|  | /* | 
|  | *  Software MMU support | 
|  | * | 
|  | * Generate helpers used by TCG for qemu_ld/st ops and code load | 
|  | * functions. | 
|  | * | 
|  | * Included from target op helpers and exec.c. | 
|  | * | 
|  | *  Copyright (c) 2003 Fabrice Bellard | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  | #include "qemu/timer.h" | 
|  | #include "exec/address-spaces.h" | 
|  | #include "exec/memory.h" | 
|  |  | 
|  | #define DATA_SIZE (1 << SHIFT) | 
|  |  | 
|  | #if DATA_SIZE == 8 | 
|  | #define SUFFIX q | 
|  | #define LSUFFIX q | 
|  | #define SDATA_TYPE  int64_t | 
|  | #define DATA_TYPE  uint64_t | 
|  | #elif DATA_SIZE == 4 | 
|  | #define SUFFIX l | 
|  | #define LSUFFIX l | 
|  | #define SDATA_TYPE  int32_t | 
|  | #define DATA_TYPE  uint32_t | 
|  | #elif DATA_SIZE == 2 | 
|  | #define SUFFIX w | 
|  | #define LSUFFIX uw | 
|  | #define SDATA_TYPE  int16_t | 
|  | #define DATA_TYPE  uint16_t | 
|  | #elif DATA_SIZE == 1 | 
|  | #define SUFFIX b | 
|  | #define LSUFFIX ub | 
|  | #define SDATA_TYPE  int8_t | 
|  | #define DATA_TYPE  uint8_t | 
|  | #else | 
|  | #error unsupported data size | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* For the benefit of TCG generated code, we want to avoid the complication | 
|  | of ABI-specific return type promotion and always return a value extended | 
|  | to the register size of the host.  This is tcg_target_long, except in the | 
|  | case of a 32-bit host and 64-bit data, and for that we always have | 
|  | uint64_t.  Don't bother with this widened value for SOFTMMU_CODE_ACCESS.  */ | 
|  | #if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8 | 
|  | # define WORD_TYPE  DATA_TYPE | 
|  | # define USUFFIX    SUFFIX | 
|  | #else | 
|  | # define WORD_TYPE  tcg_target_ulong | 
|  | # define USUFFIX    glue(u, SUFFIX) | 
|  | # define SSUFFIX    glue(s, SUFFIX) | 
|  | #endif | 
|  |  | 
|  | #ifdef SOFTMMU_CODE_ACCESS | 
|  | #define READ_ACCESS_TYPE 2 | 
|  | #define ADDR_READ addr_code | 
|  | #else | 
|  | #define READ_ACCESS_TYPE 0 | 
|  | #define ADDR_READ addr_read | 
|  | #endif | 
|  |  | 
|  | #if DATA_SIZE == 8 | 
|  | # define BSWAP(X)  bswap64(X) | 
|  | #elif DATA_SIZE == 4 | 
|  | # define BSWAP(X)  bswap32(X) | 
|  | #elif DATA_SIZE == 2 | 
|  | # define BSWAP(X)  bswap16(X) | 
|  | #else | 
|  | # define BSWAP(X)  (X) | 
|  | #endif | 
|  |  | 
|  | #ifdef TARGET_WORDS_BIGENDIAN | 
|  | # define TGT_BE(X)  (X) | 
|  | # define TGT_LE(X)  BSWAP(X) | 
|  | #else | 
|  | # define TGT_BE(X)  BSWAP(X) | 
|  | # define TGT_LE(X)  (X) | 
|  | #endif | 
|  |  | 
|  | #if DATA_SIZE == 1 | 
|  | # define helper_le_ld_name  glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX) | 
|  | # define helper_be_ld_name  helper_le_ld_name | 
|  | # define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX) | 
|  | # define helper_be_lds_name helper_le_lds_name | 
|  | # define helper_le_st_name  glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX) | 
|  | # define helper_be_st_name  helper_le_st_name | 
|  | #else | 
|  | # define helper_le_ld_name  glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX) | 
|  | # define helper_be_ld_name  glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX) | 
|  | # define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX) | 
|  | # define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX) | 
|  | # define helper_le_st_name  glue(glue(helper_le_st, SUFFIX), MMUSUFFIX) | 
|  | # define helper_be_st_name  glue(glue(helper_be_st, SUFFIX), MMUSUFFIX) | 
|  | #endif | 
|  |  | 
|  | #ifdef TARGET_WORDS_BIGENDIAN | 
|  | # define helper_te_ld_name  helper_be_ld_name | 
|  | # define helper_te_st_name  helper_be_st_name | 
