| /* | 
 | ** | 
 | ** File: fmopl.c -- software implementation of FM sound generator | 
 | ** | 
 | ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development | 
 | ** | 
 | ** Version 0.37a | 
 | ** | 
 | */ | 
 |  | 
 | /* | 
 | 	preliminary : | 
 | 	Problem : | 
 | 	note: | 
 | */ | 
 |  | 
 | /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL. | 
 |  * | 
 |  * This library is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU Lesser General Public | 
 |  * License as published by the Free Software Foundation; either | 
 |  * version 2.1 of the License, or (at your option) any later version. | 
 |  * | 
 |  * This library is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  * Lesser General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU Lesser General Public | 
 |  * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
 |  */ | 
 |  | 
 | #define INLINE		static inline | 
 | #define HAS_YM3812	1 | 
 |  | 
 | #include <stdio.h> | 
 | #include <stdlib.h> | 
 | #include <string.h> | 
 | #include <stdarg.h> | 
 | #include <math.h> | 
 | //#include "driver.h"		/* use M.A.M.E. */ | 
 | #include "hw/fmopl.h" | 
 |  | 
 | #ifndef PI | 
 | #define PI 3.14159265358979323846 | 
 | #endif | 
 |  | 
 | #ifndef ARRAY_SIZE | 
 | #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) | 
 | #endif | 
 |  | 
 | /* -------------------- for debug --------------------- */ | 
 | /* #define OPL_OUTPUT_LOG */ | 
 | #ifdef OPL_OUTPUT_LOG | 
 | static FILE *opl_dbg_fp = NULL; | 
 | static FM_OPL *opl_dbg_opl[16]; | 
 | static int opl_dbg_maxchip,opl_dbg_chip; | 
 | #endif | 
 |  | 
 | /* -------------------- preliminary define section --------------------- */ | 
 | /* attack/decay rate time rate */ | 
 | #define OPL_ARRATE     141280  /* RATE 4 =  2826.24ms @ 3.6MHz */ | 
 | #define OPL_DRRATE    1956000  /* RATE 4 = 39280.64ms @ 3.6MHz */ | 
 |  | 
 | #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */ | 
 |  | 
 | #define FREQ_BITS 24			/* frequency turn          */ | 
 |  | 
 | /* counter bits = 20 , octerve 7 */ | 
 | #define FREQ_RATE   (1<<(FREQ_BITS-20)) | 
 | #define TL_BITS    (FREQ_BITS+2) | 
 |  | 
 | /* final output shift , limit minimum and maximum */ | 
 | #define OPL_OUTSB   (TL_BITS+3-16)		/* OPL output final shift 16bit */ | 
 | #define OPL_MAXOUT (0x7fff<<OPL_OUTSB) | 
 | #define OPL_MINOUT (-0x8000<<OPL_OUTSB) | 
 |  | 
 | /* -------------------- quality selection --------------------- */ | 
 |  | 
 | /* sinwave entries */ | 
 | /* used static memory = SIN_ENT * 4 (byte) */ | 
 | #define SIN_ENT 2048 | 
 |  | 
 | /* output level entries (envelope,sinwave) */ | 
 | /* envelope counter lower bits */ | 
 | #define ENV_BITS 16 | 
 | /* envelope output entries */ | 
 | #define EG_ENT   4096 | 
 | /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */ | 
 | /* used static  memory = EG_ENT*4 (byte)                     */ | 
 |  | 
 | #define EG_OFF   ((2*EG_ENT)<<ENV_BITS)  /* OFF          */ | 
 | #define EG_DED   EG_OFF | 
 | #define EG_DST   (EG_ENT<<ENV_BITS)      /* DECAY  START */ | 
 | #define EG_AED   EG_DST | 
 | #define EG_AST   0                       /* ATTACK START */ | 
 |  | 
 | #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step  */ | 
