|  | /* | 
|  | * QEMU dump | 
|  | * | 
|  | * Copyright Fujitsu, Corp. 2011, 2012 | 
|  | * | 
|  | * Authors: | 
|  | *     Wen Congyang <wency@cn.fujitsu.com> | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2 or later. | 
|  | * See the COPYING file in the top-level directory. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include "qemu-common.h" | 
|  | #include "elf.h" | 
|  | #include "cpu.h" | 
|  | #include "cpu-all.h" | 
|  | #include "targphys.h" | 
|  | #include "monitor.h" | 
|  | #include "kvm.h" | 
|  | #include "dump.h" | 
|  | #include "sysemu.h" | 
|  | #include "memory_mapping.h" | 
|  | #include "error.h" | 
|  | #include "qmp-commands.h" | 
|  | #include "gdbstub.h" | 
|  |  | 
|  | static uint16_t cpu_convert_to_target16(uint16_t val, int endian) | 
|  | { | 
|  | if (endian == ELFDATA2LSB) { | 
|  | val = cpu_to_le16(val); | 
|  | } else { | 
|  | val = cpu_to_be16(val); | 
|  | } | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static uint32_t cpu_convert_to_target32(uint32_t val, int endian) | 
|  | { | 
|  | if (endian == ELFDATA2LSB) { | 
|  | val = cpu_to_le32(val); | 
|  | } else { | 
|  | val = cpu_to_be32(val); | 
|  | } | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static uint64_t cpu_convert_to_target64(uint64_t val, int endian) | 
|  | { | 
|  | if (endian == ELFDATA2LSB) { | 
|  | val = cpu_to_le64(val); | 
|  | } else { | 
|  | val = cpu_to_be64(val); | 
|  | } | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | typedef struct DumpState { | 
|  | ArchDumpInfo dump_info; | 
|  | MemoryMappingList list; | 
|  | uint16_t phdr_num; | 
|  | uint32_t sh_info; | 
|  | bool have_section; | 
|  | bool resume; | 
|  | size_t note_size; | 
|  | target_phys_addr_t memory_offset; | 
|  | int fd; | 
|  |  | 
|  | RAMBlock *block; | 
|  | ram_addr_t start; | 
|  | bool has_filter; | 
|  | int64_t begin; | 
|  | int64_t length; | 
|  | Error **errp; | 
|  | } DumpState; | 
|  |  | 
|  | static int dump_cleanup(DumpState *s) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | memory_mapping_list_free(&s->list); | 
|  | if (s->fd != -1) { | 
|  | close(s->fd); | 
|  | } | 
|  | if (s->resume) { | 
|  | vm_start(); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void dump_error(DumpState *s, const char *reason) | 
|  | { | 
|  | dump_cleanup(s); | 
|  | } | 
|  |  | 
|  | static int fd_write_vmcore(void *buf, size_t size, void *opaque) | 
|  | { | 
|  | DumpState *s = opaque; | 
|  | size_t written_size; | 
|  |  | 
|  | written_size = qemu_write_full(s->fd, buf, size); | 
|  | if (written_size != size) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int write_elf64_header(DumpState *s) | 
|  | { | 
|  | Elf64_Ehdr elf_header; | 
|  | int ret; | 
|  | int endian = s->dump_info.d_endian; | 
|  |  | 
|  | memset(&elf_header, 0, sizeof(Elf64_Ehdr)); | 
|  | memcpy(&elf_header, ELFMAG, SELFMAG); | 
|  | elf_header.e_ident[EI_CLASS] = ELFCLASS64; | 
|  | elf_header.e_ident[EI_DATA] = s->dump_info.d_endian; | 
|  | elf_header.e_ident[EI_VERSION] = EV_CURRENT; | 
|  | elf_header.e_type = cpu_convert_to_target16(ET_CORE, endian); | 
|  | elf_header.e_machine = cpu_convert_to_target16(s->dump_info.d_machine, | 
|  | endian); | 
|  | elf_header.e_version = cpu_convert_to_target32(EV_CURRENT, endian); | 
|  | elf_header.e_ehsize = cpu_convert_to_target16(sizeof(elf_header), endian); | 