|  | #else | 
|  | # define helper_te_ld_name  helper_le_ld_name | 
|  | # define helper_te_st_name  helper_le_st_name | 
|  | #endif | 
|  |  | 
|  | static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env, | 
|  | hwaddr physaddr, | 
|  | target_ulong addr, | 
|  | uintptr_t retaddr) | 
|  | { | 
|  | uint64_t val; | 
|  | CPUState *cpu = ENV_GET_CPU(env); | 
|  | MemoryRegion *mr = iotlb_to_region(cpu->as, physaddr); | 
|  |  | 
|  | physaddr = (physaddr & TARGET_PAGE_MASK) + addr; | 
|  | cpu->mem_io_pc = retaddr; | 
|  | if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu_can_do_io(cpu)) { | 
|  | cpu_io_recompile(cpu, retaddr); | 
|  | } | 
|  |  | 
|  | cpu->mem_io_vaddr = addr; | 
|  | io_mem_read(mr, physaddr, &val, 1 << SHIFT); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | #ifdef SOFTMMU_CODE_ACCESS | 
|  | static __attribute__((unused)) | 
|  | #endif | 
|  | WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr, int mmu_idx, | 
|  | uintptr_t retaddr) | 
|  | { | 
|  | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | 
|  | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; | 
|  | uintptr_t haddr; | 
|  | DATA_TYPE res; | 
|  |  | 
|  | /* Adjust the given return address.  */ | 
|  | retaddr -= GETPC_ADJ; | 
|  |  | 
|  | /* If the TLB entry is for a different page, reload and try again.  */ | 
|  | if ((addr & TARGET_PAGE_MASK) | 
|  | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | 
|  | #ifdef ALIGNED_ONLY | 
|  | if ((addr & (DATA_SIZE - 1)) != 0) { | 
|  | do_unaligned_access(env, addr, READ_ACCESS_TYPE, mmu_idx, retaddr); | 
|  | } | 
|  | #endif | 
|  | tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr); | 
|  | tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; | 
|  | } | 
|  |  | 
|  | /* Handle an IO access.  */ | 
|  | if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { | 
|  | hwaddr ioaddr; | 
|  | if ((addr & (DATA_SIZE - 1)) != 0) { | 
|  | goto do_unaligned_access; | 
|  | } | 
|  | ioaddr = env->iotlb[mmu_idx][index]; | 
|  |  | 
|  | /* ??? Note that the io helpers always read data in the target | 
|  | byte ordering.  We should push the LE/BE request down into io.  */ | 
|  | res = glue(io_read, SUFFIX)(env, ioaddr, addr, retaddr); | 
|  | res = TGT_LE(res); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* Handle slow unaligned access (it spans two pages or IO).  */ | 
|  | if (DATA_SIZE > 1 | 
|  | && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 | 
|  | >= TARGET_PAGE_SIZE)) { | 
|  | target_ulong addr1, addr2; | 
|  | DATA_TYPE res1, res2; | 
|  | unsigned shift; | 
|  | do_unaligned_access: | 
|  | #ifdef ALIGNED_ONLY | 
|  | do_unaligned_access(env, addr, READ_ACCESS_TYPE, mmu_idx, retaddr); | 
|  | #endif | 
|  | addr1 = addr & ~(DATA_SIZE - 1); | 
|  | addr2 = addr1 + DATA_SIZE; | 
|  | /* Note the adjustment at the beginning of the function. | 
|  | Undo that for the recursion.  */ | 
|  | res1 = helper_le_ld_name(env, addr1, mmu_idx, retaddr + GETPC_ADJ); | 
|  | res2 = helper_le_ld_name(env, addr2, mmu_idx, retaddr + GETPC_ADJ); | 
|  | shift = (addr & (DATA_SIZE - 1)) * 8; | 
|  |  | 
|  | /* Little-endian combine.  */ | 
|  | res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift)); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* Handle aligned access or unaligned access in the same page.  */ | 
|  | #ifdef ALIGNED_ONLY | 
|  | if ((addr & (DATA_SIZE - 1)) != 0) { | 
|  | do_unaligned_access(env, addr, READ_ACCESS_TYPE, mmu_idx, retaddr); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | haddr = addr + env->tlb_table[mmu_idx][index].addend; | 
|  | #if DATA_SIZE == 1 | 
|  | res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr); | 