 |  | 
 | /* LFO table entries */ | 
 | #define VIB_ENT 512 | 
 | #define VIB_SHIFT (32-9) | 
 | #define AMS_ENT 512 | 
 | #define AMS_SHIFT (32-9) | 
 |  | 
 | #define VIB_RATE 256 | 
 |  | 
 | /* -------------------- local defines , macros --------------------- */ | 
 |  | 
 | /* register number to channel number , slot offset */ | 
 | #define SLOT1 0 | 
 | #define SLOT2 1 | 
 |  | 
 | /* envelope phase */ | 
 | #define ENV_MOD_RR  0x00 | 
 | #define ENV_MOD_DR  0x01 | 
 | #define ENV_MOD_AR  0x02 | 
 |  | 
 | /* -------------------- tables --------------------- */ | 
 | static const int slot_array[32]= | 
 | { | 
 | 	 0, 2, 4, 1, 3, 5,-1,-1, | 
 | 	 6, 8,10, 7, 9,11,-1,-1, | 
 | 	12,14,16,13,15,17,-1,-1, | 
 | 	-1,-1,-1,-1,-1,-1,-1,-1 | 
 | }; | 
 |  | 
 | /* key scale level */ | 
 | /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */ | 
 | #define DV (EG_STEP/2) | 
 | static const UINT32 KSL_TABLE[8*16]= | 
 | { | 
 | 	/* OCT 0 */ | 
 | 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, | 
 | 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, | 
 | 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, | 
 | 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, | 
 | 	/* OCT 1 */ | 
 | 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, | 
 | 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, | 
 | 	 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV, | 
 | 	 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV, | 
 | 	/* OCT 2 */ | 
 | 	 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, | 
 | 	 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV, | 
 | 	 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV, | 
 | 	 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV, | 
 | 	/* OCT 3 */ | 
 | 	 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV, | 
 | 	 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV, | 
 | 	 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV, | 
 | 	 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV, | 
 | 	/* OCT 4 */ | 
 | 	 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV, | 
 | 	 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV, | 
 | 	 9.000/DV, 9.750/DV,10.125/DV,10.500/DV, | 
 | 	10.875/DV,11.250/DV,11.625/DV,12.000/DV, | 
 | 	/* OCT 5 */ | 
 | 	 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV, | 
 | 	 9.000/DV,10.125/DV,10.875/DV,11.625/DV, | 
 | 	12.000/DV,12.750/DV,13.125/DV,13.500/DV, | 
 | 	13.875/DV,14.250/DV,14.625/DV,15.000/DV, | 
 | 	/* OCT 6 */ | 
 | 	 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV, | 
 | 	12.000/DV,13.125/DV,13.875/DV,14.625/DV, | 
 | 	15.000/DV,15.750/DV,16.125/DV,16.500/DV, | 
 | 	16.875/DV,17.250/DV,17.625/DV,18.000/DV, | 
 | 	/* OCT 7 */ | 
 | 	 0.000/DV, 9.000/DV,12.000/DV,13.875/DV, | 
 | 	15.000/DV,16.125/DV,16.875/DV,17.625/DV, | 
 | 	18.000/DV,18.750/DV,19.125/DV,19.500/DV, | 
 | 	19.875/DV,20.250/DV,20.625/DV,21.000/DV | 
 | }; | 
 | #undef DV | 
 |  | 
 | /* sustain lebel table (3db per step) */ | 
 | /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/ | 
 | #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST | 
 | static const INT32 SL_TABLE[16]={ | 
 |  SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7), | 
