|  | /* | 
|  | *  MIPS emulation helpers for qemu. | 
|  | * | 
|  | *  Copyright (c) 2004-2005 Jocelyn Mayer | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  | #include <stdlib.h> | 
|  | #include "exec.h" | 
|  |  | 
|  | #include "host-utils.h" | 
|  |  | 
|  | #include "helper.h" | 
|  | /*****************************************************************************/ | 
|  | /* Exceptions processing helpers */ | 
|  |  | 
|  | void helper_raise_exception_err (uint32_t exception, int error_code) | 
|  | { | 
|  | #if 1 | 
|  | if (exception < 0x100) | 
|  | qemu_log("%s: %d %d\n", __func__, exception, error_code); | 
|  | #endif | 
|  | env->exception_index = exception; | 
|  | env->error_code = error_code; | 
|  | cpu_loop_exit(); | 
|  | } | 
|  |  | 
|  | void helper_raise_exception (uint32_t exception) | 
|  | { | 
|  | helper_raise_exception_err(exception, 0); | 
|  | } | 
|  |  | 
|  | void helper_interrupt_restart (void) | 
|  | { | 
|  | if (!(env->CP0_Status & (1 << CP0St_EXL)) && | 
|  | !(env->CP0_Status & (1 << CP0St_ERL)) && | 
|  | !(env->hflags & MIPS_HFLAG_DM) && | 
|  | (env->CP0_Status & (1 << CP0St_IE)) && | 
|  | (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask)) { | 
|  | env->CP0_Cause &= ~(0x1f << CP0Ca_EC); | 
|  | helper_raise_exception(EXCP_EXT_INTERRUPT); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | static void do_restore_state (void *pc_ptr) | 
|  | { | 
|  | TranslationBlock *tb; | 
|  | unsigned long pc = (unsigned long) pc_ptr; | 
|  |  | 
|  | tb = tb_find_pc (pc); | 
|  | if (tb) { | 
|  | cpu_restore_state (tb, env, pc, NULL); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | target_ulong helper_clo (target_ulong arg1) | 
|  | { | 
|  | return clo32(arg1); | 
|  | } | 
|  |  | 
|  | target_ulong helper_clz (target_ulong arg1) | 
|  | { | 
|  | return clz32(arg1); | 
|  | } | 
|  |  | 
|  | #if defined(TARGET_MIPS64) | 
|  | target_ulong helper_dclo (target_ulong arg1) | 
|  | { | 
|  | return clo64(arg1); | 
|  | } | 
|  |  | 
|  | target_ulong helper_dclz (target_ulong arg1) | 
|  | { | 
|  | return clz64(arg1); | 
|  | } | 
|  | #endif /* TARGET_MIPS64 */ | 
|  |  | 
|  | /* 64 bits arithmetic for 32 bits hosts */ | 
|  | static inline uint64_t get_HILO (void) | 
|  | { | 
|  | return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0]; | 
|  | } | 
|  |  | 
|  | static inline void set_HILO (uint64_t HILO) | 
|  | { | 
|  | env->active_tc.LO[0] = (int32_t)HILO; | 
|  | env->active_tc.HI[0] = (int32_t)(HILO >> 32); | 
|  | } | 
|  |  | 
|  | static inline void set_HIT0_LO (target_ulong arg1, uint64_t HILO) | 
|  | { | 
|  | env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF); | 
|  | arg1 = env->active_tc.HI[0] = (int32_t)(HILO >> 32); | 
|  | } | 
|  |  | 
|  | static inline void set_HI_LOT0 (target_ulong arg1, uint64_t HILO) | 
|  | { | 
|  | arg1 = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF); | 
|  | env->active_tc.HI[0] = (int32_t)(HILO >> 32); | 
|  | } | 
|  |  | 
|  | /* Multiplication variants of the vr54xx. */ | 
|  | target_ulong helper_muls (target_ulong arg1, target_ulong arg2) | 
|  | { | 
|  | set_HI_LOT0(arg1, 0 - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2)); | 
|  |  | 
|  | return arg1; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mulsu (target_ulong arg1, target_ulong arg2) | 
|  | { | 
|  | set_HI_LOT0(arg1, 0 - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2)); | 
|  |  | 
|  | return arg1; | 
|  | } | 
|  |  | 
|  | target_ulong helper_macc (target_ulong arg1, target_ulong arg2) | 
|  | { | 
|  | set_HI_LOT0(arg1, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2)); | 
|  |  | 
|  | return arg1; | 
|  | } | 
|  |  | 
|  | target_ulong helper_macchi (target_ulong arg1, target_ulong arg2) | 
|  | { | 
|  | set_HIT0_LO(arg1, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2)); | 
|  |  | 
|  | return arg1; | 
|  | } | 
|  |  | 
|  | target_ulong helper_maccu (target_ulong arg1, target_ulong arg2) | 
|  | { | 
|  | set_HI_LOT0(arg1, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2)); | 
|  |  | 
|  | return arg1; | 
|  | } | 
|  |  | 
|  | target_ulong helper_macchiu (target_ulong arg1, target_ulong arg2) | 
|  | { | 
|  | set_HIT0_LO(arg1, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2)); | 
|  |  | 
|  | return arg1; | 
|  | } | 
|  |  | 
|  | target_ulong helper_msac (target_ulong arg1, target_ulong arg2) | 
|  | { | 
|  | set_HI_LOT0(arg1, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2)); | 
|  |  | 
|  | return arg1; | 
|  | } | 
|  |  | 
|  | target_ulong helper_msachi (target_ulong arg1, target_ulong arg2) | 
|  | { | 
|  | set_HIT0_LO(arg1, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2)); | 
|  |  | 
|  | return arg1; | 
|  | } | 
|  |  | 
|  | target_ulong helper_msacu (target_ulong arg1, target_ulong arg2) | 
|  | { | 
|  | set_HI_LOT0(arg1, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2)); | 
|  |  | 
|  | return arg1; | 
|  | } | 
|  |  | 
|  | target_ulong helper_msachiu (target_ulong arg1, target_ulong arg2) | 
|  | { | 
|  | set_HIT0_LO(arg1, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2)); | 
|  |  | 
|  | return arg1; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mulhi (target_ulong arg1, target_ulong arg2) | 
|  | { | 
|  | set_HIT0_LO(arg1, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2); | 
|  |  | 
|  | return arg1; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mulhiu (target_ulong arg1, target_ulong arg2) | 
|  | { | 
|  | set_HIT0_LO(arg1, (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2); | 
|  |  | 
|  | return arg1; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mulshi (target_ulong arg1, target_ulong arg2) | 
|  | { | 
|  | set_HIT0_LO(arg1, 0 - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2)); | 
|  |  | 
|  | return arg1; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mulshiu (target_ulong arg1, target_ulong arg2) | 
|  | { | 
|  | set_HIT0_LO(arg1, 0 - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2)); | 
|  |  | 
|  | return arg1; | 
|  | } | 
|  |  | 
|  | #ifdef TARGET_MIPS64 | 
|  | void helper_dmult (target_ulong arg1, target_ulong arg2) | 
|  | { | 
|  | muls64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2); | 
|  | } | 
|  |  | 
|  | void helper_dmultu (target_ulong arg1, target_ulong arg2) | 
|  | { | 
|  | mulu64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef TARGET_WORDS_BIGENDIAN | 
|  | #define GET_LMASK(v) ((v) & 3) | 
|  | #define GET_OFFSET(addr, offset) (addr + (offset)) | 
|  | #else | 
|  | #define GET_LMASK(v) (((v) & 3) ^ 3) | 
|  | #define GET_OFFSET(addr, offset) (addr - (offset)) | 
|  | #endif | 
|  |  | 
|  | target_ulong helper_lwl(target_ulong arg1, target_ulong arg2, int mem_idx) | 
|  | { | 
|  | target_ulong tmp; | 
|  |  | 
|  | #ifdef CONFIG_USER_ONLY | 
|  | #define ldfun ldub_raw | 
|  | #else | 
|  | int (*ldfun)(target_ulong); | 
|  |  | 
|  | switch (mem_idx) | 
|  | { | 
|  | case 0: ldfun = ldub_kernel; break; | 
|  | case 1: ldfun = ldub_super; break; | 
|  | default: | 
|  | case 2: ldfun = ldub_user; break; | 
|  | } | 
|  | #endif | 
|  | tmp = ldfun(arg2); | 
|  | arg1 = (arg1 & 0x00FFFFFF) | (tmp << 24); | 
|  |  | 
|  | if (GET_LMASK(arg2) <= 2) { | 
|  | tmp = ldfun(GET_OFFSET(arg2, 1)); | 
|  | arg1 = (arg1 & 0xFF00FFFF) | (tmp << 16); | 
|  | } | 
|  |  | 
|  | if (GET_LMASK(arg2) <= 1) { | 
|  | tmp = ldfun(GET_OFFSET(arg2, 2)); | 
|  | arg1 = (arg1 & 0xFFFF00FF) | (tmp << 8); | 
|  | } | 
|  |  | 
|  | if (GET_LMASK(arg2) == 0) { | 
|  | tmp = ldfun(GET_OFFSET(arg2, 3)); | 
|  | arg1 = (arg1 & 0xFFFFFF00) | tmp; | 
|  | } | 
|  | return (int32_t)arg1; | 
|  | } | 
|  |  | 
|  | target_ulong helper_lwr(target_ulong arg1, target_ulong arg2, int mem_idx) | 
|  | { | 
|  | target_ulong tmp; | 
|  |  | 
|  | #ifdef CONFIG_USER_ONLY | 
|  | #define ldfun ldub_raw | 
|  | #else | 
|  | int (*ldfun)(target_ulong); | 
|  |  | 
|  | switch (mem_idx) | 
|  | { | 
|  | case 0: ldfun = ldub_kernel; break; | 
|  | case 1: ldfun = ldub_super; break; | 
|  | default: | 
|  | case 2: ldfun = ldub_user; break; | 
|  | } | 
|  | #endif | 
|  | tmp = ldfun(arg2); | 
|  | arg1 = (arg1 & 0xFFFFFF00) | tmp; | 
|  |  | 
|  | if (GET_LMASK(arg2) >= 1) { | 
|  | tmp = ldfun(GET_OFFSET(arg2, -1)); | 
|  | arg1 = (arg1 & 0xFFFF00FF) | (tmp << 8); | 
|  | } | 
|  |  | 
|  | if (GET_LMASK(arg2) >= 2) { | 
|  | tmp = ldfun(GET_OFFSET(arg2, -2)); | 
|  | arg1 = (arg1 & 0xFF00FFFF) | (tmp << 16); | 
|  | } | 
|  |  | 
|  | if (GET_LMASK(arg2) == 3) { | 
|  | tmp = ldfun(GET_OFFSET(arg2, -3)); | 
|  | arg1 = (arg1 & 0x00FFFFFF) | (tmp << 24); | 
|  | } | 
|  | return (int32_t)arg1; | 
|  | } | 
|  |  | 
|  | void helper_swl(target_ulong arg1, target_ulong arg2, int mem_idx) | 
|  | { | 
|  | #ifdef CONFIG_USER_ONLY | 
|  | #define stfun stb_raw | 
|  | #else | 
|  | void (*stfun)(target_ulong, int); | 
|  |  | 
|  | switch (mem_idx) | 
|  | { | 
|  | case 0: stfun = stb_kernel; break; | 
|  | case 1: stfun = stb_super; break; | 
|  | default: | 
|  | case 2: stfun = stb_user; break; | 
|  | } | 
|  | #endif | 
|  | stfun(arg2, (uint8_t)(arg1 >> 24)); | 
|  |  | 
|  | if (GET_LMASK(arg2) <= 2) | 
|  | stfun(GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16)); | 
|  |  | 
|  | if (GET_LMASK(arg2) <= 1) | 
|  | stfun(GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8)); | 
|  |  | 
|  | if (GET_LMASK(arg2) == 0) | 
|  | stfun(GET_OFFSET(arg2, 3), (uint8_t)arg1); | 
|  | } | 
|  |  | 
|  | void helper_swr(target_ulong arg1, target_ulong arg2, int mem_idx) | 
|  | { | 
|  | #ifdef CONFIG_USER_ONLY | 
|  | #define stfun stb_raw | 
|  | #else | 
|  | void (*stfun)(target_ulong, int); | 
|  |  | 
|  | switch (mem_idx) | 
|  | { | 
|  | case 0: stfun = stb_kernel; break; | 
|  | case 1: stfun = stb_super; break; | 
|  | default: | 
|  | case 2: stfun = stb_user; break; | 
|  | } | 
|  | #endif | 
|  | stfun(arg2, (uint8_t)arg1); | 
|  |  | 
|  | if (GET_LMASK(arg2) >= 1) | 
|  | stfun(GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8)); | 
|  |  | 
|  | if (GET_LMASK(arg2) >= 2) | 
|  | stfun(GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16)); | 
|  |  | 
|  | if (GET_LMASK(arg2) == 3) | 
|  | stfun(GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24)); | 
|  | } | 
|  |  | 
|  | #if defined(TARGET_MIPS64) | 
|  | /* "half" load and stores.  We must do the memory access inline, | 
|  | or fault handling won't work.  */ | 
|  |  | 
|  | #ifdef TARGET_WORDS_BIGENDIAN | 
|  | #define GET_LMASK64(v) ((v) & 7) | 
|  | #else | 
|  | #define GET_LMASK64(v) (((v) & 7) ^ 7) | 
|  | #endif | 
|  |  | 
|  | target_ulong helper_ldl(target_ulong arg1, target_ulong arg2, int mem_idx) | 
|  | { | 
|  | uint64_t tmp; | 
|  |  | 
|  | #ifdef CONFIG_USER_ONLY | 
|  | #define ldfun ldub_raw | 
|  | #else | 
|  | int (*ldfun)(target_ulong); | 
|  |  | 
|  | switch (mem_idx) | 
|  | { | 
|  | case 0: ldfun = ldub_kernel; break; | 
|  | case 1: ldfun = ldub_super; break; | 
|  | default: | 
|  | case 2: ldfun = ldub_user; break; | 
|  | } | 
|  | #endif | 
|  | tmp = ldfun(arg2); | 
|  | arg1 = (arg1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56); | 
|  |  | 
|  | if (GET_LMASK64(arg2) <= 6) { | 
|  | tmp = ldfun(GET_OFFSET(arg2, 1)); | 
|  | arg1 = (arg1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48); | 
|  | } | 
|  |  | 
|  | if (GET_LMASK64(arg2) <= 5) { | 
|  | tmp = ldfun(GET_OFFSET(arg2, 2)); | 
|  | arg1 = (arg1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40); | 
|  | } | 
|  |  | 
|  | if (GET_LMASK64(arg2) <= 4) { | 
|  | tmp = ldfun(GET_OFFSET(arg2, 3)); | 
|  | arg1 = (arg1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32); | 
|  | } | 
|  |  | 
|  | if (GET_LMASK64(arg2) <= 3) { | 
|  | tmp = ldfun(GET_OFFSET(arg2, 4)); | 
|  | arg1 = (arg1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24); | 
|  | } | 
|  |  | 
|  | if (GET_LMASK64(arg2) <= 2) { | 
|  | tmp = ldfun(GET_OFFSET(arg2, 5)); | 
|  | arg1 = (arg1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16); | 
|  | } | 
|  |  | 
|  | if (GET_LMASK64(arg2) <= 1) { | 
|  | tmp = ldfun(GET_OFFSET(arg2, 6)); | 