|  | #else | 
|  | res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr); | 
|  | #endif | 
|  | return res; | 
|  | } | 
|  |  | 
|  | #if DATA_SIZE > 1 | 
|  | #ifdef SOFTMMU_CODE_ACCESS | 
|  | static __attribute__((unused)) | 
|  | #endif | 
|  | WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr, int mmu_idx, | 
|  | uintptr_t retaddr) | 
|  | { | 
|  | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | 
|  | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; | 
|  | uintptr_t haddr; | 
|  | DATA_TYPE res; | 
|  |  | 
|  | /* Adjust the given return address.  */ | 
|  | retaddr -= GETPC_ADJ; | 
|  |  | 
|  | /* If the TLB entry is for a different page, reload and try again.  */ | 
|  | if ((addr & TARGET_PAGE_MASK) | 
|  | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | 
|  | #ifdef ALIGNED_ONLY | 
|  | if ((addr & (DATA_SIZE - 1)) != 0) { | 
|  | do_unaligned_access(env, addr, READ_ACCESS_TYPE, mmu_idx, retaddr); | 
|  | } | 
|  | #endif | 
|  | tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr); | 
|  | tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; | 
|  | } | 
|  |  | 
|  | /* Handle an IO access.  */ | 
|  | if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { | 
|  | hwaddr ioaddr; | 
|  | if ((addr & (DATA_SIZE - 1)) != 0) { | 
|  | goto do_unaligned_access; | 
|  | } | 
|  | ioaddr = env->iotlb[mmu_idx][index]; | 
|  |  | 
|  | /* ??? Note that the io helpers always read data in the target | 
|  | byte ordering.  We should push the LE/BE request down into io.  */ | 
|  | res = glue(io_read, SUFFIX)(env, ioaddr, addr, retaddr); | 
|  | res = TGT_BE(res); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* Handle slow unaligned access (it spans two pages or IO).  */ | 
|  | if (DATA_SIZE > 1 | 
|  | && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 | 
|  | >= TARGET_PAGE_SIZE)) { | 
|  | target_ulong addr1, addr2; | 
|  | DATA_TYPE res1, res2; | 
|  | unsigned shift; | 
|  | do_unaligned_access: | 
|  | #ifdef ALIGNED_ONLY | 
|  | do_unaligned_access(env, addr, READ_ACCESS_TYPE, mmu_idx, retaddr); | 
|  | #endif | 
|  | addr1 = addr & ~(DATA_SIZE - 1); | 
|  | addr2 = addr1 + DATA_SIZE; | 
|  | /* Note the adjustment at the beginning of the function. | 
|  | Undo that for the recursion.  */ | 
|  | res1 = helper_be_ld_name(env, addr1, mmu_idx, retaddr + GETPC_ADJ); | 
|  | res2 = helper_be_ld_name(env, addr2, mmu_idx, retaddr + GETPC_ADJ); | 
|  | shift = (addr & (DATA_SIZE - 1)) * 8; | 
|  |  | 
|  | /* Big-endian combine.  */ | 
|  | res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift)); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* Handle aligned access or unaligned access in the same page.  */ | 
|  | #ifdef ALIGNED_ONLY | 
|  | if ((addr & (DATA_SIZE - 1)) != 0) { | 
|  | do_unaligned_access(env, addr, READ_ACCESS_TYPE, mmu_idx, retaddr); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | haddr = addr + env->tlb_table[mmu_idx][index].addend; | 
|  | res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr); | 
|  | return res; | 
|  | } | 
|  | #endif /* DATA_SIZE > 1 */ | 
|  |  | 
|  | DATA_TYPE | 
|  | glue(glue(helper_ld, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr, | 
|  | int mmu_idx) | 
|  | { | 
|  | return helper_te_ld_name (env, addr, mmu_idx, GETRA()); | 
|  | } | 
|  |  | 
|  | #ifndef SOFTMMU_CODE_ACCESS | 
|  |  | 
|  | /* Provide signed versions of the load routines as well.  We can of course | 
|  | avoid this for 64-bit data, or for 32-bit data on 32-bit host.  */ | 
|  | #if DATA_SIZE * 8 < TCG_TARGET_REG_BITS | 
|  | WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr, | 
|  | int mmu_idx, uintptr_t retaddr) | 
|  | { | 