 |  SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31) | 
 | }; | 
 | #undef SC | 
 |  | 
 | #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */ | 
 | /* TotalLevel : 48 24 12  6  3 1.5 0.75 (dB) */ | 
 | /* TL_TABLE[ 0      to TL_MAX          ] : plus  section */ | 
 | /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */ | 
 | static INT32 *TL_TABLE; | 
 |  | 
 | /* pointers to TL_TABLE with sinwave output offset */ | 
 | static INT32 **SIN_TABLE; | 
 |  | 
 | /* LFO table */ | 
 | static INT32 *AMS_TABLE; | 
 | static INT32 *VIB_TABLE; | 
 |  | 
 | /* envelope output curve table */ | 
 | /* attack + decay + OFF */ | 
 | static INT32 ENV_CURVE[2*EG_ENT+1]; | 
 |  | 
 | /* multiple table */ | 
 | #define ML 2 | 
 | static const UINT32 MUL_TABLE[16]= { | 
 | /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */ | 
 |    0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML, | 
 |    8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML | 
 | }; | 
 | #undef ML | 
 |  | 
 | /* dummy attack / decay rate ( when rate == 0 ) */ | 
 | static INT32 RATE_0[16]= | 
 | {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | 
 |  | 
 | /* -------------------- static state --------------------- */ | 
 |  | 
 | /* lock level of common table */ | 
 | static int num_lock = 0; | 
 |  | 
 | /* work table */ | 
 | static void *cur_chip = NULL;	/* current chip point */ | 
 | /* currenct chip state */ | 
 | /* static OPLSAMPLE  *bufL,*bufR; */ | 
 | static OPL_CH *S_CH; | 
 | static OPL_CH *E_CH; | 
 | OPL_SLOT *SLOT7_1,*SLOT7_2,*SLOT8_1,*SLOT8_2; | 
 |  | 
 | static INT32 outd[1]; | 
 | static INT32 ams; | 
 | static INT32 vib; | 
 | INT32  *ams_table; | 
 | INT32  *vib_table; | 
 | static INT32 amsIncr; | 
 | static INT32 vibIncr; | 
 | static INT32 feedback2;		/* connect for SLOT 2 */ | 
 |  | 
 | /* log output level */ | 
 | #define LOG_ERR  3      /* ERROR       */ | 
 | #define LOG_WAR  2      /* WARNING     */ | 
 | #define LOG_INF  1      /* INFORMATION */ | 
 |  | 
 | //#define LOG_LEVEL LOG_INF | 
 | #define LOG_LEVEL	LOG_ERR | 
 |  | 
 | //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x | 
 | #define LOG(n,x) | 
 |  | 
 | /* --------------------- subroutines  --------------------- */ | 
 |  | 
 | INLINE int Limit( int val, int max, int min ) { | 
 | 	if ( val > max ) | 
 | 		val = max; | 
 | 	else if ( val < min ) | 
 | 		val = min; | 
 |  | 
 | 	return val; | 
 | } | 
 |  | 
 | /* status set and IRQ handling */ | 
 | INLINE void OPL_STATUS_SET(FM_OPL *OPL,int flag) | 
 | { | 
 | 	/* set status flag */ | 
 | 	OPL->status |= flag; | 
 | 	if(!(OPL->status & 0x80)) | 
 | 	{ | 
 | 		if(OPL->status & OPL->statusmask) | 
 | 		{	/* IRQ on */ | 
 | 			OPL->status |= 0x80; | 
 | 			/* callback user interrupt handler (IRQ is OFF to ON) */ | 
 | 			if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* status reset and IRQ handling */ | 
 | INLINE void OPL_STATUS_RESET(FM_OPL *OPL,int flag) | 
 | { | 
 | 	/* reset status flag */ | 
 | 	OPL->status &=~flag; | 
 | 	if((OPL->status & 0x80)) | 
 | 	{ | 
 | 		if (!(OPL->status & OPL->statusmask) ) | 
 | 		{ | 
 | 			OPL->status &= 0x7f; | 
 | 			/* callback user interrupt handler (IRQ is ON to OFF) */ | 