|  | arg1 = (arg1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8); | 
|  | } | 
|  |  | 
|  | if (GET_LMASK64(arg2) == 0) { | 
|  | tmp = ldfun(GET_OFFSET(arg2, 7)); | 
|  | arg1 = (arg1 & 0xFFFFFFFFFFFFFF00ULL) | tmp; | 
|  | } | 
|  |  | 
|  | return arg1; | 
|  | } | 
|  |  | 
|  | target_ulong helper_ldr(target_ulong arg1, target_ulong arg2, int mem_idx) | 
|  | { | 
|  | uint64_t tmp; | 
|  |  | 
|  | #ifdef CONFIG_USER_ONLY | 
|  | #define ldfun ldub_raw | 
|  | #else | 
|  | int (*ldfun)(target_ulong); | 
|  |  | 
|  | switch (mem_idx) | 
|  | { | 
|  | case 0: ldfun = ldub_kernel; break; | 
|  | case 1: ldfun = ldub_super; break; | 
|  | default: | 
|  | case 2: ldfun = ldub_user; break; | 
|  | } | 
|  | #endif | 
|  | tmp = ldfun(arg2); | 
|  | arg1 = (arg1 & 0xFFFFFFFFFFFFFF00ULL) | tmp; | 
|  |  | 
|  | if (GET_LMASK64(arg2) >= 1) { | 
|  | tmp = ldfun(GET_OFFSET(arg2, -1)); | 
|  | arg1 = (arg1 & 0xFFFFFFFFFFFF00FFULL) | (tmp  << 8); | 
|  | } | 
|  |  | 
|  | if (GET_LMASK64(arg2) >= 2) { | 
|  | tmp = ldfun(GET_OFFSET(arg2, -2)); | 
|  | arg1 = (arg1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16); | 
|  | } | 
|  |  | 
|  | if (GET_LMASK64(arg2) >= 3) { | 
|  | tmp = ldfun(GET_OFFSET(arg2, -3)); | 
|  | arg1 = (arg1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24); | 
|  | } | 
|  |  | 
|  | if (GET_LMASK64(arg2) >= 4) { | 
|  | tmp = ldfun(GET_OFFSET(arg2, -4)); | 
|  | arg1 = (arg1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32); | 
|  | } | 
|  |  | 
|  | if (GET_LMASK64(arg2) >= 5) { | 
|  | tmp = ldfun(GET_OFFSET(arg2, -5)); | 
|  | arg1 = (arg1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40); | 
|  | } | 
|  |  | 
|  | if (GET_LMASK64(arg2) >= 6) { | 
|  | tmp = ldfun(GET_OFFSET(arg2, -6)); | 
|  | arg1 = (arg1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48); | 
|  | } | 
|  |  | 
|  | if (GET_LMASK64(arg2) == 7) { | 
|  | tmp = ldfun(GET_OFFSET(arg2, -7)); | 
|  | arg1 = (arg1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56); | 
|  | } | 
|  |  | 
|  | return arg1; | 
|  | } | 
|  |  | 
|  | void helper_sdl(target_ulong arg1, target_ulong arg2, int mem_idx) | 
|  | { | 
|  | #ifdef CONFIG_USER_ONLY | 
|  | #define stfun stb_raw | 
|  | #else | 
|  | void (*stfun)(target_ulong, int); | 
|  |  | 
|  | switch (mem_idx) | 
|  | { | 
|  | case 0: stfun = stb_kernel; break; | 
|  | case 1: stfun = stb_super; break; | 
|  | default: | 
|  | case 2: stfun = stb_user; break; | 
|  | } | 
|  | #endif | 
|  | stfun(arg2, (uint8_t)(arg1 >> 56)); | 
|  |  | 
|  | if (GET_LMASK64(arg2) <= 6) | 
|  | stfun(GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48)); | 
|  |  | 
|  | if (GET_LMASK64(arg2) <= 5) | 
|  | stfun(GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40)); | 
|  |  | 
|  | if (GET_LMASK64(arg2) <= 4) | 
|  | stfun(GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32)); | 
|  |  | 
|  | if (GET_LMASK64(arg2) <= 3) | 
|  | stfun(GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24)); | 
|  |  | 
|  | if (GET_LMASK64(arg2) <= 2) | 
|  | stfun(GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16)); | 
|  |  | 
|  | if (GET_LMASK64(arg2) <= 1) | 
|  | stfun(GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8)); | 
|  |  | 
|  | if (GET_LMASK64(arg2) <= 0) | 
|  | stfun(GET_OFFSET(arg2, 7), (uint8_t)arg1); | 
|  | } | 
|  |  | 
|  | void helper_sdr(target_ulong arg1, target_ulong arg2, int mem_idx) | 
|  | { | 
|  | #ifdef CONFIG_USER_ONLY | 
|  | #define stfun stb_raw | 
|  | #else | 
|  | void (*stfun)(target_ulong, int); | 
|  |  | 
|  | switch (mem_idx) | 
|  | { | 
|  | case 0: stfun = stb_kernel; break; | 
|  | case 1: stfun = stb_super; break; | 
|  | default: | 
|  | case 2: stfun = stb_user; break; | 
|  | } | 
|  | #endif | 
|  | stfun(arg2, (uint8_t)arg1); | 
|  |  | 
|  | if (GET_LMASK64(arg2) >= 1) | 
|  | stfun(GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8)); | 
|  |  | 
|  | if (GET_LMASK64(arg2) >= 2) | 
|  | stfun(GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16)); | 
|  |  | 
|  | if (GET_LMASK64(arg2) >= 3) | 
|  | stfun(GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24)); | 
|  |  | 
|  | if (GET_LMASK64(arg2) >= 4) | 
|  | stfun(GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32)); | 
|  |  | 
|  | if (GET_LMASK64(arg2) >= 5) | 
|  | stfun(GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40)); | 
|  |  | 
|  | if (GET_LMASK64(arg2) >= 6) | 
|  | stfun(GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48)); | 
|  |  | 
|  | if (GET_LMASK64(arg2) == 7) | 
|  | stfun(GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56)); | 
|  | } | 
|  | #endif /* TARGET_MIPS64 */ | 
|  |  | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | /* CP0 helpers */ | 
|  | target_ulong helper_mfc0_mvpcontrol (void) | 
|  | { | 
|  | return env->mvp->CP0_MVPControl; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mfc0_mvpconf0 (void) | 
|  | { | 
|  | return env->mvp->CP0_MVPConf0; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mfc0_mvpconf1 (void) | 
|  | { | 
|  | return env->mvp->CP0_MVPConf1; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mfc0_random (void) | 
|  | { | 
|  | return (int32_t)cpu_mips_get_random(env); | 
|  | } | 
|  |  | 
|  | target_ulong helper_mfc0_tcstatus (void) | 
|  | { | 
|  | return env->active_tc.CP0_TCStatus; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mftc0_tcstatus(void) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  |  | 
|  | if (other_tc == env->current_tc) | 
|  | return env->active_tc.CP0_TCStatus; | 
|  | else | 
|  | return env->tcs[other_tc].CP0_TCStatus; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mfc0_tcbind (void) | 
|  | { | 
|  | return env->active_tc.CP0_TCBind; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mftc0_tcbind(void) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  |  | 
|  | if (other_tc == env->current_tc) | 
|  | return env->active_tc.CP0_TCBind; | 
|  | else | 
|  | return env->tcs[other_tc].CP0_TCBind; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mfc0_tcrestart (void) | 
|  | { | 
|  | return env->active_tc.PC; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mftc0_tcrestart(void) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  |  | 
|  | if (other_tc == env->current_tc) | 
|  | return env->active_tc.PC; | 
|  | else | 
|  | return env->tcs[other_tc].PC; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mfc0_tchalt (void) | 
|  | { | 
|  | return env->active_tc.CP0_TCHalt; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mftc0_tchalt(void) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  |  | 
|  | if (other_tc == env->current_tc) | 
|  | return env->active_tc.CP0_TCHalt; | 
|  | else | 
|  | return env->tcs[other_tc].CP0_TCHalt; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mfc0_tccontext (void) | 
|  | { | 
|  | return env->active_tc.CP0_TCContext; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mftc0_tccontext(void) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  |  | 
|  | if (other_tc == env->current_tc) | 
|  | return env->active_tc.CP0_TCContext; | 
|  | else | 
|  | return env->tcs[other_tc].CP0_TCContext; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mfc0_tcschedule (void) | 
|  | { | 
|  | return env->active_tc.CP0_TCSchedule; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mftc0_tcschedule(void) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  |  | 
|  | if (other_tc == env->current_tc) | 
|  | return env->active_tc.CP0_TCSchedule; | 
|  | else | 
|  | return env->tcs[other_tc].CP0_TCSchedule; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mfc0_tcschefback (void) | 
|  | { | 
|  | return env->active_tc.CP0_TCScheFBack; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mftc0_tcschefback(void) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  |  | 
|  | if (other_tc == env->current_tc) | 
|  | return env->active_tc.CP0_TCScheFBack; | 
|  | else | 
|  | return env->tcs[other_tc].CP0_TCScheFBack; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mfc0_count (void) | 
|  | { | 
|  | return (int32_t)cpu_mips_get_count(env); | 
|  | } | 
|  |  | 
|  | target_ulong helper_mftc0_entryhi(void) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  | int32_t tcstatus; | 
|  |  | 
|  | if (other_tc == env->current_tc) | 
|  | tcstatus = env->active_tc.CP0_TCStatus; | 
|  | else | 
|  | tcstatus = env->tcs[other_tc].CP0_TCStatus; | 
|  |  | 
|  | return (env->CP0_EntryHi & ~0xff) | (tcstatus & 0xff); | 
|  | } | 
|  |  | 
|  | target_ulong helper_mftc0_status(void) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  | target_ulong t0; | 
|  | int32_t tcstatus; | 
|  |  | 
|  | if (other_tc == env->current_tc) | 
|  | tcstatus = env->active_tc.CP0_TCStatus; | 
|  | else | 
|  | tcstatus = env->tcs[other_tc].CP0_TCStatus; | 
|  |  | 
|  | t0 = env->CP0_Status & ~0xf1000018; | 
|  | t0 |= tcstatus & (0xf << CP0TCSt_TCU0); | 
|  | t0 |= (tcstatus & (1 << CP0TCSt_TMX)) >> (CP0TCSt_TMX - CP0St_MX); | 
|  | t0 |= (tcstatus & (0x3 << CP0TCSt_TKSU)) >> (CP0TCSt_TKSU - CP0St_KSU); | 
|  |  | 
|  | return t0; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mfc0_lladdr (void) | 
|  | { | 
|  | return (int32_t)env->CP0_LLAddr >> 4; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mfc0_watchlo (uint32_t sel) | 
|  | { | 
|  | return (int32_t)env->CP0_WatchLo[sel]; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mfc0_watchhi (uint32_t sel) | 
|  | { | 
|  | return env->CP0_WatchHi[sel]; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mfc0_debug (void) | 
|  | { | 
|  | target_ulong t0 = env->CP0_Debug; | 
|  | if (env->hflags & MIPS_HFLAG_DM) | 
|  | t0 |= 1 << CP0DB_DM; | 
|  |  | 
|  | return t0; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mftc0_debug(void) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  | int32_t tcstatus; | 
|  |  | 
|  | if (other_tc == env->current_tc) | 
|  | tcstatus = env->active_tc.CP0_Debug_tcstatus; | 
|  | else | 
|  | tcstatus = env->tcs[other_tc].CP0_Debug_tcstatus; | 
|  |  | 
|  | /* XXX: Might be wrong, check with EJTAG spec. */ | 
|  | return (env->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) | | 
|  | (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))); | 
|  | } | 
|  |  | 
|  | #if defined(TARGET_MIPS64) | 
|  | target_ulong helper_dmfc0_tcrestart (void) | 
|  | { | 
|  | return env->active_tc.PC; | 
|  | } | 
|  |  | 
|  | target_ulong helper_dmfc0_tchalt (void) | 
|  | { | 
|  | return env->active_tc.CP0_TCHalt; | 
|  | } | 
|  |  | 
|  | target_ulong helper_dmfc0_tccontext (void) | 
|  | { | 
|  | return env->active_tc.CP0_TCContext; | 
|  | } | 
|  |  | 
|  | target_ulong helper_dmfc0_tcschedule (void) | 
|  | { | 
|  | return env->active_tc.CP0_TCSchedule; | 
|  | } | 
|  |  | 
|  | target_ulong helper_dmfc0_tcschefback (void) | 
|  | { | 
|  | return env->active_tc.CP0_TCScheFBack; | 
|  | } | 
|  |  | 
|  | target_ulong helper_dmfc0_lladdr (void) | 
|  | { | 
|  | return env->CP0_LLAddr >> 4; | 
|  | } | 
|  |  | 
|  | target_ulong helper_dmfc0_watchlo (uint32_t sel) | 
|  | { | 
|  | return env->CP0_WatchLo[sel]; | 
|  | } | 
|  | #endif /* TARGET_MIPS64 */ | 
|  |  | 
|  | void helper_mtc0_index (target_ulong arg1) | 
|  | { | 
|  | int num = 1; | 
|  | unsigned int tmp = env->tlb->nb_tlb; | 
|  |  | 
|  | do { | 
|  | tmp >>= 1; | 
|  | num <<= 1; | 
|  | } while (tmp); | 
|  | env->CP0_Index = (env->CP0_Index & 0x80000000) | (arg1 & (num - 1)); | 
|  | } | 
|  |  | 
|  | void helper_mtc0_mvpcontrol (target_ulong arg1) | 
|  | { | 
|  | uint32_t mask = 0; | 
|  | uint32_t newval; | 
|  |  | 
|  | if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) | 
|  | mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) | | 
|  | (1 << CP0MVPCo_EVP); | 
|  | if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) | 
|  | mask |= (1 << CP0MVPCo_STLB); | 
|  | newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask); | 
|  |  | 
|  | // TODO: Enable/disable shared TLB, enable/disable VPEs. | 
|  |  | 
|  | env->mvp->CP0_MVPControl = newval; | 
|  | } | 
|  |  | 
|  | void helper_mtc0_vpecontrol (target_ulong arg1) | 