|  | elf_header.e_phoff = cpu_convert_to_target64(sizeof(Elf64_Ehdr), endian); | 
|  | elf_header.e_phentsize = cpu_convert_to_target16(sizeof(Elf64_Phdr), | 
|  | endian); | 
|  | elf_header.e_phnum = cpu_convert_to_target16(s->phdr_num, endian); | 
|  | if (s->have_section) { | 
|  | uint64_t shoff = sizeof(Elf64_Ehdr) + sizeof(Elf64_Phdr) * s->sh_info; | 
|  |  | 
|  | elf_header.e_shoff = cpu_convert_to_target64(shoff, endian); | 
|  | elf_header.e_shentsize = cpu_convert_to_target16(sizeof(Elf64_Shdr), | 
|  | endian); | 
|  | elf_header.e_shnum = cpu_convert_to_target16(1, endian); | 
|  | } | 
|  |  | 
|  | ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s); | 
|  | if (ret < 0) { | 
|  | dump_error(s, "dump: failed to write elf header.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int write_elf32_header(DumpState *s) | 
|  | { | 
|  | Elf32_Ehdr elf_header; | 
|  | int ret; | 
|  | int endian = s->dump_info.d_endian; | 
|  |  | 
|  | memset(&elf_header, 0, sizeof(Elf32_Ehdr)); | 
|  | memcpy(&elf_header, ELFMAG, SELFMAG); | 
|  | elf_header.e_ident[EI_CLASS] = ELFCLASS32; | 
|  | elf_header.e_ident[EI_DATA] = endian; | 
|  | elf_header.e_ident[EI_VERSION] = EV_CURRENT; | 
|  | elf_header.e_type = cpu_convert_to_target16(ET_CORE, endian); | 
|  | elf_header.e_machine = cpu_convert_to_target16(s->dump_info.d_machine, | 
|  | endian); | 
|  | elf_header.e_version = cpu_convert_to_target32(EV_CURRENT, endian); | 
|  | elf_header.e_ehsize = cpu_convert_to_target16(sizeof(elf_header), endian); | 
|  | elf_header.e_phoff = cpu_convert_to_target32(sizeof(Elf32_Ehdr), endian); | 
|  | elf_header.e_phentsize = cpu_convert_to_target16(sizeof(Elf32_Phdr), | 
|  | endian); | 
|  | elf_header.e_phnum = cpu_convert_to_target16(s->phdr_num, endian); | 
|  | if (s->have_section) { | 
|  | uint32_t shoff = sizeof(Elf32_Ehdr) + sizeof(Elf32_Phdr) * s->sh_info; | 
|  |  | 
|  | elf_header.e_shoff = cpu_convert_to_target32(shoff, endian); | 
|  | elf_header.e_shentsize = cpu_convert_to_target16(sizeof(Elf32_Shdr), | 
|  | endian); | 
|  | elf_header.e_shnum = cpu_convert_to_target16(1, endian); | 
|  | } | 
|  |  | 
|  | ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s); | 
|  | if (ret < 0) { | 
|  | dump_error(s, "dump: failed to write elf header.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int write_elf64_load(DumpState *s, MemoryMapping *memory_mapping, | 
|  | int phdr_index, target_phys_addr_t offset) | 
|  | { | 
|  | Elf64_Phdr phdr; | 
|  | int ret; | 
|  | int endian = s->dump_info.d_endian; | 
|  |  | 
|  | memset(&phdr, 0, sizeof(Elf64_Phdr)); | 
|  | phdr.p_type = cpu_convert_to_target32(PT_LOAD, endian); | 
|  | phdr.p_offset = cpu_convert_to_target64(offset, endian); | 
|  | phdr.p_paddr = cpu_convert_to_target64(memory_mapping->phys_addr, endian); | 
|  | if (offset == -1) { | 
|  | /* When the memory is not stored into vmcore, offset will be -1 */ | 
|  | phdr.p_filesz = 0; | 
|  | } else { | 
|  | phdr.p_filesz = cpu_convert_to_target64(memory_mapping->length, endian); | 
|  | } | 
|  | phdr.p_memsz = cpu_convert_to_target64(memory_mapping->length, endian); | 
|  | phdr.p_vaddr = cpu_convert_to_target64(memory_mapping->virt_addr, endian); | 
|  |  | 
|  | ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s); | 
|  | if (ret < 0) { | 
|  | dump_error(s, "dump: failed to write program header table.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int write_elf32_load(DumpState *s, MemoryMapping *memory_mapping, | 