 | 			if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* IRQ mask set */ | 
 | INLINE void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag) | 
 | { | 
 | 	OPL->statusmask = flag; | 
 | 	/* IRQ handling check */ | 
 | 	OPL_STATUS_SET(OPL,0); | 
 | 	OPL_STATUS_RESET(OPL,0); | 
 | } | 
 |  | 
 | /* ----- key on  ----- */ | 
 | INLINE void OPL_KEYON(OPL_SLOT *SLOT) | 
 | { | 
 | 	/* sin wave restart */ | 
 | 	SLOT->Cnt = 0; | 
 | 	/* set attack */ | 
 | 	SLOT->evm = ENV_MOD_AR; | 
 | 	SLOT->evs = SLOT->evsa; | 
 | 	SLOT->evc = EG_AST; | 
 | 	SLOT->eve = EG_AED; | 
 | } | 
 | /* ----- key off ----- */ | 
 | INLINE void OPL_KEYOFF(OPL_SLOT *SLOT) | 
 | { | 
 | 	if( SLOT->evm > ENV_MOD_RR) | 
 | 	{ | 
 | 		/* set envelope counter from envleope output */ | 
 | 		SLOT->evm = ENV_MOD_RR; | 
 | 		if( !(SLOT->evc&EG_DST) ) | 
 | 			//SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST; | 
 | 			SLOT->evc = EG_DST; | 
 | 		SLOT->eve = EG_DED; | 
 | 		SLOT->evs = SLOT->evsr; | 
 | 	} | 
 | } | 
 |  | 
 | /* ---------- calcrate Envelope Generator & Phase Generator ---------- */ | 
 | /* return : envelope output */ | 
 | INLINE UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT ) | 
 | { | 
 | 	/* calcrate envelope generator */ | 
 | 	if( (SLOT->evc+=SLOT->evs) >= SLOT->eve ) | 
 | 	{ | 
 | 		switch( SLOT->evm ){ | 
 | 		case ENV_MOD_AR: /* ATTACK -> DECAY1 */ | 
 | 			/* next DR */ | 
 | 			SLOT->evm = ENV_MOD_DR; | 
 | 			SLOT->evc = EG_DST; | 
 | 			SLOT->eve = SLOT->SL; | 
 | 			SLOT->evs = SLOT->evsd; | 
 | 			break; | 
 | 		case ENV_MOD_DR: /* DECAY -> SL or RR */ | 
 | 			SLOT->evc = SLOT->SL; | 
 | 			SLOT->eve = EG_DED; | 
 | 			if(SLOT->eg_typ) | 
 | 			{ | 
 | 				SLOT->evs = 0; | 
 | 			} | 
 | 			else | 
 | 			{ | 
 | 				SLOT->evm = ENV_MOD_RR; | 
 | 				SLOT->evs = SLOT->evsr; | 
 | 			} | 
 | 			break; | 
 | 		case ENV_MOD_RR: /* RR -> OFF */ | 
 | 			SLOT->evc = EG_OFF; | 
 | 			SLOT->eve = EG_OFF+1; | 
 | 			SLOT->evs = 0; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	/* calcrate envelope */ | 
 | 	return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0); | 
 | } | 
 |  | 
 | /* set algorithm connection */ | 
 | static void set_algorithm( OPL_CH *CH) | 
 | { | 
 | 	INT32 *carrier = &outd[0]; | 
 | 	CH->connect1 = CH->CON ? carrier : &feedback2; | 
 | 	CH->connect2 = carrier; | 
 | } | 
 |  | 
 | /* ---------- frequency counter for operater update ---------- */ | 
 | INLINE void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT) | 
 | { | 
 | 	int ksr; | 
 |  | 
 | 	/* frequency step counter */ | 
 | 	SLOT->Incr = CH->fc * SLOT->mul; | 
 | 	ksr = CH->kcode >> SLOT->KSR; | 
 |  | 
 | 	if( SLOT->ksr != ksr ) | 
 | 	{ | 
 | 		SLOT->ksr = ksr; | 
 | 		/* attack , decay rate recalcration */ | 
 | 		SLOT->evsa = SLOT->AR[ksr]; | 
 | 		SLOT->evsd = SLOT->DR[ksr]; | 
 | 		SLOT->evsr = SLOT->RR[ksr]; | 
 | 	} | 
 | 	SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); | 
 | } | 
 |  | 
 | /* set multi,am,vib,EG-TYP,KSR,mul */ | 
 | INLINE void set_mul(FM_OPL *OPL,int slot,int v) | 
 | { | 
 | 	OPL_CH   *CH   = &OPL->P_CH[slot/2]; | 
 | 	OPL_SLOT *SLOT = &CH->SLOT[slot&1]; | 
 |  | 
 | 	SLOT->mul    = MUL_TABLE[v&0x0f]; | 