|  | { | 
|  | uint32_t mask; | 
|  | uint32_t newval; | 
|  |  | 
|  | mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) | | 
|  | (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC); | 
|  | newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask); | 
|  |  | 
|  | /* Yield scheduler intercept not implemented. */ | 
|  | /* Gating storage scheduler intercept not implemented. */ | 
|  |  | 
|  | // TODO: Enable/disable TCs. | 
|  |  | 
|  | env->CP0_VPEControl = newval; | 
|  | } | 
|  |  | 
|  | void helper_mtc0_vpeconf0 (target_ulong arg1) | 
|  | { | 
|  | uint32_t mask = 0; | 
|  | uint32_t newval; | 
|  |  | 
|  | if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) { | 
|  | if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA)) | 
|  | mask |= (0xff << CP0VPEC0_XTC); | 
|  | mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA); | 
|  | } | 
|  | newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask); | 
|  |  | 
|  | // TODO: TC exclusive handling due to ERL/EXL. | 
|  |  | 
|  | env->CP0_VPEConf0 = newval; | 
|  | } | 
|  |  | 
|  | void helper_mtc0_vpeconf1 (target_ulong arg1) | 
|  | { | 
|  | uint32_t mask = 0; | 
|  | uint32_t newval; | 
|  |  | 
|  | if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) | 
|  | mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) | | 
|  | (0xff << CP0VPEC1_NCP1); | 
|  | newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask); | 
|  |  | 
|  | /* UDI not implemented. */ | 
|  | /* CP2 not implemented. */ | 
|  |  | 
|  | // TODO: Handle FPU (CP1) binding. | 
|  |  | 
|  | env->CP0_VPEConf1 = newval; | 
|  | } | 
|  |  | 
|  | void helper_mtc0_yqmask (target_ulong arg1) | 
|  | { | 
|  | /* Yield qualifier inputs not implemented. */ | 
|  | env->CP0_YQMask = 0x00000000; | 
|  | } | 
|  |  | 
|  | void helper_mtc0_vpeopt (target_ulong arg1) | 
|  | { | 
|  | env->CP0_VPEOpt = arg1 & 0x0000ffff; | 
|  | } | 
|  |  | 
|  | void helper_mtc0_entrylo0 (target_ulong arg1) | 
|  | { | 
|  | /* Large physaddr (PABITS) not implemented */ | 
|  | /* 1k pages not implemented */ | 
|  | env->CP0_EntryLo0 = arg1 & 0x3FFFFFFF; | 
|  | } | 
|  |  | 
|  | void helper_mtc0_tcstatus (target_ulong arg1) | 
|  | { | 
|  | uint32_t mask = env->CP0_TCStatus_rw_bitmask; | 
|  | uint32_t newval; | 
|  |  | 
|  | newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask); | 
|  |  | 
|  | // TODO: Sync with CP0_Status. | 
|  |  | 
|  | env->active_tc.CP0_TCStatus = newval; | 
|  | } | 
|  |  | 
|  | void helper_mttc0_tcstatus (target_ulong arg1) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  |  | 
|  | // TODO: Sync with CP0_Status. | 
|  |  | 
|  | if (other_tc == env->current_tc) | 
|  | env->active_tc.CP0_TCStatus = arg1; | 
|  | else | 
|  | env->tcs[other_tc].CP0_TCStatus = arg1; | 
|  | } | 
|  |  | 
|  | void helper_mtc0_tcbind (target_ulong arg1) | 
|  | { | 
|  | uint32_t mask = (1 << CP0TCBd_TBE); | 
|  | uint32_t newval; | 
|  |  | 
|  | if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) | 
|  | mask |= (1 << CP0TCBd_CurVPE); | 
|  | newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask); | 
|  | env->active_tc.CP0_TCBind = newval; | 
|  | } | 
|  |  | 
|  | void helper_mttc0_tcbind (target_ulong arg1) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  | uint32_t mask = (1 << CP0TCBd_TBE); | 
|  | uint32_t newval; | 
|  |  | 
|  | if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) | 
|  | mask |= (1 << CP0TCBd_CurVPE); | 
|  | if (other_tc == env->current_tc) { | 
|  | newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask); | 
|  | env->active_tc.CP0_TCBind = newval; | 
|  | } else { | 
|  | newval = (env->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask); | 
|  | env->tcs[other_tc].CP0_TCBind = newval; | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_mtc0_tcrestart (target_ulong arg1) | 
|  | { | 
|  | env->active_tc.PC = arg1; | 
|  | env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS); | 
|  | env->CP0_LLAddr = 0ULL; | 
|  | /* MIPS16 not implemented. */ | 
|  | } | 
|  |  | 
|  | void helper_mttc0_tcrestart (target_ulong arg1) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  |  | 
|  | if (other_tc == env->current_tc) { | 
|  | env->active_tc.PC = arg1; | 
|  | env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS); | 
|  | env->CP0_LLAddr = 0ULL; | 
|  | /* MIPS16 not implemented. */ | 
|  | } else { | 
|  | env->tcs[other_tc].PC = arg1; | 
|  | env->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS); | 
|  | env->CP0_LLAddr = 0ULL; | 
|  | /* MIPS16 not implemented. */ | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_mtc0_tchalt (target_ulong arg1) | 
|  | { | 
|  | env->active_tc.CP0_TCHalt = arg1 & 0x1; | 
|  |  | 
|  | // TODO: Halt TC / Restart (if allocated+active) TC. | 
|  | } | 
|  |  | 
|  | void helper_mttc0_tchalt (target_ulong arg1) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  |  | 
|  | // TODO: Halt TC / Restart (if allocated+active) TC. | 
|  |  | 
|  | if (other_tc == env->current_tc) | 
|  | env->active_tc.CP0_TCHalt = arg1; | 
|  | else | 
|  | env->tcs[other_tc].CP0_TCHalt = arg1; | 
|  | } | 
|  |  | 
|  | void helper_mtc0_tccontext (target_ulong arg1) | 
|  | { | 
|  | env->active_tc.CP0_TCContext = arg1; | 
|  | } | 
|  |  | 
|  | void helper_mttc0_tccontext (target_ulong arg1) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  |  | 
|  | if (other_tc == env->current_tc) | 
|  | env->active_tc.CP0_TCContext = arg1; | 
|  | else | 
|  | env->tcs[other_tc].CP0_TCContext = arg1; | 
|  | } | 
|  |  | 
|  | void helper_mtc0_tcschedule (target_ulong arg1) | 
|  | { | 
|  | env->active_tc.CP0_TCSchedule = arg1; | 
|  | } | 
|  |  | 
|  | void helper_mttc0_tcschedule (target_ulong arg1) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  |  | 
|  | if (other_tc == env->current_tc) | 
|  | env->active_tc.CP0_TCSchedule = arg1; | 
|  | else | 
|  | env->tcs[other_tc].CP0_TCSchedule = arg1; | 
|  | } | 
|  |  | 
|  | void helper_mtc0_tcschefback (target_ulong arg1) | 
|  | { | 
|  | env->active_tc.CP0_TCScheFBack = arg1; | 
|  | } | 
|  |  | 
|  | void helper_mttc0_tcschefback (target_ulong arg1) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  |  | 
|  | if (other_tc == env->current_tc) | 
|  | env->active_tc.CP0_TCScheFBack = arg1; | 
|  | else | 
|  | env->tcs[other_tc].CP0_TCScheFBack = arg1; | 
|  | } | 
|  |  | 
|  | void helper_mtc0_entrylo1 (target_ulong arg1) | 
|  | { | 
|  | /* Large physaddr (PABITS) not implemented */ | 
|  | /* 1k pages not implemented */ | 
|  | env->CP0_EntryLo1 = arg1 & 0x3FFFFFFF; | 
|  | } | 
|  |  | 
|  | void helper_mtc0_context (target_ulong arg1) | 
|  | { | 
|  | env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF); | 
|  | } | 
|  |  | 
|  | void helper_mtc0_pagemask (target_ulong arg1) | 
|  | { | 
|  | /* 1k pages not implemented */ | 
|  | env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1)); | 
|  | } | 
|  |  | 
|  | void helper_mtc0_pagegrain (target_ulong arg1) | 
|  | { | 
|  | /* SmartMIPS not implemented */ | 
|  | /* Large physaddr (PABITS) not implemented */ | 
|  | /* 1k pages not implemented */ | 
|  | env->CP0_PageGrain = 0; | 
|  | } | 
|  |  | 
|  | void helper_mtc0_wired (target_ulong arg1) | 
|  | { | 
|  | env->CP0_Wired = arg1 % env->tlb->nb_tlb; | 
|  | } | 
|  |  | 
|  | void helper_mtc0_srsconf0 (target_ulong arg1) | 
|  | { | 
|  | env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask; | 
|  | } | 
|  |  | 
|  | void helper_mtc0_srsconf1 (target_ulong arg1) | 
|  | { | 
|  | env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask; | 
|  | } | 
|  |  | 
|  | void helper_mtc0_srsconf2 (target_ulong arg1) | 
|  | { | 
|  | env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask; | 
|  | } | 
|  |  | 
|  | void helper_mtc0_srsconf3 (target_ulong arg1) | 
|  | { | 
|  | env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask; | 
|  | } | 
|  |  | 
|  | void helper_mtc0_srsconf4 (target_ulong arg1) | 
|  | { | 
|  | env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask; | 
|  | } | 
|  |  | 
|  | void helper_mtc0_hwrena (target_ulong arg1) | 
|  | { | 
|  | env->CP0_HWREna = arg1 & 0x0000000F; | 
|  | } | 
|  |  | 
|  | void helper_mtc0_count (target_ulong arg1) | 
|  | { | 
|  | cpu_mips_store_count(env, arg1); | 
|  | } | 
|  |  | 
|  | void helper_mtc0_entryhi (target_ulong arg1) | 
|  | { | 
|  | target_ulong old, val; | 
|  |  | 
|  | /* 1k pages not implemented */ | 
|  | val = arg1 & ((TARGET_PAGE_MASK << 1) | 0xFF); | 
|  | #if defined(TARGET_MIPS64) | 
|  | val &= env->SEGMask; | 
|  | #endif | 
|  | old = env->CP0_EntryHi; | 
|  | env->CP0_EntryHi = val; | 
|  | if (env->CP0_Config3 & (1 << CP0C3_MT)) { | 
|  | uint32_t tcst = env->active_tc.CP0_TCStatus & ~0xff; | 
|  | env->active_tc.CP0_TCStatus = tcst | (val & 0xff); | 
|  | } | 
|  | /* If the ASID changes, flush qemu's TLB.  */ | 
|  | if ((old & 0xFF) != (val & 0xFF)) | 
|  | cpu_mips_tlb_flush(env, 1); | 
|  | } | 
|  |  | 
|  | void helper_mttc0_entryhi(target_ulong arg1) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  | int32_t tcstatus; | 
|  |  | 
|  | env->CP0_EntryHi = (env->CP0_EntryHi & 0xff) | (arg1 & ~0xff); | 
|  | if (other_tc == env->current_tc) { | 
|  | tcstatus = (env->active_tc.CP0_TCStatus & ~0xff) | (arg1 & 0xff); | 
|  | env->active_tc.CP0_TCStatus = tcstatus; | 
|  | } else { | 
|  | tcstatus = (env->tcs[other_tc].CP0_TCStatus & ~0xff) | (arg1 & 0xff); | 
|  | env->tcs[other_tc].CP0_TCStatus = tcstatus; | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_mtc0_compare (target_ulong arg1) | 
|  | { | 
|  | cpu_mips_store_compare(env, arg1); | 
|  | } | 
|  |  | 
|  | void helper_mtc0_status (target_ulong arg1) | 
|  | { | 
|  | uint32_t val, old; | 
|  | uint32_t mask = env->CP0_Status_rw_bitmask; | 
|  |  | 
|  | val = arg1 & mask; | 
|  | old = env->CP0_Status; | 
|  | env->CP0_Status = (env->CP0_Status & ~mask) | val; | 
|  | compute_hflags(env); | 
|  | if (qemu_loglevel_mask(CPU_LOG_EXEC)) { | 
|  | qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x", | 
|  | old, old & env->CP0_Cause & CP0Ca_IP_mask, | 
|  | val, val & env->CP0_Cause & CP0Ca_IP_mask, | 
|  | env->CP0_Cause); | 
|  | switch (env->hflags & MIPS_HFLAG_KSU) { | 
|  | case MIPS_HFLAG_UM: qemu_log(", UM\n"); break; | 
|  | case MIPS_HFLAG_SM: qemu_log(", SM\n"); break; | 
|  | case MIPS_HFLAG_KM: qemu_log("\n"); break; | 
|  | default: cpu_abort(env, "Invalid MMU mode!\n"); break; | 
|  | } | 
|  | } | 
|  | cpu_mips_update_irq(env); | 
|  | } | 
|  |  | 
|  | void helper_mttc0_status(target_ulong arg1) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  | int32_t tcstatus = env->tcs[other_tc].CP0_TCStatus; | 
|  |  | 
|  | env->CP0_Status = arg1 & ~0xf1000018; | 
|  | tcstatus = (tcstatus & ~(0xf << CP0TCSt_TCU0)) | (arg1 & (0xf << CP0St_CU0)); | 
|  | tcstatus = (tcstatus & ~(1 << CP0TCSt_TMX)) | ((arg1 & (1 << CP0St_MX)) << (CP0TCSt_TMX - CP0St_MX)); | 
|  | tcstatus = (tcstatus & ~(0x3 << CP0TCSt_TKSU)) | ((arg1 & (0x3 << CP0St_KSU)) << (CP0TCSt_TKSU - CP0St_KSU)); | 
|  | if (other_tc == env->current_tc) | 
|  | env->active_tc.CP0_TCStatus = tcstatus; | 
|  | else | 
|  | env->tcs[other_tc].CP0_TCStatus = tcstatus; | 
|  | } | 
|  |  | 
|  | void helper_mtc0_intctl (target_ulong arg1) | 
|  | { | 
|  | /* vectored interrupts not implemented, no performance counters. */ | 
|  | env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000002e0) | (arg1 & 0x000002e0); | 
|  | } | 
|  |  | 
|  | void helper_mtc0_srsctl (target_ulong arg1) | 
|  | { | 
|  | uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS); | 
|  | env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask); | 
|  | } | 
|  |  | 
|  | void helper_mtc0_cause (target_ulong arg1) | 
|  | { | 
|  | uint32_t mask = 0x00C00300; | 
|  | uint32_t old = env->CP0_Cause; | 
|  |  | 
|  | if (env->insn_flags & ISA_MIPS32R2) | 
|  | mask |= 1 << CP0Ca_DC; | 
|  |  | 
|  | env->CP0_Cause = (env->CP0_Cause & ~mask) | (arg1 & mask); | 
|  |  | 
|  | if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) { | 
|  | if (env->CP0_Cause & (1 << CP0Ca_DC)) | 