|  | int phdr_index, target_phys_addr_t offset) | 
|  | { | 
|  | Elf32_Phdr phdr; | 
|  | int ret; | 
|  | int endian = s->dump_info.d_endian; | 
|  |  | 
|  | memset(&phdr, 0, sizeof(Elf32_Phdr)); | 
|  | phdr.p_type = cpu_convert_to_target32(PT_LOAD, endian); | 
|  | phdr.p_offset = cpu_convert_to_target32(offset, endian); | 
|  | phdr.p_paddr = cpu_convert_to_target32(memory_mapping->phys_addr, endian); | 
|  | if (offset == -1) { | 
|  | /* When the memory is not stored into vmcore, offset will be -1 */ | 
|  | phdr.p_filesz = 0; | 
|  | } else { | 
|  | phdr.p_filesz = cpu_convert_to_target32(memory_mapping->length, endian); | 
|  | } | 
|  | phdr.p_memsz = cpu_convert_to_target32(memory_mapping->length, endian); | 
|  | phdr.p_vaddr = cpu_convert_to_target32(memory_mapping->virt_addr, endian); | 
|  |  | 
|  | ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s); | 
|  | if (ret < 0) { | 
|  | dump_error(s, "dump: failed to write program header table.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int write_elf64_note(DumpState *s) | 
|  | { | 
|  | Elf64_Phdr phdr; | 
|  | int endian = s->dump_info.d_endian; | 
|  | target_phys_addr_t begin = s->memory_offset - s->note_size; | 
|  | int ret; | 
|  |  | 
|  | memset(&phdr, 0, sizeof(Elf64_Phdr)); | 
|  | phdr.p_type = cpu_convert_to_target32(PT_NOTE, endian); | 
|  | phdr.p_offset = cpu_convert_to_target64(begin, endian); | 
|  | phdr.p_paddr = 0; | 
|  | phdr.p_filesz = cpu_convert_to_target64(s->note_size, endian); | 
|  | phdr.p_memsz = cpu_convert_to_target64(s->note_size, endian); | 
|  | phdr.p_vaddr = 0; | 
|  |  | 
|  | ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s); | 
|  | if (ret < 0) { | 
|  | dump_error(s, "dump: failed to write program header table.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int write_elf64_notes(DumpState *s) | 
|  | { | 
|  | CPUArchState *env; | 
|  | int ret; | 
|  | int id; | 
|  |  | 
|  | for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | id = cpu_index(env); | 
|  | ret = cpu_write_elf64_note(fd_write_vmcore, env, id, s); | 
|  | if (ret < 0) { | 
|  | dump_error(s, "dump: failed to write elf notes.\n"); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | ret = cpu_write_elf64_qemunote(fd_write_vmcore, env, s); | 
|  | if (ret < 0) { | 
|  | dump_error(s, "dump: failed to write CPU status.\n"); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int write_elf32_note(DumpState *s) | 
|  | { | 
|  | target_phys_addr_t begin = s->memory_offset - s->note_size; | 
|  | Elf32_Phdr phdr; | 
|  | int endian = s->dump_info.d_endian; | 
|  | int ret; | 
|  |  | 
|  | memset(&phdr, 0, sizeof(Elf32_Phdr)); | 
|  | phdr.p_type = cpu_convert_to_target32(PT_NOTE, endian); | 
|  | phdr.p_offset = cpu_convert_to_target32(begin, endian); | 
|  | phdr.p_paddr = 0; | 
|  | phdr.p_filesz = cpu_convert_to_target32(s->note_size, endian); | 
|  | phdr.p_memsz = cpu_convert_to_target32(s->note_size, endian); | 
|  | phdr.p_vaddr = 0; | 
|  |  | 
|  | ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s); | 
|  | if (ret < 0) { | 
|  | dump_error(s, "dump: failed to write program header table.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int write_elf32_notes(DumpState *s) | 
|  | { | 
|  | CPUArchState *env; | 
|  | int ret; | 
|  | int id; | 
|  |  | 
|  | for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | id = cpu_index(env); | 