|  | return (SDATA_TYPE)helper_le_ld_name(env, addr, mmu_idx, retaddr); | 
|  | } | 
|  |  | 
|  | # if DATA_SIZE > 1 | 
|  | WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr, | 
|  | int mmu_idx, uintptr_t retaddr) | 
|  | { | 
|  | return (SDATA_TYPE)helper_be_ld_name(env, addr, mmu_idx, retaddr); | 
|  | } | 
|  | # endif | 
|  | #endif | 
|  |  | 
|  | static inline void glue(io_write, SUFFIX)(CPUArchState *env, | 
|  | hwaddr physaddr, | 
|  | DATA_TYPE val, | 
|  | target_ulong addr, | 
|  | uintptr_t retaddr) | 
|  | { | 
|  | CPUState *cpu = ENV_GET_CPU(env); | 
|  | MemoryRegion *mr = iotlb_to_region(cpu->as, physaddr); | 
|  |  | 
|  | physaddr = (physaddr & TARGET_PAGE_MASK) + addr; | 
|  | if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu_can_do_io(cpu)) { | 
|  | cpu_io_recompile(cpu, retaddr); | 
|  | } | 
|  |  | 
|  | cpu->mem_io_vaddr = addr; | 
|  | cpu->mem_io_pc = retaddr; | 
|  | io_mem_write(mr, physaddr, val, 1 << SHIFT); | 
|  | } | 
|  |  | 
|  | void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val, | 
|  | int mmu_idx, uintptr_t retaddr) | 
|  | { | 
|  | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | 
|  | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; | 
|  | uintptr_t haddr; | 
|  |  | 
|  | /* Adjust the given return address.  */ | 
|  | retaddr -= GETPC_ADJ; | 
|  |  | 
|  | /* If the TLB entry is for a different page, reload and try again.  */ | 
|  | if ((addr & TARGET_PAGE_MASK) | 
|  | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | 
|  | #ifdef ALIGNED_ONLY | 
|  | if ((addr & (DATA_SIZE - 1)) != 0) { | 
|  | do_unaligned_access(env, addr, 1, mmu_idx, retaddr); | 
|  | } | 
|  | #endif | 
|  | tlb_fill(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr); | 
|  | tlb_addr = env->tlb_table[mmu_idx][index].addr_write; | 
|  | } | 
|  |  | 
|  | /* Handle an IO access.  */ | 
|  | if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { | 
|  | hwaddr ioaddr; | 
|  | if ((addr & (DATA_SIZE - 1)) != 0) { | 
|  | goto do_unaligned_access; | 
|  | } | 
|  | ioaddr = env->iotlb[mmu_idx][index]; | 
|  |  | 
|  | /* ??? Note that the io helpers always read data in the target | 
|  | byte ordering.  We should push the LE/BE request down into io.  */ | 
|  | val = TGT_LE(val); | 
|  | glue(io_write, SUFFIX)(env, ioaddr, val, addr, retaddr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Handle slow unaligned access (it spans two pages or IO).  */ | 
|  | if (DATA_SIZE > 1 | 
|  | && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 | 
|  | >= TARGET_PAGE_SIZE)) { | 
|  | int i; | 
|  | do_unaligned_access: | 
|  | #ifdef ALIGNED_ONLY | 
|  | do_unaligned_access(env, addr, 1, mmu_idx, retaddr); | 
|  | #endif | 
|  | /* XXX: not efficient, but simple */ | 
|  | /* Note: relies on the fact that tlb_fill() does not remove the | 
|  | * previous page from the TLB cache.  */ | 
|  | for (i = DATA_SIZE - 1; i >= 0; i--) { | 
|  | /* Little-endian extract.  */ | 
|  | uint8_t val8 = val >> (i * 8); | 
|  | /* Note the adjustment at the beginning of the function. | 
|  | Undo that for the recursion.  */ | 
|  | glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8, | 
|  | mmu_idx, retaddr + GETPC_ADJ); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Handle aligned access or unaligned access in the same page.  */ | 
|  | #ifdef ALIGNED_ONLY | 
|  | if ((addr & (DATA_SIZE - 1)) != 0) { | 
|  | do_unaligned_access(env, addr, 1, mmu_idx, retaddr); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | haddr = addr + env->tlb_table[mmu_idx][index].addend; | 
|  | #if DATA_SIZE == 1 | 
|  | glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val); | 
|  | #else | 