|  | cpu_mips_stop_count(env); | 
|  | else | 
|  | cpu_mips_start_count(env); | 
|  | } | 
|  |  | 
|  | /* Handle the software interrupt as an hardware one, as they | 
|  | are very similar */ | 
|  | if (arg1 & CP0Ca_IP_mask) { | 
|  | cpu_mips_update_irq(env); | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_mtc0_ebase (target_ulong arg1) | 
|  | { | 
|  | /* vectored interrupts not implemented */ | 
|  | /* Multi-CPU not implemented */ | 
|  | env->CP0_EBase = 0x80000000 | (arg1 & 0x3FFFF000); | 
|  | } | 
|  |  | 
|  | void helper_mtc0_config0 (target_ulong arg1) | 
|  | { | 
|  | env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007); | 
|  | } | 
|  |  | 
|  | void helper_mtc0_config2 (target_ulong arg1) | 
|  | { | 
|  | /* tertiary/secondary caches not implemented */ | 
|  | env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF); | 
|  | } | 
|  |  | 
|  | void helper_mtc0_watchlo (target_ulong arg1, uint32_t sel) | 
|  | { | 
|  | /* Watch exceptions for instructions, data loads, data stores | 
|  | not implemented. */ | 
|  | env->CP0_WatchLo[sel] = (arg1 & ~0x7); | 
|  | } | 
|  |  | 
|  | void helper_mtc0_watchhi (target_ulong arg1, uint32_t sel) | 
|  | { | 
|  | env->CP0_WatchHi[sel] = (arg1 & 0x40FF0FF8); | 
|  | env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7); | 
|  | } | 
|  |  | 
|  | void helper_mtc0_xcontext (target_ulong arg1) | 
|  | { | 
|  | target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1; | 
|  | env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask); | 
|  | } | 
|  |  | 
|  | void helper_mtc0_framemask (target_ulong arg1) | 
|  | { | 
|  | env->CP0_Framemask = arg1; /* XXX */ | 
|  | } | 
|  |  | 
|  | void helper_mtc0_debug (target_ulong arg1) | 
|  | { | 
|  | env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120); | 
|  | if (arg1 & (1 << CP0DB_DM)) | 
|  | env->hflags |= MIPS_HFLAG_DM; | 
|  | else | 
|  | env->hflags &= ~MIPS_HFLAG_DM; | 
|  | } | 
|  |  | 
|  | void helper_mttc0_debug(target_ulong arg1) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  | uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)); | 
|  |  | 
|  | /* XXX: Might be wrong, check with EJTAG spec. */ | 
|  | if (other_tc == env->current_tc) | 
|  | env->active_tc.CP0_Debug_tcstatus = val; | 
|  | else | 
|  | env->tcs[other_tc].CP0_Debug_tcstatus = val; | 
|  | env->CP0_Debug = (env->CP0_Debug & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) | | 
|  | (arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))); | 
|  | } | 
|  |  | 
|  | void helper_mtc0_performance0 (target_ulong arg1) | 
|  | { | 
|  | env->CP0_Performance0 = arg1 & 0x000007ff; | 
|  | } | 
|  |  | 
|  | void helper_mtc0_taglo (target_ulong arg1) | 
|  | { | 
|  | env->CP0_TagLo = arg1 & 0xFFFFFCF6; | 
|  | } | 
|  |  | 
|  | void helper_mtc0_datalo (target_ulong arg1) | 
|  | { | 
|  | env->CP0_DataLo = arg1; /* XXX */ | 
|  | } | 
|  |  | 
|  | void helper_mtc0_taghi (target_ulong arg1) | 
|  | { | 
|  | env->CP0_TagHi = arg1; /* XXX */ | 
|  | } | 
|  |  | 
|  | void helper_mtc0_datahi (target_ulong arg1) | 
|  | { | 
|  | env->CP0_DataHi = arg1; /* XXX */ | 
|  | } | 
|  |  | 
|  | /* MIPS MT functions */ | 
|  | target_ulong helper_mftgpr(uint32_t sel) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  |  | 
|  | if (other_tc == env->current_tc) | 
|  | return env->active_tc.gpr[sel]; | 
|  | else | 
|  | return env->tcs[other_tc].gpr[sel]; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mftlo(uint32_t sel) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  |  | 
|  | if (other_tc == env->current_tc) | 
|  | return env->active_tc.LO[sel]; | 
|  | else | 
|  | return env->tcs[other_tc].LO[sel]; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mfthi(uint32_t sel) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  |  | 
|  | if (other_tc == env->current_tc) | 
|  | return env->active_tc.HI[sel]; | 
|  | else | 
|  | return env->tcs[other_tc].HI[sel]; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mftacx(uint32_t sel) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  |  | 
|  | if (other_tc == env->current_tc) | 
|  | return env->active_tc.ACX[sel]; | 
|  | else | 
|  | return env->tcs[other_tc].ACX[sel]; | 
|  | } | 
|  |  | 
|  | target_ulong helper_mftdsp(void) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  |  | 
|  | if (other_tc == env->current_tc) | 
|  | return env->active_tc.DSPControl; | 
|  | else | 
|  | return env->tcs[other_tc].DSPControl; | 
|  | } | 
|  |  | 
|  | void helper_mttgpr(target_ulong arg1, uint32_t sel) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  |  | 
|  | if (other_tc == env->current_tc) | 
|  | env->active_tc.gpr[sel] = arg1; | 
|  | else | 
|  | env->tcs[other_tc].gpr[sel] = arg1; | 
|  | } | 
|  |  | 
|  | void helper_mttlo(target_ulong arg1, uint32_t sel) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  |  | 
|  | if (other_tc == env->current_tc) | 
|  | env->active_tc.LO[sel] = arg1; | 
|  | else | 
|  | env->tcs[other_tc].LO[sel] = arg1; | 
|  | } | 
|  |  | 
|  | void helper_mtthi(target_ulong arg1, uint32_t sel) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  |  | 
|  | if (other_tc == env->current_tc) | 
|  | env->active_tc.HI[sel] = arg1; | 
|  | else | 
|  | env->tcs[other_tc].HI[sel] = arg1; | 
|  | } | 
|  |  | 
|  | void helper_mttacx(target_ulong arg1, uint32_t sel) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  |  | 
|  | if (other_tc == env->current_tc) | 
|  | env->active_tc.ACX[sel] = arg1; | 
|  | else | 
|  | env->tcs[other_tc].ACX[sel] = arg1; | 
|  | } | 
|  |  | 
|  | void helper_mttdsp(target_ulong arg1) | 
|  | { | 
|  | int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); | 
|  |  | 
|  | if (other_tc == env->current_tc) | 
|  | env->active_tc.DSPControl = arg1; | 
|  | else | 
|  | env->tcs[other_tc].DSPControl = arg1; | 
|  | } | 
|  |  | 
|  | /* MIPS MT functions */ | 
|  | target_ulong helper_dmt(target_ulong arg1) | 
|  | { | 
|  | // TODO | 
|  | arg1 = 0; | 
|  | // rt = arg1 | 
|  |  | 
|  | return arg1; | 
|  | } | 
|  |  | 
|  | target_ulong helper_emt(target_ulong arg1) | 
|  | { | 
|  | // TODO | 
|  | arg1 = 0; | 
|  | // rt = arg1 | 
|  |  | 
|  | return arg1; | 
|  | } | 
|  |  | 
|  | target_ulong helper_dvpe(target_ulong arg1) | 
|  | { | 
|  | // TODO | 
|  | arg1 = 0; | 
|  | // rt = arg1 | 
|  |  | 
|  | return arg1; | 
|  | } | 
|  |  | 
|  | target_ulong helper_evpe(target_ulong arg1) | 
|  | { | 
|  | // TODO | 
|  | arg1 = 0; | 
|  | // rt = arg1 | 
|  |  | 
|  | return arg1; | 
|  | } | 
|  | #endif /* !CONFIG_USER_ONLY */ | 
|  |  | 
|  | void helper_fork(target_ulong arg1, target_ulong arg2) | 
|  | { | 
|  | // arg1 = rt, arg2 = rs | 
|  | arg1 = 0; | 
|  | // TODO: store to TC register | 
|  | } | 
|  |  | 
|  | target_ulong helper_yield(target_ulong arg1) | 
|  | { | 
|  | if (arg1 < 0) { | 
|  | /* No scheduling policy implemented. */ | 
|  | if (arg1 != -2) { | 
|  | if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) && | 
|  | env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) { | 
|  | env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT); | 
|  | env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT; | 
|  | helper_raise_exception(EXCP_THREAD); | 
|  | } | 
|  | } | 
|  | } else if (arg1 == 0) { | 
|  | if (0 /* TODO: TC underflow */) { | 
|  | env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT); | 
|  | helper_raise_exception(EXCP_THREAD); | 
|  | } else { | 
|  | // TODO: Deallocate TC | 
|  | } | 
|  | } else if (arg1 > 0) { | 
|  | /* Yield qualifier inputs not implemented. */ | 
|  | env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT); | 
|  | env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT; | 
|  | helper_raise_exception(EXCP_THREAD); | 
|  | } | 
|  | return env->CP0_YQMask; | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | /* TLB management */ | 
|  | void cpu_mips_tlb_flush (CPUState *env, int flush_global) | 
|  | { | 
|  | /* Flush qemu's TLB and discard all shadowed entries.  */ | 
|  | tlb_flush (env, flush_global); | 
|  | env->tlb->tlb_in_use = env->tlb->nb_tlb; | 
|  | } | 
|  |  | 
|  | static void r4k_mips_tlb_flush_extra (CPUState *env, int first) | 
|  | { | 
|  | /* Discard entries from env->tlb[first] onwards.  */ | 
|  | while (env->tlb->tlb_in_use > first) { | 
|  | r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void r4k_fill_tlb (int idx) | 
|  | { | 
|  | r4k_tlb_t *tlb; | 
|  |  | 
|  | /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */ | 
|  | tlb = &env->tlb->mmu.r4k.tlb[idx]; | 
|  | tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1); | 
|  | #if defined(TARGET_MIPS64) | 
|  | tlb->VPN &= env->SEGMask; | 
|  | #endif | 
|  | tlb->ASID = env->CP0_EntryHi & 0xFF; | 
|  | tlb->PageMask = env->CP0_PageMask; | 
|  | tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1; | 
|  | tlb->V0 = (env->CP0_EntryLo0 & 2) != 0; | 
|  | tlb->D0 = (env->CP0_EntryLo0 & 4) != 0; | 
|  | tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7; | 
|  | tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12; | 
|  | tlb->V1 = (env->CP0_EntryLo1 & 2) != 0; | 
|  | tlb->D1 = (env->CP0_EntryLo1 & 4) != 0; | 
|  | tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7; | 
|  | tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12; | 
|  | } | 
|  |  | 
|  | void r4k_helper_tlbwi (void) | 
|  | { | 
|  | int idx; | 
|  |  | 
|  | idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb; | 
|  |  | 
|  | /* Discard cached TLB entries.  We could avoid doing this if the | 
|  | tlbwi is just upgrading access permissions on the current entry; | 
|  | that might be a further win.  */ | 
|  | r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb); | 
|  |  | 
|  | r4k_invalidate_tlb(env, idx, 0); | 
|  | r4k_fill_tlb(idx); | 
|  | } | 
|  |  | 
|  | void r4k_helper_tlbwr (void) | 
|  | { | 
|  | int r = cpu_mips_get_random(env); | 
|  |  | 
|  | r4k_invalidate_tlb(env, r, 1); | 
|  | r4k_fill_tlb(r); | 
|  | } | 
|  |  | 
|  | void r4k_helper_tlbp (void) | 
|  | { | 
|  | r4k_tlb_t *tlb; | 
|  | target_ulong mask; | 
|  | target_ulong tag; | 
|  | target_ulong VPN; | 
|  | uint8_t ASID; | 
|  | int i; | 
|  |  | 
|  | ASID = env->CP0_EntryHi & 0xFF; | 
|  | for (i = 0; i < env->tlb->nb_tlb; i++) { | 
|  | tlb = &env->tlb->mmu.r4k.tlb[i]; | 
|  | /* 1k pages are not supported. */ | 
|  | mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1); | 
|  | tag = env->CP0_EntryHi & ~mask; | 
|  | VPN = tlb->VPN & ~mask; | 
|  | /* Check ASID, virtual page number & size */ | 
|  | if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) { | 
|  | /* TLB match */ | 
|  | env->CP0_Index = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (i == env->tlb->nb_tlb) { | 
|  | /* No match.  Discard any shadow entries, if any of them match.  */ | 
|  | for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) { | 
|  | tlb = &env->tlb->mmu.r4k.tlb[i]; | 
|  | /* 1k pages are not supported. */ | 
|  | mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1); | 
|  | tag = env->CP0_EntryHi & ~mask; | 
|  | VPN = tlb->VPN & ~mask; | 
|  | /* Check ASID, virtual page number & size */ | 
|  | if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) { | 
|  | r4k_mips_tlb_flush_extra (env, i); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | env->CP0_Index |= 0x80000000; | 
|  | } | 
|  | } | 
|  |  | 
|  | void r4k_helper_tlbr (void) | 
|  | { | 
|  | r4k_tlb_t *tlb; | 
|  | uint8_t ASID; | 
|  | int idx; | 
|  |  | 
|  | ASID = env->CP0_EntryHi & 0xFF; | 
|  | idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb; | 
|  | tlb = &env->tlb->mmu.r4k.tlb[idx]; | 
|  |  | 
|  | /* If this will change the current ASID, flush qemu's TLB.  */ | 
|  | if (ASID != tlb->ASID) | 
|  | cpu_mips_tlb_flush (env, 1); | 
|  |  | 
|  | r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb); | 
|  |  | 
|  | env->CP0_EntryHi = tlb->VPN | tlb->ASID; | 
|  | env->CP0_PageMask = tlb->PageMask; | 
|  | env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) | | 
|  | (tlb->C0 << 3) | (tlb->PFN[0] >> 6); | 
|  | env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) | | 