|  | ret = cpu_write_elf32_note(fd_write_vmcore, env, id, s); | 
|  | if (ret < 0) { | 
|  | dump_error(s, "dump: failed to write elf notes.\n"); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | ret = cpu_write_elf32_qemunote(fd_write_vmcore, env, s); | 
|  | if (ret < 0) { | 
|  | dump_error(s, "dump: failed to write CPU status.\n"); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int write_elf_section(DumpState *s, int type) | 
|  | { | 
|  | Elf32_Shdr shdr32; | 
|  | Elf64_Shdr shdr64; | 
|  | int endian = s->dump_info.d_endian; | 
|  | int shdr_size; | 
|  | void *shdr; | 
|  | int ret; | 
|  |  | 
|  | if (type == 0) { | 
|  | shdr_size = sizeof(Elf32_Shdr); | 
|  | memset(&shdr32, 0, shdr_size); | 
|  | shdr32.sh_info = cpu_convert_to_target32(s->sh_info, endian); | 
|  | shdr = &shdr32; | 
|  | } else { | 
|  | shdr_size = sizeof(Elf64_Shdr); | 
|  | memset(&shdr64, 0, shdr_size); | 
|  | shdr64.sh_info = cpu_convert_to_target32(s->sh_info, endian); | 
|  | shdr = &shdr64; | 
|  | } | 
|  |  | 
|  | ret = fd_write_vmcore(&shdr, shdr_size, s); | 
|  | if (ret < 0) { | 
|  | dump_error(s, "dump: failed to write section header table.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int write_data(DumpState *s, void *buf, int length) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = fd_write_vmcore(buf, length, s); | 
|  | if (ret < 0) { | 
|  | dump_error(s, "dump: failed to save memory.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* write the memroy to vmcore. 1 page per I/O. */ | 
|  | static int write_memory(DumpState *s, RAMBlock *block, ram_addr_t start, | 
|  | int64_t size) | 
|  | { | 
|  | int64_t i; | 
|  | int ret; | 
|  |  | 
|  | for (i = 0; i < size / TARGET_PAGE_SIZE; i++) { | 
|  | ret = write_data(s, block->host + start + i * TARGET_PAGE_SIZE, | 
|  | TARGET_PAGE_SIZE); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((size % TARGET_PAGE_SIZE) != 0) { | 
|  | ret = write_data(s, block->host + start + i * TARGET_PAGE_SIZE, | 
|  | size % TARGET_PAGE_SIZE); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* get the memory's offset in the vmcore */ | 
|  | static target_phys_addr_t get_offset(target_phys_addr_t phys_addr, | 
|  | DumpState *s) | 
|  | { | 
|  | RAMBlock *block; | 
|  | target_phys_addr_t offset = s->memory_offset; | 
|  | int64_t size_in_block, start; | 
|  |  | 
|  | if (s->has_filter) { | 
|  | if (phys_addr < s->begin || phys_addr >= s->begin + s->length) { | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | QLIST_FOREACH(block, &ram_list.blocks, next) { | 
|  | if (s->has_filter) { | 
|  | if (block->offset >= s->begin + s->length || | 
|  | block->offset + block->length <= s->begin) { | 
|  | /* This block is out of the range */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (s->begin <= block->offset) { | 
|  | start = block->offset; | 
|  | } else { | 
|  | start = s->begin; | 
|  | } | 
|  |  | 
|  | size_in_block = block->length - (start - block->offset); | 
|  | if (s->begin + s->length < block->offset + block->length) { | 
|  | size_in_block -= block->offset + block->length - | 
|  | (s->begin + s->length); | 
|  | } | 
|  | } else { | 
|  | start = block->offset; | 
|  | size_in_block = block->length; | 
|  | } | 
|  |  | 
|  | if (phys_addr >= start && phys_addr < start + size_in_block) { | 
|  | return phys_addr - start + offset; | 