 | 	SLOT->KSR    = (v&0x10) ? 0 : 2; | 
 | 	SLOT->eg_typ = (v&0x20)>>5; | 
 | 	SLOT->vib    = (v&0x40); | 
 | 	SLOT->ams    = (v&0x80); | 
 | 	CALC_FCSLOT(CH,SLOT); | 
 | } | 
 |  | 
 | /* set ksl & tl */ | 
 | INLINE void set_ksl_tl(FM_OPL *OPL,int slot,int v) | 
 | { | 
 | 	OPL_CH   *CH   = &OPL->P_CH[slot/2]; | 
 | 	OPL_SLOT *SLOT = &CH->SLOT[slot&1]; | 
 | 	int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */ | 
 |  | 
 | 	SLOT->ksl = ksl ? 3-ksl : 31; | 
 | 	SLOT->TL  = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */ | 
 |  | 
 | 	if( !(OPL->mode&0x80) ) | 
 | 	{	/* not CSM latch total level */ | 
 | 		SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); | 
 | 	} | 
 | } | 
 |  | 
 | /* set attack rate & decay rate  */ | 
 | INLINE void set_ar_dr(FM_OPL *OPL,int slot,int v) | 
 | { | 
 | 	OPL_CH   *CH   = &OPL->P_CH[slot/2]; | 
 | 	OPL_SLOT *SLOT = &CH->SLOT[slot&1]; | 
 | 	int ar = v>>4; | 
 | 	int dr = v&0x0f; | 
 |  | 
 | 	SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0; | 
 | 	SLOT->evsa = SLOT->AR[SLOT->ksr]; | 
 | 	if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa; | 
 |  | 
 | 	SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0; | 
 | 	SLOT->evsd = SLOT->DR[SLOT->ksr]; | 
 | 	if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd; | 
 | } | 
 |  | 
 | /* set sustain level & release rate */ | 
 | INLINE void set_sl_rr(FM_OPL *OPL,int slot,int v) | 
 | { | 
 | 	OPL_CH   *CH   = &OPL->P_CH[slot/2]; | 
 | 	OPL_SLOT *SLOT = &CH->SLOT[slot&1]; | 
 | 	int sl = v>>4; | 
 | 	int rr = v & 0x0f; | 
 |  | 
 | 	SLOT->SL = SL_TABLE[sl]; | 
 | 	if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL; | 
 | 	SLOT->RR = &OPL->DR_TABLE[rr<<2]; | 
 | 	SLOT->evsr = SLOT->RR[SLOT->ksr]; | 
 | 	if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr; | 
 | } | 
 |  | 
 | /* operator output calcrator */ | 
 | #define OP_OUT(slot,env,con)   slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env] | 
 | /* ---------- calcrate one of channel ---------- */ | 
 | INLINE void OPL_CALC_CH( OPL_CH *CH ) | 
 | { | 
 | 	UINT32 env_out; | 
 | 	OPL_SLOT *SLOT; | 
 |  | 
 | 	feedback2 = 0; | 
 | 	/* SLOT 1 */ | 
 | 	SLOT = &CH->SLOT[SLOT1]; | 
 | 	env_out=OPL_CALC_SLOT(SLOT); | 
 | 	if( env_out < EG_ENT-1 ) | 
 | 	{ | 
 | 		/* PG */ | 
 | 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); | 
 | 		else          SLOT->Cnt += SLOT->Incr; | 
 | 		/* connectoion */ | 
 | 		if(CH->FB) | 
 | 		{ | 
 | 			int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB; | 
 | 			CH->op1_out[1] = CH->op1_out[0]; | 
 | 			*CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1); | 
 | 		} | 
 | 		else | 
 | 		{ | 
 | 			*CH->connect1 += OP_OUT(SLOT,env_out,0); | 
 | 		} | 
 | 	}else | 
 | 	{ | 
 | 		CH->op1_out[1] = CH->op1_out[0]; | 
 | 		CH->op1_out[0] = 0; | 
 | 	} | 
 | 	/* SLOT 2 */ | 
 | 	SLOT = &CH->SLOT[SLOT2]; | 
 | 	env_out=OPL_CALC_SLOT(SLOT); | 
 | 	if( env_out < EG_ENT-1 ) | 
 | 	{ | 
 | 		/* PG */ | 
 | 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); | 
 | 		else          SLOT->Cnt += SLOT->Incr; | 
 | 		/* connectoion */ | 
 | 		outd[0] += OP_OUT(SLOT,env_out, feedback2); | 
 | 	} | 
 | } | 
 |  | 
 | /* ---------- calcrate rhythm block ---------- */ | 