|  | (tlb->C1 << 3) | (tlb->PFN[1] >> 6); | 
|  | } | 
|  |  | 
|  | void helper_tlbwi(void) | 
|  | { | 
|  | env->tlb->helper_tlbwi(); | 
|  | } | 
|  |  | 
|  | void helper_tlbwr(void) | 
|  | { | 
|  | env->tlb->helper_tlbwr(); | 
|  | } | 
|  |  | 
|  | void helper_tlbp(void) | 
|  | { | 
|  | env->tlb->helper_tlbp(); | 
|  | } | 
|  |  | 
|  | void helper_tlbr(void) | 
|  | { | 
|  | env->tlb->helper_tlbr(); | 
|  | } | 
|  |  | 
|  | /* Specials */ | 
|  | target_ulong helper_di (void) | 
|  | { | 
|  | target_ulong t0 = env->CP0_Status; | 
|  |  | 
|  | env->CP0_Status = t0 & ~(1 << CP0St_IE); | 
|  | cpu_mips_update_irq(env); | 
|  |  | 
|  | return t0; | 
|  | } | 
|  |  | 
|  | target_ulong helper_ei (void) | 
|  | { | 
|  | target_ulong t0 = env->CP0_Status; | 
|  |  | 
|  | env->CP0_Status = t0 | (1 << CP0St_IE); | 
|  | cpu_mips_update_irq(env); | 
|  |  | 
|  | return t0; | 
|  | } | 
|  |  | 
|  | static void debug_pre_eret (void) | 
|  | { | 
|  | if (qemu_loglevel_mask(CPU_LOG_EXEC)) { | 
|  | qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx, | 
|  | env->active_tc.PC, env->CP0_EPC); | 
|  | if (env->CP0_Status & (1 << CP0St_ERL)) | 
|  | qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC); | 
|  | if (env->hflags & MIPS_HFLAG_DM) | 
|  | qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC); | 
|  | qemu_log("\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void debug_post_eret (void) | 
|  | { | 
|  | if (qemu_loglevel_mask(CPU_LOG_EXEC)) { | 
|  | qemu_log("  =>  PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx, | 
|  | env->active_tc.PC, env->CP0_EPC); | 
|  | if (env->CP0_Status & (1 << CP0St_ERL)) | 
|  | qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC); | 
|  | if (env->hflags & MIPS_HFLAG_DM) | 
|  | qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC); | 
|  | switch (env->hflags & MIPS_HFLAG_KSU) { | 
|  | case MIPS_HFLAG_UM: qemu_log(", UM\n"); break; | 
|  | case MIPS_HFLAG_SM: qemu_log(", SM\n"); break; | 
|  | case MIPS_HFLAG_KM: qemu_log("\n"); break; | 
|  | default: cpu_abort(env, "Invalid MMU mode!\n"); break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_eret (void) | 
|  | { | 
|  | debug_pre_eret(); | 
|  | if (env->CP0_Status & (1 << CP0St_ERL)) { | 
|  | env->active_tc.PC = env->CP0_ErrorEPC; | 
|  | env->CP0_Status &= ~(1 << CP0St_ERL); | 
|  | } else { | 
|  | env->active_tc.PC = env->CP0_EPC; | 
|  | env->CP0_Status &= ~(1 << CP0St_EXL); | 
|  | } | 
|  | compute_hflags(env); | 
|  | debug_post_eret(); | 
|  | env->CP0_LLAddr = 1; | 
|  | } | 
|  |  | 
|  | void helper_deret (void) | 
|  | { | 
|  | debug_pre_eret(); | 
|  | env->active_tc.PC = env->CP0_DEPC; | 
|  | env->hflags &= MIPS_HFLAG_DM; | 
|  | compute_hflags(env); | 
|  | debug_post_eret(); | 
|  | env->CP0_LLAddr = 1; | 
|  | } | 
|  | #endif /* !CONFIG_USER_ONLY */ | 
|  |  | 
|  | target_ulong helper_rdhwr_cpunum(void) | 
|  | { | 
|  | if ((env->hflags & MIPS_HFLAG_CP0) || | 
|  | (env->CP0_HWREna & (1 << 0))) | 
|  | return env->CP0_EBase & 0x3ff; | 
|  | else | 
|  | helper_raise_exception(EXCP_RI); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | target_ulong helper_rdhwr_synci_step(void) | 
|  | { | 
|  | if ((env->hflags & MIPS_HFLAG_CP0) || | 
|  | (env->CP0_HWREna & (1 << 1))) | 
|  | return env->SYNCI_Step; | 
|  | else | 
|  | helper_raise_exception(EXCP_RI); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | target_ulong helper_rdhwr_cc(void) | 
|  | { | 
|  | if ((env->hflags & MIPS_HFLAG_CP0) || | 
|  | (env->CP0_HWREna & (1 << 2))) | 
|  | return env->CP0_Count; | 
|  | else | 
|  | helper_raise_exception(EXCP_RI); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | target_ulong helper_rdhwr_ccres(void) | 
|  | { | 
|  | if ((env->hflags & MIPS_HFLAG_CP0) || | 
|  | (env->CP0_HWREna & (1 << 3))) | 
|  | return env->CCRes; | 
|  | else | 
|  | helper_raise_exception(EXCP_RI); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void helper_pmon (int function) | 
|  | { | 
|  | function /= 2; | 
|  | switch (function) { | 
|  | case 2: /* TODO: char inbyte(int waitflag); */ | 
|  | if (env->active_tc.gpr[4] == 0) | 
|  | env->active_tc.gpr[2] = -1; | 
|  | /* Fall through */ | 
|  | case 11: /* TODO: char inbyte (void); */ | 
|  | env->active_tc.gpr[2] = -1; | 
|  | break; | 
|  | case 3: | 
|  | case 12: | 
|  | printf("%c", (char)(env->active_tc.gpr[4] & 0xFF)); | 
|  | break; | 
|  | case 17: | 
|  | break; | 
|  | case 158: | 
|  | { | 
|  | unsigned char *fmt = (void *)(unsigned long)env->active_tc.gpr[4]; | 
|  | printf("%s", fmt); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_wait (void) | 
|  | { | 
|  | env->halted = 1; | 
|  | helper_raise_exception(EXCP_HLT); | 
|  | } | 
|  |  | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  |  | 
|  | static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr); | 
|  |  | 
|  | #define MMUSUFFIX _mmu | 
|  | #define ALIGNED_ONLY | 
|  |  | 
|  | #define SHIFT 0 | 
|  | #include "softmmu_template.h" | 
|  |  | 
|  | #define SHIFT 1 | 
|  | #include "softmmu_template.h" | 
|  |  | 
|  | #define SHIFT 2 | 
|  | #include "softmmu_template.h" | 
|  |  | 
|  | #define SHIFT 3 | 
|  | #include "softmmu_template.h" | 
|  |  | 
|  | static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr) | 
|  | { | 
|  | env->CP0_BadVAddr = addr; | 
|  | do_restore_state (retaddr); | 
|  | helper_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL); | 
|  | } | 
|  |  | 
|  | void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr) | 
|  | { | 
|  | TranslationBlock *tb; | 
|  | CPUState *saved_env; | 
|  | unsigned long pc; | 
|  | int ret; | 
|  |  | 
|  | /* XXX: hack to restore env in all cases, even if not called from | 
|  | generated code */ | 
|  | saved_env = env; | 
|  | env = cpu_single_env; | 
|  | ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); | 
|  | if (ret) { | 
|  | if (retaddr) { | 
|  | /* now we have a real cpu fault */ | 
|  | pc = (unsigned long)retaddr; | 
|  | tb = tb_find_pc(pc); | 
|  | if (tb) { | 
|  | /* the PC is inside the translated code. It means that we have | 
|  | a virtual CPU fault */ | 
|  | cpu_restore_state(tb, env, pc, NULL); | 
|  | } | 
|  | } | 
|  | helper_raise_exception_err(env->exception_index, env->error_code); | 
|  | } | 
|  | env = saved_env; | 
|  | } | 
|  |  | 
|  | void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec, | 
|  | int unused, int size) | 
|  | { | 
|  | if (is_exec) | 
|  | helper_raise_exception(EXCP_IBE); | 
|  | else | 
|  | helper_raise_exception(EXCP_DBE); | 
|  | } | 
|  | #endif /* !CONFIG_USER_ONLY */ | 
|  |  | 
|  | /* Complex FPU operations which may need stack space. */ | 
|  |  | 
|  | #define FLOAT_ONE32 make_float32(0x3f8 << 20) | 
|  | #define FLOAT_ONE64 make_float64(0x3ffULL << 52) | 
|  | #define FLOAT_TWO32 make_float32(1 << 30) | 
|  | #define FLOAT_TWO64 make_float64(1ULL << 62) | 
|  | #define FLOAT_QNAN32 0x7fbfffff | 
|  | #define FLOAT_QNAN64 0x7ff7ffffffffffffULL | 
|  | #define FLOAT_SNAN32 0x7fffffff | 
|  | #define FLOAT_SNAN64 0x7fffffffffffffffULL | 
|  |  | 
|  | /* convert MIPS rounding mode in FCR31 to IEEE library */ | 
|  | static unsigned int ieee_rm[] = { | 
|  | float_round_nearest_even, | 
|  | float_round_to_zero, | 
|  | float_round_up, | 
|  | float_round_down | 
|  | }; | 
|  |  | 
|  | #define RESTORE_ROUNDING_MODE \ | 
|  | set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status) | 
|  |  | 
|  | #define RESTORE_FLUSH_MODE \ | 
|  | set_flush_to_zero((env->active_fpu.fcr31 & (1 << 24)) != 0, &env->active_fpu.fp_status); | 
|  |  | 
|  | target_ulong helper_cfc1 (uint32_t reg) | 
|  | { | 
|  | target_ulong arg1; | 
|  |  | 
|  | switch (reg) { | 
|  | case 0: | 
|  | arg1 = (int32_t)env->active_fpu.fcr0; | 
|  | break; | 
|  | case 25: | 
|  | arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1); | 
|  | break; | 
|  | case 26: | 
|  | arg1 = env->active_fpu.fcr31 & 0x0003f07c; | 
|  | break; | 
|  | case 28: | 
|  | arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4); | 
|  | break; | 
|  | default: | 
|  | arg1 = (int32_t)env->active_fpu.fcr31; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return arg1; | 
|  | } | 
|  |  | 
|  | void helper_ctc1 (target_ulong arg1, uint32_t reg) | 
|  | { | 
|  | switch(reg) { | 
|  | case 25: | 
|  | if (arg1 & 0xffffff00) | 
|  | return; | 
|  | env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) | | 
|  | ((arg1 & 0x1) << 23); | 
|  | break; | 
|  | case 26: | 
|  | if (arg1 & 0x007c0000) | 
|  | return; | 
|  | env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c); | 
|  | break; | 
|  | case 28: | 
|  | if (arg1 & 0x007c0000) | 
|  | return; | 
|  | env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) | | 
|  | ((arg1 & 0x4) << 22); | 
|  | break; | 
|  | case 31: | 
|  | if (arg1 & 0x007c0000) | 
|  | return; | 
|  | env->active_fpu.fcr31 = arg1; | 
|  | break; | 
|  | default: | 
|  | return; | 
|  | } | 
|  | /* set rounding mode */ | 
|  | RESTORE_ROUNDING_MODE; | 
|  | /* set flush-to-zero mode */ | 
|  | RESTORE_FLUSH_MODE; | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31)) | 
|  | helper_raise_exception(EXCP_FPE); | 
|  | } | 
|  |  | 
|  | static inline char ieee_ex_to_mips(char xcpt) | 
|  | { | 
|  | return (xcpt & float_flag_inexact) >> 5 | | 
|  | (xcpt & float_flag_underflow) >> 3 | | 
|  | (xcpt & float_flag_overflow) >> 1 | | 
|  | (xcpt & float_flag_divbyzero) << 1 | | 
|  | (xcpt & float_flag_invalid) << 4; | 
|  | } | 
|  |  | 
|  | static inline char mips_ex_to_ieee(char xcpt) | 
|  | { | 
|  | return (xcpt & FP_INEXACT) << 5 | | 
|  | (xcpt & FP_UNDERFLOW) << 3 | | 
|  | (xcpt & FP_OVERFLOW) << 1 | | 
|  | (xcpt & FP_DIV0) >> 1 | | 
|  | (xcpt & FP_INVALID) >> 4; | 
|  | } | 
|  |  | 
|  | static inline void update_fcr31(void) | 
|  | { | 
|  | int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status)); | 
|  |  | 
|  | SET_FP_CAUSE(env->active_fpu.fcr31, tmp); | 
|  | if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp) | 
|  | helper_raise_exception(EXCP_FPE); | 
|  | else | 
|  | UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp); | 
|  | } | 
|  |  | 
|  | /* Float support. | 
|  | Single precition routines have a "s" suffix, double precision a | 
|  | "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps", | 
|  | paired single lower "pl", paired single upper "pu".  */ | 
|  |  | 
|  | /* unary operations, modifying fp status  */ | 
|  | uint64_t helper_float_sqrt_d(uint64_t fdt0) | 
|  | { | 
|  | return float64_sqrt(fdt0, &env->active_fpu.fp_status); | 
|  | } | 
|  |  | 
|  | uint32_t helper_float_sqrt_s(uint32_t fst0) | 
|  | { | 
|  | return float32_sqrt(fst0, &env->active_fpu.fp_status); | 
|  | } | 
|  |  | 
|  | uint64_t helper_float_cvtd_s(uint32_t fst0) | 
|  | { | 
|  | uint64_t fdt2; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | return fdt2; | 
|  | } | 
|  |  | 
|  | uint64_t helper_float_cvtd_w(uint32_t wt0) | 
|  | { | 
|  | uint64_t fdt2; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | return fdt2; | 
|  | } | 
|  |  | 
|  | uint64_t helper_float_cvtd_l(uint64_t dt0) | 
|  | { | 
|  | uint64_t fdt2; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | return fdt2; | 
|  | } | 
|  |  | 
|  | uint64_t helper_float_cvtl_d(uint64_t fdt0) | 
|  | { | 
|  | uint64_t dt2; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) | 
|  | dt2 = FLOAT_SNAN64; | 
|  | return dt2; | 
|  | } | 
|  |  | 
|  | uint64_t helper_float_cvtl_s(uint32_t fst0) | 
|  | { | 
|  | uint64_t dt2; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) | 
|  | dt2 = FLOAT_SNAN64; | 
|  | return dt2; | 
|  | } | 
|  |  | 
|  | uint64_t helper_float_cvtps_pw(uint64_t dt0) | 
|  | { | 
|  | uint32_t fst2; | 
|  | uint32_t fsth2; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); | 
|  | fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | return ((uint64_t)fsth2 << 32) | fst2; | 
|  | } | 
|  |  | 
|  | uint64_t helper_float_cvtpw_ps(uint64_t fdt0) | 
|  | { | 
|  | uint32_t wt2; | 
|  | uint32_t wth2; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); | 