|  | } | 
|  |  | 
|  | offset += size_in_block; | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int write_elf_loads(DumpState *s) | 
|  | { | 
|  | target_phys_addr_t offset; | 
|  | MemoryMapping *memory_mapping; | 
|  | uint32_t phdr_index = 1; | 
|  | int ret; | 
|  | uint32_t max_index; | 
|  |  | 
|  | if (s->have_section) { | 
|  | max_index = s->sh_info; | 
|  | } else { | 
|  | max_index = s->phdr_num; | 
|  | } | 
|  |  | 
|  | QTAILQ_FOREACH(memory_mapping, &s->list.head, next) { | 
|  | offset = get_offset(memory_mapping->phys_addr, s); | 
|  | if (s->dump_info.d_class == ELFCLASS64) { | 
|  | ret = write_elf64_load(s, memory_mapping, phdr_index++, offset); | 
|  | } else { | 
|  | ret = write_elf32_load(s, memory_mapping, phdr_index++, offset); | 
|  | } | 
|  |  | 
|  | if (ret < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (phdr_index >= max_index) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* write elf header, PT_NOTE and elf note to vmcore. */ | 
|  | static int dump_begin(DumpState *s) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * the vmcore's format is: | 
|  | *   -------------- | 
|  | *   |  elf header | | 
|  | *   -------------- | 
|  | *   |  PT_NOTE    | | 
|  | *   -------------- | 
|  | *   |  PT_LOAD    | | 
|  | *   -------------- | 
|  | *   |  ......     | | 
|  | *   -------------- | 
|  | *   |  PT_LOAD    | | 
|  | *   -------------- | 
|  | *   |  sec_hdr    | | 
|  | *   -------------- | 
|  | *   |  elf note   | | 
|  | *   -------------- | 
|  | *   |  memory     | | 
|  | *   -------------- | 
|  | * | 
|  | * we only know where the memory is saved after we write elf note into | 
|  | * vmcore. | 
|  | */ | 
|  |  | 
|  | /* write elf header to vmcore */ | 
|  | if (s->dump_info.d_class == ELFCLASS64) { | 
|  | ret = write_elf64_header(s); | 
|  | } else { | 
|  | ret = write_elf32_header(s); | 
|  | } | 
|  | if (ret < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (s->dump_info.d_class == ELFCLASS64) { | 
|  | /* write PT_NOTE to vmcore */ | 
|  | if (write_elf64_note(s) < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* write all PT_LOAD to vmcore */ | 
|  | if (write_elf_loads(s) < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* write section to vmcore */ | 
|  | if (s->have_section) { | 
|  | if (write_elf_section(s, 1) < 0) { | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* write notes to vmcore */ | 
|  | if (write_elf64_notes(s) < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | } else { | 
|  | /* write PT_NOTE to vmcore */ | 
|  | if (write_elf32_note(s) < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* write all PT_LOAD to vmcore */ | 
|  | if (write_elf_loads(s) < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* write section to vmcore */ | 
|  | if (s->have_section) { | 
|  | if (write_elf_section(s, 0) < 0) { | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* write notes to vmcore */ | 
|  | if (write_elf32_notes(s) < 0) { | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* write PT_LOAD to vmcore */ | 
|  | static int dump_completed(DumpState *s) | 
|  | { | 
|  | dump_cleanup(s); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int get_next_block(DumpState *s, RAMBlock *block) | 
|  | { | 
|  | while (1) { | 
|  | block = QLIST_NEXT(block, next); | 
|  | if (!block) { | 
|  | /* no more block */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | s->start = 0; | 