|  | glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if DATA_SIZE > 1 | 
|  | void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val, | 
|  | int mmu_idx, uintptr_t retaddr) | 
|  | { | 
|  | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | 
|  | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; | 
|  | uintptr_t haddr; | 
|  |  | 
|  | /* Adjust the given return address.  */ | 
|  | retaddr -= GETPC_ADJ; | 
|  |  | 
|  | /* If the TLB entry is for a different page, reload and try again.  */ | 
|  | if ((addr & TARGET_PAGE_MASK) | 
|  | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | 
|  | #ifdef ALIGNED_ONLY | 
|  | if ((addr & (DATA_SIZE - 1)) != 0) { | 
|  | do_unaligned_access(env, addr, 1, mmu_idx, retaddr); | 
|  | } | 
|  | #endif | 
|  | tlb_fill(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr); | 
|  | tlb_addr = env->tlb_table[mmu_idx][index].addr_write; | 
|  | } | 
|  |  | 
|  | /* Handle an IO access.  */ | 
|  | if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { | 
|  | hwaddr ioaddr; | 
|  | if ((addr & (DATA_SIZE - 1)) != 0) { | 
|  | goto do_unaligned_access; | 
|  | } | 
|  | ioaddr = env->iotlb[mmu_idx][index]; | 
|  |  | 
|  | /* ??? Note that the io helpers always read data in the target | 
|  | byte ordering.  We should push the LE/BE request down into io.  */ | 
|  | val = TGT_BE(val); | 
|  | glue(io_write, SUFFIX)(env, ioaddr, val, addr, retaddr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Handle slow unaligned access (it spans two pages or IO).  */ | 
|  | if (DATA_SIZE > 1 | 
|  | && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 | 
|  | >= TARGET_PAGE_SIZE)) { | 
|  | int i; | 
|  | do_unaligned_access: | 
|  | #ifdef ALIGNED_ONLY | 
|  | do_unaligned_access(env, addr, 1, mmu_idx, retaddr); | 
|  | #endif | 
|  | /* XXX: not efficient, but simple */ | 
|  | /* Note: relies on the fact that tlb_fill() does not remove the | 
|  | * previous page from the TLB cache.  */ | 
|  | for (i = DATA_SIZE - 1; i >= 0; i--) { | 
|  | /* Big-endian extract.  */ | 
|  | uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8)); | 
|  | /* Note the adjustment at the beginning of the function. | 
|  | Undo that for the recursion.  */ | 
|  | glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8, | 
|  | mmu_idx, retaddr + GETPC_ADJ); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Handle aligned access or unaligned access in the same page.  */ | 
|  | #ifdef ALIGNED_ONLY | 
|  | if ((addr & (DATA_SIZE - 1)) != 0) { | 
|  | do_unaligned_access(env, addr, 1, mmu_idx, retaddr); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | haddr = addr + env->tlb_table[mmu_idx][index].addend; | 
|  | glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val); | 
|  | } | 
|  | #endif /* DATA_SIZE > 1 */ | 
|  |  | 
|  | void | 
|  | glue(glue(helper_st, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr, | 
|  | DATA_TYPE val, int mmu_idx) | 
|  | { | 
|  | helper_te_st_name(env, addr, val, mmu_idx, GETRA()); | 
|  | } | 
|  |  | 
|  | #endif /* !defined(SOFTMMU_CODE_ACCESS) */ | 
|  |  | 
|  | #undef READ_ACCESS_TYPE | 
|  | #undef SHIFT | 
|  | #undef DATA_TYPE | 
|  | #undef SUFFIX | 
|  | #undef LSUFFIX | 
|  | #undef DATA_SIZE | 
|  | #undef ADDR_READ | 
|  | #undef WORD_TYPE | 
|  | #undef SDATA_TYPE | 
|  | #undef USUFFIX | 
|  | #undef SSUFFIX | 
|  | #undef BSWAP | 
|  | #undef TGT_BE | 
|  | #undef TGT_LE | 
|  | #undef CPU_BE | 
|  | #undef CPU_LE | 
|  | #undef helper_le_ld_name | 
|  | #undef helper_be_ld_name | 
|  | #undef helper_le_lds_name | 
|  | #undef helper_be_lds_name | 
|  | #undef helper_le_st_name | 
|  | #undef helper_be_st_name | 
|  | #undef helper_te_ld_name | 
|  | #undef helper_te_st_name |