|  | wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) { | 
|  | wt2 = FLOAT_SNAN32; | 
|  | wth2 = FLOAT_SNAN32; | 
|  | } | 
|  | return ((uint64_t)wth2 << 32) | wt2; | 
|  | } | 
|  |  | 
|  | uint32_t helper_float_cvts_d(uint64_t fdt0) | 
|  | { | 
|  | uint32_t fst2; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | return fst2; | 
|  | } | 
|  |  | 
|  | uint32_t helper_float_cvts_w(uint32_t wt0) | 
|  | { | 
|  | uint32_t fst2; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | return fst2; | 
|  | } | 
|  |  | 
|  | uint32_t helper_float_cvts_l(uint64_t dt0) | 
|  | { | 
|  | uint32_t fst2; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | return fst2; | 
|  | } | 
|  |  | 
|  | uint32_t helper_float_cvts_pl(uint32_t wt0) | 
|  | { | 
|  | uint32_t wt2; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | wt2 = wt0; | 
|  | update_fcr31(); | 
|  | return wt2; | 
|  | } | 
|  |  | 
|  | uint32_t helper_float_cvts_pu(uint32_t wth0) | 
|  | { | 
|  | uint32_t wt2; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | wt2 = wth0; | 
|  | update_fcr31(); | 
|  | return wt2; | 
|  | } | 
|  |  | 
|  | uint32_t helper_float_cvtw_s(uint32_t fst0) | 
|  | { | 
|  | uint32_t wt2; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) | 
|  | wt2 = FLOAT_SNAN32; | 
|  | return wt2; | 
|  | } | 
|  |  | 
|  | uint32_t helper_float_cvtw_d(uint64_t fdt0) | 
|  | { | 
|  | uint32_t wt2; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) | 
|  | wt2 = FLOAT_SNAN32; | 
|  | return wt2; | 
|  | } | 
|  |  | 
|  | uint64_t helper_float_roundl_d(uint64_t fdt0) | 
|  | { | 
|  | uint64_t dt2; | 
|  |  | 
|  | set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); | 
|  | dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); | 
|  | RESTORE_ROUNDING_MODE; | 
|  | update_fcr31(); | 
|  | if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) | 
|  | dt2 = FLOAT_SNAN64; | 
|  | return dt2; | 
|  | } | 
|  |  | 
|  | uint64_t helper_float_roundl_s(uint32_t fst0) | 
|  | { | 
|  | uint64_t dt2; | 
|  |  | 
|  | set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); | 
|  | dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); | 
|  | RESTORE_ROUNDING_MODE; | 
|  | update_fcr31(); | 
|  | if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) | 
|  | dt2 = FLOAT_SNAN64; | 
|  | return dt2; | 
|  | } | 
|  |  | 
|  | uint32_t helper_float_roundw_d(uint64_t fdt0) | 
|  | { | 
|  | uint32_t wt2; | 
|  |  | 
|  | set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); | 
|  | wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); | 
|  | RESTORE_ROUNDING_MODE; | 
|  | update_fcr31(); | 
|  | if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) | 
|  | wt2 = FLOAT_SNAN32; | 
|  | return wt2; | 
|  | } | 
|  |  | 
|  | uint32_t helper_float_roundw_s(uint32_t fst0) | 
|  | { | 
|  | uint32_t wt2; | 
|  |  | 
|  | set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); | 
|  | wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); | 
|  | RESTORE_ROUNDING_MODE; | 
|  | update_fcr31(); | 
|  | if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) | 
|  | wt2 = FLOAT_SNAN32; | 
|  | return wt2; | 
|  | } | 
|  |  | 
|  | uint64_t helper_float_truncl_d(uint64_t fdt0) | 
|  | { | 
|  | uint64_t dt2; | 
|  |  | 
|  | dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) | 
|  | dt2 = FLOAT_SNAN64; | 
|  | return dt2; | 
|  | } | 
|  |  | 
|  | uint64_t helper_float_truncl_s(uint32_t fst0) | 
|  | { | 
|  | uint64_t dt2; | 
|  |  | 
|  | dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) | 
|  | dt2 = FLOAT_SNAN64; | 
|  | return dt2; | 
|  | } | 
|  |  | 
|  | uint32_t helper_float_truncw_d(uint64_t fdt0) | 
|  | { | 
|  | uint32_t wt2; | 
|  |  | 
|  | wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) | 
|  | wt2 = FLOAT_SNAN32; | 
|  | return wt2; | 
|  | } | 
|  |  | 
|  | uint32_t helper_float_truncw_s(uint32_t fst0) | 
|  | { | 
|  | uint32_t wt2; | 
|  |  | 
|  | wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) | 
|  | wt2 = FLOAT_SNAN32; | 
|  | return wt2; | 
|  | } | 
|  |  | 
|  | uint64_t helper_float_ceill_d(uint64_t fdt0) | 
|  | { | 
|  | uint64_t dt2; | 
|  |  | 
|  | set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); | 
|  | dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); | 
|  | RESTORE_ROUNDING_MODE; | 
|  | update_fcr31(); | 
|  | if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) | 
|  | dt2 = FLOAT_SNAN64; | 
|  | return dt2; | 
|  | } | 
|  |  | 
|  | uint64_t helper_float_ceill_s(uint32_t fst0) | 
|  | { | 
|  | uint64_t dt2; | 
|  |  | 
|  | set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); | 
|  | dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); | 
|  | RESTORE_ROUNDING_MODE; | 
|  | update_fcr31(); | 
|  | if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) | 
|  | dt2 = FLOAT_SNAN64; | 
|  | return dt2; | 
|  | } | 
|  |  | 
|  | uint32_t helper_float_ceilw_d(uint64_t fdt0) | 
|  | { | 
|  | uint32_t wt2; | 
|  |  | 
|  | set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); | 
|  | wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); | 
|  | RESTORE_ROUNDING_MODE; | 
|  | update_fcr31(); | 
|  | if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) | 
|  | wt2 = FLOAT_SNAN32; | 
|  | return wt2; | 
|  | } | 
|  |  | 
|  | uint32_t helper_float_ceilw_s(uint32_t fst0) | 
|  | { | 
|  | uint32_t wt2; | 
|  |  | 
|  | set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); | 
|  | wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); | 
|  | RESTORE_ROUNDING_MODE; | 
|  | update_fcr31(); | 
|  | if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) | 
|  | wt2 = FLOAT_SNAN32; | 
|  | return wt2; | 
|  | } | 
|  |  | 
|  | uint64_t helper_float_floorl_d(uint64_t fdt0) | 
|  | { | 
|  | uint64_t dt2; | 
|  |  | 
|  | set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); | 
|  | dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); | 
|  | RESTORE_ROUNDING_MODE; | 
|  | update_fcr31(); | 
|  | if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) | 
|  | dt2 = FLOAT_SNAN64; | 
|  | return dt2; | 
|  | } | 
|  |  | 
|  | uint64_t helper_float_floorl_s(uint32_t fst0) | 
|  | { | 
|  | uint64_t dt2; | 
|  |  | 
|  | set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); | 
|  | dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); | 
|  | RESTORE_ROUNDING_MODE; | 
|  | update_fcr31(); | 
|  | if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) | 
|  | dt2 = FLOAT_SNAN64; | 
|  | return dt2; | 
|  | } | 
|  |  | 
|  | uint32_t helper_float_floorw_d(uint64_t fdt0) | 
|  | { | 
|  | uint32_t wt2; | 
|  |  | 
|  | set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); | 
|  | wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); | 
|  | RESTORE_ROUNDING_MODE; | 
|  | update_fcr31(); | 
|  | if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) | 
|  | wt2 = FLOAT_SNAN32; | 
|  | return wt2; | 
|  | } | 
|  |  | 
|  | uint32_t helper_float_floorw_s(uint32_t fst0) | 
|  | { | 
|  | uint32_t wt2; | 
|  |  | 
|  | set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); | 
|  | wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); | 
|  | RESTORE_ROUNDING_MODE; | 
|  | update_fcr31(); | 
|  | if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) | 
|  | wt2 = FLOAT_SNAN32; | 
|  | return wt2; | 
|  | } | 
|  |  | 
|  | /* unary operations, not modifying fp status  */ | 
|  | #define FLOAT_UNOP(name)                                       \ | 
|  | uint64_t helper_float_ ## name ## _d(uint64_t fdt0)                \ | 
|  | {                                                              \ | 
|  | return float64_ ## name(fdt0);                             \ | 
|  | }                                                              \ | 
|  | uint32_t helper_float_ ## name ## _s(uint32_t fst0)                \ | 
|  | {                                                              \ | 
|  | return float32_ ## name(fst0);                             \ | 
|  | }                                                              \ | 
|  | uint64_t helper_float_ ## name ## _ps(uint64_t fdt0)               \ | 
|  | {                                                              \ | 
|  | uint32_t wt0;                                              \ | 
|  | uint32_t wth0;                                             \ | 
|  | \ | 
|  | wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF);                 \ | 
|  | wth0 = float32_ ## name(fdt0 >> 32);                       \ | 
|  | return ((uint64_t)wth0 << 32) | wt0;                       \ | 
|  | } | 
|  | FLOAT_UNOP(abs) | 
|  | FLOAT_UNOP(chs) | 
|  | #undef FLOAT_UNOP | 
|  |  | 
|  | /* MIPS specific unary operations */ | 
|  | uint64_t helper_float_recip_d(uint64_t fdt0) | 
|  | { | 
|  | uint64_t fdt2; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | return fdt2; | 
|  | } | 
|  |  | 
|  | uint32_t helper_float_recip_s(uint32_t fst0) | 
|  | { | 
|  | uint32_t fst2; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | return fst2; | 
|  | } | 
|  |  | 
|  | uint64_t helper_float_rsqrt_d(uint64_t fdt0) | 
|  | { | 
|  | uint64_t fdt2; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status); | 
|  | fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | return fdt2; | 
|  | } | 
|  |  | 
|  | uint32_t helper_float_rsqrt_s(uint32_t fst0) | 
|  | { | 
|  | uint32_t fst2; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status); | 
|  | fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | return fst2; | 
|  | } | 
|  |  | 
|  | uint64_t helper_float_recip1_d(uint64_t fdt0) | 
|  | { | 
|  | uint64_t fdt2; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | return fdt2; | 
|  | } | 
|  |  | 
|  | uint32_t helper_float_recip1_s(uint32_t fst0) | 
|  | { | 
|  | uint32_t fst2; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | return fst2; | 
|  | } | 
|  |  | 
|  | uint64_t helper_float_recip1_ps(uint64_t fdt0) | 
|  | { | 
|  | uint32_t fst2; | 
|  | uint32_t fsth2; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | fst2 = float32_div(FLOAT_ONE32, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); | 
|  | fsth2 = float32_div(FLOAT_ONE32, fdt0 >> 32, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | return ((uint64_t)fsth2 << 32) | fst2; | 
|  | } | 
|  |  | 
|  | uint64_t helper_float_rsqrt1_d(uint64_t fdt0) | 
|  | { | 
|  | uint64_t fdt2; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status); | 
|  | fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | return fdt2; | 
|  | } | 
|  |  | 
|  | uint32_t helper_float_rsqrt1_s(uint32_t fst0) | 
|  | { | 
|  | uint32_t fst2; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status); | 
|  | fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | return fst2; | 
|  | } | 
|  |  | 
|  | uint64_t helper_float_rsqrt1_ps(uint64_t fdt0) | 
|  | { | 
|  | uint32_t fst2; | 
|  | uint32_t fsth2; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); | 
|  | fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status); | 
|  | fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status); | 
|  | fsth2 = float32_div(FLOAT_ONE32, fsth2, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | return ((uint64_t)fsth2 << 32) | fst2; | 
|  | } | 
|  |  | 
|  | #define FLOAT_OP(name, p) void helper_float_##name##_##p(void) | 
|  |  | 
|  | /* binary operations */ | 
|  | #define FLOAT_BINOP(name)                                          \ | 
|  | uint64_t helper_float_ ## name ## _d(uint64_t fdt0, uint64_t fdt1)     \ | 
|  | {                                                                  \ | 
|  | uint64_t dt2;                                                  \ | 
|  | \ | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status);            \ | 
|  | dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status);     \ | 
|  | update_fcr31();                                                \ | 
|  | if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID)                \ | 
|  | dt2 = FLOAT_QNAN64;                                        \ | 
|  | return dt2;                                                    \ | 