|  | s->block = block; | 
|  | if (s->has_filter) { | 
|  | if (block->offset >= s->begin + s->length || | 
|  | block->offset + block->length <= s->begin) { | 
|  | /* This block is out of the range */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (s->begin > block->offset) { | 
|  | s->start = s->begin - block->offset; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* write all memory to vmcore */ | 
|  | static int dump_iterate(DumpState *s) | 
|  | { | 
|  | RAMBlock *block; | 
|  | int64_t size; | 
|  | int ret; | 
|  |  | 
|  | while (1) { | 
|  | block = s->block; | 
|  |  | 
|  | size = block->length; | 
|  | if (s->has_filter) { | 
|  | size -= s->start; | 
|  | if (s->begin + s->length < block->offset + block->length) { | 
|  | size -= block->offset + block->length - (s->begin + s->length); | 
|  | } | 
|  | } | 
|  | ret = write_memory(s, block, s->start, size); | 
|  | if (ret == -1) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = get_next_block(s, block); | 
|  | if (ret == 1) { | 
|  | dump_completed(s); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int create_vmcore(DumpState *s) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = dump_begin(s); | 
|  | if (ret < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | ret = dump_iterate(s); | 
|  | if (ret < 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ram_addr_t get_start_block(DumpState *s) | 
|  | { | 
|  | RAMBlock *block; | 
|  |  | 
|  | if (!s->has_filter) { | 
|  | s->block = QLIST_FIRST(&ram_list.blocks); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | QLIST_FOREACH(block, &ram_list.blocks, next) { | 
|  | if (block->offset >= s->begin + s->length || | 
|  | block->offset + block->length <= s->begin) { | 
|  | /* This block is out of the range */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | s->block = block; | 
|  | if (s->begin > block->offset) { | 
|  | s->start = s->begin - block->offset; | 
|  | } else { | 
|  | s->start = 0; | 
|  | } | 
|  | return s->start; | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int dump_init(DumpState *s, int fd, bool paging, bool has_filter, | 
|  | int64_t begin, int64_t length, Error **errp) | 
|  | { | 
|  | CPUArchState *env; | 
|  | int nr_cpus; | 
|  | int ret; | 
|  |  | 
|  | if (runstate_is_running()) { | 
|  | vm_stop(RUN_STATE_SAVE_VM); | 
|  | s->resume = true; | 
|  | } else { | 
|  | s->resume = false; | 
|  | } | 
|  |  | 
|  | s->errp = errp; | 
|  | s->fd = fd; | 
|  | s->has_filter = has_filter; | 
|  | s->begin = begin; | 
|  | s->length = length; | 
|  | s->start = get_start_block(s); | 
|  | if (s->start == -1) { | 
|  | error_set(errp, QERR_INVALID_PARAMETER, "begin"); | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * get dump info: endian, class and architecture. | 
|  | * If the target architecture is not supported, cpu_get_dump_info() will | 
|  | * return -1. | 
|  | * | 
|  | * if we use kvm, we should synchronize the register before we get dump | 
|  | * info. | 
|  | */ | 
|  | nr_cpus = 0; | 
|  | for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | cpu_synchronize_state(env); | 
|  | nr_cpus++; | 
|  | } | 
|  |  | 
|  | ret = cpu_get_dump_info(&s->dump_info); | 
|  | if (ret < 0) { | 
|  | error_set(errp, QERR_UNSUPPORTED); | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | s->note_size = cpu_get_note_size(s->dump_info.d_class, | 
