[2], &ret, size);
}
static void tpci200_write_las2(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
TPCI200State *s = opaque;
IPackDevice *ip;
unsigned ip_n;
uint32_t offset;
adjust_addr(s->big_endian[2], &addr, size);
adjust_value(s->big_endian[2], &val, size);
/*
* The address is divided into the IP module number and the offset
* within the IP module MEM space.
*/
ip_n = addr >> 23;
offset = addr & 0x7fffff;
ip = ipack_device_find(&s->bus, ip_n);
if (ip == NULL) {
DPRINTF("Write LAS2: IP module %u not installed\n", ip_n);
} else {
IPackDeviceClass *k = IPACK_DEVICE_GET_CLASS(ip);
if (k->mem_write16) {
k->mem_write16(ip, offset, val);
}
}
}
static uint64_t tpci200_read_las3(void *opaque, hwaddr addr, unsigned size)
{
TPCI200State *s = opaque;
IPackDevice *ip;
uint64_t ret = 0;
/*
* The address is divided into the IP module number and the offset
* within the IP module MEM space.
*/
unsigned ip_n = addr >> 22;
uint32_t offset = addr & 0x3fffff;
ip = ipack_device_find(&s->bus, ip_n);
if (ip == NULL) {
DPRINTF("Read LAS3: IP module %u not installed\n", ip_n);
} else {
IPackDeviceClass *k = IPACK_DEVICE_GET_CLASS(ip);
if (k->mem_read8) {
ret = k->mem_read8(ip, offset);
}
}
return ret;
}
static void tpci200_write_las3(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
TPCI200State *s = opaque;
IPackDevice *ip;
/*
* The address is divided into the IP module number and the offset
* within the IP module MEM space.
*/
unsigned ip_n = addr >> 22;
uint32_t offset = addr & 0x3fffff;
ip = ipack_device_find(&s->bus, ip_n);
if (ip == NULL) {
DPRINTF("Write LAS3: IP module %u not installed\n", ip_n);
} else {
IPackDeviceClass *k = IPACK_DEVICE_GET_CLASS(ip);
if (k->mem_write8) {
k->mem_write8(ip, offset, val);
}
}
}
static const MemoryRegionOps tpci200_cfg_ops = {
.read = tpci200_read_cfg,
.write = tpci200_write_cfg,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 4
},
.impl = {
.min_access_size = 1,
.max_access_size = 1
}
};
static const MemoryRegionOps tpci200_las0_ops = {
.read = tpci200_read_las0,
.write = tpci200_write_las0,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 2,
.max_access_size = 2
}
};
static const MemoryRegionOps tpci200_las1_ops = {
.read = tpci200_read_las1,
.write = tpci200_write_las1,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 2
}
};
static const MemoryRegionOps tpci200_las2_ops = {
.read = tpci200_read_las2,
.write = tpci200_write_las2,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 2
}
};
static const MemoryRegionOps tpci200_las3_ops = {
.read = tpci200_read_las3,
.write = tpci200_write_las3,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 1
}
};
static int tpci200_initfn(PCIDevice *pci_dev)
{
TPCI200State *s = TPCI200(pci_dev);
uint8_t *c = s->dev.config;
pci_set_word(c + PCI_COMMAND, 0x0003);
pci_set_word(c + PCI_STATUS, 0x0280);
pci_set_byte(c + PCI_INTERRUPT_PIN, 0x01); /* Interrupt pin A */
pci_set_byte(c + PCI_CAPABILITY_LIST, 0x40);
pci_set_long(c + 0x40, 0x48014801);
pci_set_long(c + 0x48, 0x00024C06);
pci_set_long(c + 0x4C, 0x00000003);
memory_region_init_io(&s->mmio, OBJECT(s), &tpci200_cfg_ops,
s, "tpci200_mmio", 128);
memory_region_init_io(&s->io, OBJECT(s), &tpci200_cfg_ops,
s, "tpci200_io", 128);
memory_region_init_io(&s->las0, OBJECT(s), &tpci200_las0_ops,
s, "tpci200_las0", 256);
memory_region_init_io(&s->las1, OBJECT(s), &tpci200_las1_ops,
s, "tpci200_las1", 1024);
memory_region_init_io(&s->las2, OBJECT(s), &tpci200_las2_ops,
s, "tpci200_las2", 1024*1024*32);
memory_region_init_io(&s->las3, OBJECT(s), &tpci200_las3_ops,
s, "tpci200_las3", 1024*1024*16);
pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mmio);
pci_register_bar(&s->dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->io);
pci_register_bar(&s->dev, 2, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->las0);
pci_register_bar(&s->dev, 3, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->las1);
pci_register_bar(&s->dev, 4, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->las2);
pci_register_bar(&s->dev, 5, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->las3);
ipack_bus_new_inplace(&s->bus, sizeof(s->bus), DEVICE(pci_dev), NULL,
N_MODULES, tpci200_set_irq);
return 0;
}
static void tpci200_exitfn(PCIDevice *pci_dev)
{
TPCI200State *s = TPCI200(pci_dev);
memory_region_destroy(&s->mmio);
memory_region_destroy(&s->io);
memory_region_destroy(&s->las0);
memory_region_destroy(&s->las1);
memory_region_destroy(&s->las2);
memory_region_destroy(&s->las3);
}
static const VMStateDescription vmstate_tpci200 = {
.name = "tpci200",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_PCI_DEVICE(dev, TPCI200State),
VMSTATE_BOOL_ARRAY(big_endian, TPCI200State, 3),
VMSTATE_UINT8_ARRAY(ctrl, TPCI200State, N_MODULES),
VMSTATE_UINT16(status, TPCI200State),
VMSTATE_UINT8(int_set, TPCI200State),
VMSTATE_END_OF_LIST()
}
};
static void tpci200_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->init = tpci200_initfn;
k->exit = tpci200_exitfn;
k->vendor_id = PCI_VENDOR_ID_TEWS;
k->device_id = PCI_DEVICE_ID_TEWS_TPCI200;
k->class_id = PCI_CLASS_BRIDGE_OTHER;
k->subsystem_vendor_id = PCI_VENDOR_ID_TEWS;
k->subsystem_id = 0x300A;
set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
dc->desc = "TEWS TPCI200 IndustryPack carrier";
dc->vmsd = &vmstate_tpci200;
}
static const TypeInfo tpci200_info = {
.name = TYPE_TPCI200,
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(TPCI200State),
.class_init = tpci200_class_init,
};
static void tpci200_register_types(void)
{
type_register_static(&tpci200_info);
}
type_init(tpci200_register_types)