|  | }                                                                  \ | 
|  | \ | 
|  | uint32_t helper_float_ ## name ## _s(uint32_t fst0, uint32_t fst1)     \ | 
|  | {                                                                  \ | 
|  | uint32_t wt2;                                                  \ | 
|  | \ | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status);            \ | 
|  | wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status);     \ | 
|  | update_fcr31();                                                \ | 
|  | if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID)                \ | 
|  | wt2 = FLOAT_QNAN32;                                        \ | 
|  | return wt2;                                                    \ | 
|  | }                                                                  \ | 
|  | \ | 
|  | uint64_t helper_float_ ## name ## _ps(uint64_t fdt0, uint64_t fdt1)    \ | 
|  | {                                                                  \ | 
|  | uint32_t fst0 = fdt0 & 0XFFFFFFFF;                             \ | 
|  | uint32_t fsth0 = fdt0 >> 32;                                   \ | 
|  | uint32_t fst1 = fdt1 & 0XFFFFFFFF;                             \ | 
|  | uint32_t fsth1 = fdt1 >> 32;                                   \ | 
|  | uint32_t wt2;                                                  \ | 
|  | uint32_t wth2;                                                 \ | 
|  | \ | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status);            \ | 
|  | wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status);     \ | 
|  | wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status);  \ | 
|  | update_fcr31();                                                \ | 
|  | if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) {              \ | 
|  | wt2 = FLOAT_QNAN32;                                        \ | 
|  | wth2 = FLOAT_QNAN32;                                       \ | 
|  | }                                                              \ | 
|  | return ((uint64_t)wth2 << 32) | wt2;                           \ | 
|  | } | 
|  |  | 
|  | FLOAT_BINOP(add) | 
|  | FLOAT_BINOP(sub) | 
|  | FLOAT_BINOP(mul) | 
|  | FLOAT_BINOP(div) | 
|  | #undef FLOAT_BINOP | 
|  |  | 
|  | /* ternary operations */ | 
|  | #define FLOAT_TERNOP(name1, name2)                                        \ | 
|  | uint64_t helper_float_ ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1,  \ | 
|  | uint64_t fdt2)                 \ | 
|  | {                                                                         \ | 
|  | fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status);          \ | 
|  | return float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status);          \ | 
|  | }                                                                         \ | 
|  | \ | 
|  | uint32_t helper_float_ ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1,  \ | 
|  | uint32_t fst2)                 \ | 
|  | {                                                                         \ | 
|  | fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status);          \ | 
|  | return float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status);          \ | 
|  | }                                                                         \ | 
|  | \ | 
|  | uint64_t helper_float_ ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1, \ | 
|  | uint64_t fdt2)                \ | 
|  | {                                                                         \ | 
|  | uint32_t fst0 = fdt0 & 0XFFFFFFFF;                                    \ | 
|  | uint32_t fsth0 = fdt0 >> 32;                                          \ | 
|  | uint32_t fst1 = fdt1 & 0XFFFFFFFF;                                    \ | 
|  | uint32_t fsth1 = fdt1 >> 32;                                          \ | 
|  | uint32_t fst2 = fdt2 & 0XFFFFFFFF;                                    \ | 
|  | uint32_t fsth2 = fdt2 >> 32;                                          \ | 
|  | \ | 
|  | fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status);          \ | 
|  | fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status);       \ | 
|  | fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status);          \ | 
|  | fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status);       \ | 
|  | return ((uint64_t)fsth2 << 32) | fst2;                                \ | 
|  | } | 
|  |  | 
|  | FLOAT_TERNOP(mul, add) | 
|  | FLOAT_TERNOP(mul, sub) | 
|  | #undef FLOAT_TERNOP | 
|  |  | 
|  | /* negated ternary operations */ | 
|  | #define FLOAT_NTERNOP(name1, name2)                                       \ | 
|  | uint64_t helper_float_n ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \ | 
|  | uint64_t fdt2)                 \ | 
|  | {                                                                         \ | 
|  | fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status);          \ | 
|  | fdt2 = float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status);          \ | 
|  | return float64_chs(fdt2);                                             \ | 
|  | }                                                                         \ | 
|  | \ | 
|  | uint32_t helper_float_n ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \ | 
|  | uint32_t fst2)                 \ | 
|  | {                                                                         \ | 
|  | fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status);          \ | 
|  | fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status);          \ | 
|  | return float32_chs(fst2);                                             \ | 
|  | }                                                                         \ | 
|  | \ | 
|  | uint64_t helper_float_n ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1,\ | 
|  | uint64_t fdt2)                 \ | 
|  | {                                                                         \ | 
|  | uint32_t fst0 = fdt0 & 0XFFFFFFFF;                                    \ | 
|  | uint32_t fsth0 = fdt0 >> 32;                                          \ | 
|  | uint32_t fst1 = fdt1 & 0XFFFFFFFF;                                    \ | 
|  | uint32_t fsth1 = fdt1 >> 32;                                          \ | 
|  | uint32_t fst2 = fdt2 & 0XFFFFFFFF;                                    \ | 
|  | uint32_t fsth2 = fdt2 >> 32;                                          \ | 
|  | \ | 
|  | fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status);          \ | 
|  | fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status);       \ | 
|  | fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status);          \ | 
|  | fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status);       \ | 
|  | fst2 = float32_chs(fst2);                                             \ | 
|  | fsth2 = float32_chs(fsth2);                                           \ | 
|  | return ((uint64_t)fsth2 << 32) | fst2;                                \ | 
|  | } | 
|  |  | 
|  | FLOAT_NTERNOP(mul, add) | 
|  | FLOAT_NTERNOP(mul, sub) | 
|  | #undef FLOAT_NTERNOP | 
|  |  | 
|  | /* MIPS specific binary operations */ | 
|  | uint64_t helper_float_recip2_d(uint64_t fdt0, uint64_t fdt2) | 
|  | { | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status); | 
|  | fdt2 = float64_chs(float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status)); | 
|  | update_fcr31(); | 
|  | return fdt2; | 
|  | } | 
|  |  | 
|  | uint32_t helper_float_recip2_s(uint32_t fst0, uint32_t fst2) | 
|  | { | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); | 
|  | fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status)); | 
|  | update_fcr31(); | 
|  | return fst2; | 
|  | } | 
|  |  | 
|  | uint64_t helper_float_recip2_ps(uint64_t fdt0, uint64_t fdt2) | 
|  | { | 
|  | uint32_t fst0 = fdt0 & 0XFFFFFFFF; | 
|  | uint32_t fsth0 = fdt0 >> 32; | 
|  | uint32_t fst2 = fdt2 & 0XFFFFFFFF; | 
|  | uint32_t fsth2 = fdt2 >> 32; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); | 
|  | fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status); | 
|  | fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status)); | 
|  | fsth2 = float32_chs(float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status)); | 
|  | update_fcr31(); | 
|  | return ((uint64_t)fsth2 << 32) | fst2; | 
|  | } | 
|  |  | 
|  | uint64_t helper_float_rsqrt2_d(uint64_t fdt0, uint64_t fdt2) | 
|  | { | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status); | 
|  | fdt2 = float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status); | 
|  | fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status)); | 
|  | update_fcr31(); | 
|  | return fdt2; | 
|  | } | 
|  |  | 
|  | uint32_t helper_float_rsqrt2_s(uint32_t fst0, uint32_t fst2) | 
|  | { | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); | 
|  | fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status); | 
|  | fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status)); | 
|  | update_fcr31(); | 
|  | return fst2; | 
|  | } | 
|  |  | 
|  | uint64_t helper_float_rsqrt2_ps(uint64_t fdt0, uint64_t fdt2) | 
|  | { | 
|  | uint32_t fst0 = fdt0 & 0XFFFFFFFF; | 
|  | uint32_t fsth0 = fdt0 >> 32; | 
|  | uint32_t fst2 = fdt2 & 0XFFFFFFFF; | 
|  | uint32_t fsth2 = fdt2 >> 32; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); | 
|  | fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status); | 
|  | fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status); | 
|  | fsth2 = float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status); | 
|  | fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status)); | 
|  | fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status)); | 
|  | update_fcr31(); | 
|  | return ((uint64_t)fsth2 << 32) | fst2; | 
|  | } | 
|  |  | 
|  | uint64_t helper_float_addr_ps(uint64_t fdt0, uint64_t fdt1) | 
|  | { | 
|  | uint32_t fst0 = fdt0 & 0XFFFFFFFF; | 
|  | uint32_t fsth0 = fdt0 >> 32; | 
|  | uint32_t fst1 = fdt1 & 0XFFFFFFFF; | 
|  | uint32_t fsth1 = fdt1 >> 32; | 
|  | uint32_t fst2; | 
|  | uint32_t fsth2; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status); | 
|  | fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | return ((uint64_t)fsth2 << 32) | fst2; | 
|  | } | 
|  |  | 
|  | uint64_t helper_float_mulr_ps(uint64_t fdt0, uint64_t fdt1) | 
|  | { | 
|  | uint32_t fst0 = fdt0 & 0XFFFFFFFF; | 
|  | uint32_t fsth0 = fdt0 >> 32; | 
|  | uint32_t fst1 = fdt1 & 0XFFFFFFFF; | 
|  | uint32_t fsth1 = fdt1 >> 32; | 
|  | uint32_t fst2; | 
|  | uint32_t fsth2; | 
|  |  | 
|  | set_float_exception_flags(0, &env->active_fpu.fp_status); | 
|  | fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status); | 
|  | fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status); | 
|  | update_fcr31(); | 
|  | return ((uint64_t)fsth2 << 32) | fst2; | 
|  | } | 
|  |  | 
|  | /* compare operations */ | 
|  | #define FOP_COND_D(op, cond)                                   \ | 
|  | void helper_cmp_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc)    \ | 
|  | {                                                              \ | 
|  | int c = cond;                                              \ | 
|  | update_fcr31();                                            \ | 
|  | if (c)                                                     \ | 
|  | SET_FP_COND(cc, env->active_fpu);                      \ | 
|  | else                                                       \ | 
|  | CLEAR_FP_COND(cc, env->active_fpu);                    \ | 
|  | }                                                              \ | 
|  | void helper_cmpabs_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \ | 
|  | {                                                              \ | 
|  | int c;                                                     \ | 
|  | fdt0 = float64_abs(fdt0);                                  \ | 
|  | fdt1 = float64_abs(fdt1);                                  \ | 
|  | c = cond;                                                  \ | 
|  | update_fcr31();                                            \ | 