|  | s->dump_info.d_machine, nr_cpus); | 
|  | if (ret < 0) { | 
|  | error_set(errp, QERR_UNSUPPORTED); | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | /* get memory mapping */ | 
|  | memory_mapping_list_init(&s->list); | 
|  | if (paging) { | 
|  | qemu_get_guest_memory_mapping(&s->list); | 
|  | } else { | 
|  | qemu_get_guest_simple_memory_mapping(&s->list); | 
|  | } | 
|  |  | 
|  | if (s->has_filter) { | 
|  | memory_mapping_filter(&s->list, s->begin, s->length); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * calculate phdr_num | 
|  | * | 
|  | * the type of ehdr->e_phnum is uint16_t, so we should avoid overflow | 
|  | */ | 
|  | s->phdr_num = 1; /* PT_NOTE */ | 
|  | if (s->list.num < UINT16_MAX - 2) { | 
|  | s->phdr_num += s->list.num; | 
|  | s->have_section = false; | 
|  | } else { | 
|  | s->have_section = true; | 
|  | s->phdr_num = PN_XNUM; | 
|  | s->sh_info = 1; /* PT_NOTE */ | 
|  |  | 
|  | /* the type of shdr->sh_info is uint32_t, so we should avoid overflow */ | 
|  | if (s->list.num <= UINT32_MAX - 1) { | 
|  | s->sh_info += s->list.num; | 
|  | } else { | 
|  | s->sh_info = UINT32_MAX; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (s->dump_info.d_class == ELFCLASS64) { | 
|  | if (s->have_section) { | 
|  | s->memory_offset = sizeof(Elf64_Ehdr) + | 
|  | sizeof(Elf64_Phdr) * s->sh_info + | 
|  | sizeof(Elf64_Shdr) + s->note_size; | 
|  | } else { | 
|  | s->memory_offset = sizeof(Elf64_Ehdr) + | 
|  | sizeof(Elf64_Phdr) * s->phdr_num + s->note_size; | 
|  | } | 
|  | } else { | 
|  | if (s->have_section) { | 
|  | s->memory_offset = sizeof(Elf32_Ehdr) + | 
|  | sizeof(Elf32_Phdr) * s->sh_info + | 
|  | sizeof(Elf32_Shdr) + s->note_size; | 
|  | } else { | 
|  | s->memory_offset = sizeof(Elf32_Ehdr) + | 
|  | sizeof(Elf32_Phdr) * s->phdr_num + s->note_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | cleanup: | 
|  | if (s->resume) { | 
|  | vm_start(); | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | void qmp_dump_guest_memory(bool paging, const char *file, bool has_begin, | 
|  | int64_t begin, bool has_length, int64_t length, | 
|  | Error **errp) | 
|  | { | 
|  | const char *p; | 
|  | int fd = -1; | 
|  | DumpState *s; | 
|  | int ret; | 
|  |  | 
|  | if (has_begin && !has_length) { | 
|  | error_set(errp, QERR_MISSING_PARAMETER, "length"); | 
|  | return; | 
|  | } | 
|  | if (!has_begin && has_length) { | 
|  | error_set(errp, QERR_MISSING_PARAMETER, "begin"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | #if !defined(WIN32) | 
|  | if (strstart(file, "fd:", &p)) { | 
|  | fd = monitor_get_fd(cur_mon, p, errp); | 
|  | if (fd == -1) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if  (strstart(file, "file:", &p)) { | 
|  | fd = qemu_open(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR); | 
|  | if (fd < 0) { | 
|  | error_set(errp, QERR_OPEN_FILE_FAILED, p); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (fd == -1) { | 
|  | error_set(errp, QERR_INVALID_PARAMETER, "protocol"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | s = g_malloc(sizeof(DumpState)); | 
|  |  | 
|  | ret = dump_init(s, fd, paging, has_begin, begin, length, errp); | 
|  | if (ret < 0) { | 
|  | g_free(s); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (create_vmcore(s) < 0 && !error_is_set(s->errp)) { | 
|  | error_set(errp, QERR_IO_ERROR); | 
|  | } | 
|  |  | 
|  | g_free(s); | 
|  | } |