|  | if (c)                                                     \ | 
|  | SET_FP_COND(cc, env->active_fpu);                      \ | 
|  | else                                                       \ | 
|  | CLEAR_FP_COND(cc, env->active_fpu);                    \ | 
|  | } | 
|  |  | 
|  | static int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM) | 
|  | { | 
|  | if (float64_is_signaling_nan(a) || | 
|  | float64_is_signaling_nan(b) || | 
|  | (sig && (float64_is_nan(a) || float64_is_nan(b)))) { | 
|  | float_raise(float_flag_invalid, status); | 
|  | return 1; | 
|  | } else if (float64_is_nan(a) || float64_is_nan(b)) { | 
|  | return 1; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* NOTE: the comma operator will make "cond" to eval to false, | 
|  | * but float*_is_unordered() is still called. */ | 
|  | FOP_COND_D(f,   (float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status), 0)) | 
|  | FOP_COND_D(un,  float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status)) | 
|  | FOP_COND_D(eq,  !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_D(ueq, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status)  || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_D(olt, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_D(ult, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status)  || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_D(ole, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_D(ule, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status)  || float64_le(fdt0, fdt1, &env->active_fpu.fp_status)) | 
|  | /* NOTE: the comma operator will make "cond" to eval to false, | 
|  | * but float*_is_unordered() is still called. */ | 
|  | FOP_COND_D(sf,  (float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status), 0)) | 
|  | FOP_COND_D(ngle,float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status)) | 
|  | FOP_COND_D(seq, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_D(ngl, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status)  || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_D(lt,  !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_D(nge, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status)  || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_D(le,  !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_D(ngt, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status)  || float64_le(fdt0, fdt1, &env->active_fpu.fp_status)) | 
|  |  | 
|  | #define FOP_COND_S(op, cond)                                   \ | 
|  | void helper_cmp_s_ ## op (uint32_t fst0, uint32_t fst1, int cc)    \ | 
|  | {                                                              \ | 
|  | int c = cond;                                              \ | 
|  | update_fcr31();                                            \ | 
|  | if (c)                                                     \ | 
|  | SET_FP_COND(cc, env->active_fpu);                      \ | 
|  | else                                                       \ | 
|  | CLEAR_FP_COND(cc, env->active_fpu);                    \ | 
|  | }                                                              \ | 
|  | void helper_cmpabs_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \ | 
|  | {                                                              \ | 
|  | int c;                                                     \ | 
|  | fst0 = float32_abs(fst0);                                  \ | 
|  | fst1 = float32_abs(fst1);                                  \ | 
|  | c = cond;                                                  \ | 
|  | update_fcr31();                                            \ | 
|  | if (c)                                                     \ | 
|  | SET_FP_COND(cc, env->active_fpu);                      \ | 
|  | else                                                       \ | 
|  | CLEAR_FP_COND(cc, env->active_fpu);                    \ | 
|  | } | 
|  |  | 
|  | static flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM) | 
|  | { | 
|  | if (float32_is_signaling_nan(a) || | 
|  | float32_is_signaling_nan(b) || | 
|  | (sig && (float32_is_nan(a) || float32_is_nan(b)))) { | 
|  | float_raise(float_flag_invalid, status); | 
|  | return 1; | 
|  | } else if (float32_is_nan(a) || float32_is_nan(b)) { | 
|  | return 1; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* NOTE: the comma operator will make "cond" to eval to false, | 
|  | * but float*_is_unordered() is still called. */ | 
|  | FOP_COND_S(f,   (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0)) | 
|  | FOP_COND_S(un,  float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)) | 
|  | FOP_COND_S(eq,  !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_S(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)  || float32_eq(fst0, fst1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_S(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_S(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)  || float32_lt(fst0, fst1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_S(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_S(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)  || float32_le(fst0, fst1, &env->active_fpu.fp_status)) | 
|  | /* NOTE: the comma operator will make "cond" to eval to false, | 
|  | * but float*_is_unordered() is still called. */ | 
|  | FOP_COND_S(sf,  (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0)) | 
|  | FOP_COND_S(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)) | 
|  | FOP_COND_S(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_S(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)  || float32_eq(fst0, fst1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_S(lt,  !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_S(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)  || float32_lt(fst0, fst1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_S(le,  !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_S(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)  || float32_le(fst0, fst1, &env->active_fpu.fp_status)) | 
|  |  | 
|  | #define FOP_COND_PS(op, condl, condh)                           \ | 
|  | void helper_cmp_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc)    \ | 
|  | {                                                               \ | 
|  | uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF);             \ | 
|  | uint32_t fsth0 = float32_abs(fdt0 >> 32);                   \ | 
|  | uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF);             \ | 
|  | uint32_t fsth1 = float32_abs(fdt1 >> 32);                   \ | 
|  | int cl = condl;                                             \ | 
|  | int ch = condh;                                             \ | 
|  | \ | 
|  | update_fcr31();                                             \ | 
|  | if (cl)                                                     \ | 
|  | SET_FP_COND(cc, env->active_fpu);                       \ | 
|  | else                                                        \ | 
|  | CLEAR_FP_COND(cc, env->active_fpu);                     \ | 
|  | if (ch)                                                     \ | 
|  | SET_FP_COND(cc + 1, env->active_fpu);                   \ | 
|  | else                                                        \ | 
|  | CLEAR_FP_COND(cc + 1, env->active_fpu);                 \ | 
|  | }                                                               \ | 
|  | void helper_cmpabs_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \ | 
|  | {                                                               \ | 
|  | uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF);             \ | 
|  | uint32_t fsth0 = float32_abs(fdt0 >> 32);                   \ | 
|  | uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF);             \ | 
|  | uint32_t fsth1 = float32_abs(fdt1 >> 32);                   \ | 
|  | int cl = condl;                                             \ | 
|  | int ch = condh;                                             \ | 
|  | \ | 
|  | update_fcr31();                                             \ | 
|  | if (cl)                                                     \ | 
|  | SET_FP_COND(cc, env->active_fpu);                       \ | 
|  | else                                                        \ | 
|  | CLEAR_FP_COND(cc, env->active_fpu);                     \ | 
|  | if (ch)                                                     \ | 
|  | SET_FP_COND(cc + 1, env->active_fpu);                   \ | 
|  | else                                                        \ | 
|  | CLEAR_FP_COND(cc + 1, env->active_fpu);                 \ | 
|  | } | 
|  |  | 
|  | /* NOTE: the comma operator will make "cond" to eval to false, | 
|  | * but float*_is_unordered() is still called. */ | 
|  | FOP_COND_PS(f,   (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0), | 
|  | (float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status), 0)) | 
|  | FOP_COND_PS(un,  float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), | 
|  | float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status)) | 
|  | FOP_COND_PS(eq,  !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)   && float32_eq(fst0, fst1, &env->active_fpu.fp_status), | 
|  | !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_PS(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)    || float32_eq(fst0, fst1, &env->active_fpu.fp_status), | 
|  | float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status)  || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_PS(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)   && float32_lt(fst0, fst1, &env->active_fpu.fp_status), | 
|  | !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_PS(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)    || float32_lt(fst0, fst1, &env->active_fpu.fp_status), | 
|  | float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status)  || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_PS(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)   && float32_le(fst0, fst1, &env->active_fpu.fp_status), | 
|  | !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_PS(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)    || float32_le(fst0, fst1, &env->active_fpu.fp_status), | 
|  | float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status)  || float32_le(fsth0, fsth1, &env->active_fpu.fp_status)) | 
|  | /* NOTE: the comma operator will make "cond" to eval to false, | 
|  | * but float*_is_unordered() is still called. */ | 
|  | FOP_COND_PS(sf,  (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0), | 
|  | (float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status), 0)) | 
|  | FOP_COND_PS(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), | 
|  | float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status)) | 
|  | FOP_COND_PS(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)   && float32_eq(fst0, fst1, &env->active_fpu.fp_status), | 
|  | !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_PS(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)    || float32_eq(fst0, fst1, &env->active_fpu.fp_status), | 
|  | float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status)  || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_PS(lt,  !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)   && float32_lt(fst0, fst1, &env->active_fpu.fp_status), | 
|  | !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_PS(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)    || float32_lt(fst0, fst1, &env->active_fpu.fp_status), | 
|  | float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status)  || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_PS(le,  !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)   && float32_le(fst0, fst1, &env->active_fpu.fp_status), | 
|  | !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status)) | 
|  | FOP_COND_PS(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)    || float32_le(fst0, fst1, &env->active_fpu.fp_status), | 
|  | float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status)  || float32_le(fsth0, fsth1, &env->active_fpu.fp_status)) |