 | #define WHITE_NOISE_db 6.0 | 
 | INLINE void OPL_CALC_RH( OPL_CH *CH ) | 
 | { | 
 | 	UINT32 env_tam,env_sd,env_top,env_hh; | 
 | 	int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP); | 
 | 	INT32 tone8; | 
 |  | 
 | 	OPL_SLOT *SLOT; | 
 | 	int env_out; | 
 |  | 
 | 	/* BD : same as FM serial mode and output level is large */ | 
 | 	feedback2 = 0; | 
 | 	/* SLOT 1 */ | 
 | 	SLOT = &CH[6].SLOT[SLOT1]; | 
 | 	env_out=OPL_CALC_SLOT(SLOT); | 
 | 	if( env_out < EG_ENT-1 ) | 
 | 	{ | 
 | 		/* PG */ | 
 | 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); | 
 | 		else          SLOT->Cnt += SLOT->Incr; | 
 | 		/* connectoion */ | 
 | 		if(CH[6].FB) | 
 | 		{ | 
 | 			int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB; | 
 | 			CH[6].op1_out[1] = CH[6].op1_out[0]; | 
 | 			feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1); | 
 | 		} | 
 | 		else | 
 | 		{ | 
 | 			feedback2 = OP_OUT(SLOT,env_out,0); | 
 | 		} | 
 | 	}else | 
 | 	{ | 
 | 		feedback2 = 0; | 
 | 		CH[6].op1_out[1] = CH[6].op1_out[0]; | 
 | 		CH[6].op1_out[0] = 0; | 
 | 	} | 
 | 	/* SLOT 2 */ | 
 | 	SLOT = &CH[6].SLOT[SLOT2]; | 
 | 	env_out=OPL_CALC_SLOT(SLOT); | 
 | 	if( env_out < EG_ENT-1 ) | 
 | 	{ | 
 | 		/* PG */ | 
 | 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); | 
 | 		else          SLOT->Cnt += SLOT->Incr; | 
 | 		/* connectoion */ | 
 | 		outd[0] += OP_OUT(SLOT,env_out, feedback2)*2; | 
 | 	} | 
 |  | 
 | 	// SD  (17) = mul14[fnum7] + white noise | 
 | 	// TAM (15) = mul15[fnum8] | 
 | 	// TOP (18) = fnum6(mul18[fnum8]+whitenoise) | 
 | 	// HH  (14) = fnum7(mul18[fnum8]+whitenoise) + white noise | 
 | 	env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise; | 
 | 	env_tam=OPL_CALC_SLOT(SLOT8_1); | 
 | 	env_top=OPL_CALC_SLOT(SLOT8_2); | 
 | 	env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise; | 
 |  | 
 | 	/* PG */ | 
 | 	if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE); | 
 | 	else             SLOT7_1->Cnt += 2*SLOT7_1->Incr; | 
 | 	if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE); | 
 | 	else             SLOT7_2->Cnt += (CH[7].fc*8); | 
 | 	if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE); | 
 | 	else             SLOT8_1->Cnt += SLOT8_1->Incr; | 
 | 	if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE); | 
 | 	else             SLOT8_2->Cnt += (CH[8].fc*48); | 
 |  | 
 | 	tone8 = OP_OUT(SLOT8_2,whitenoise,0 ); | 
 |  | 
 | 	/* SD */ | 
 | 	if( env_sd < EG_ENT-1 ) | 
 | 		outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8; | 
 | 	/* TAM */ | 
 | 	if( env_tam < EG_ENT-1 ) | 
 | 		outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2; | 
 | 	/* TOP-CY */ | 
 | 	if( env_top < EG_ENT-1 ) | 
 | 		outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2; | 
 | 	/* HH */ | 
 | 	if( env_hh  < EG_ENT-1 ) | 
 | 		outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2; | 
 | } | 
 |  | 
 | /* ----------- initialize time tabls ----------- */ | 
 | static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE ) | 
 | { | 
 | 	int i; | 
 | 	double rate; | 
 |  | 
 | 	/* make attack rate & decay rate tables */ | 
 | 	for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0; | 
 | 	for (i = 4;i <= 60;i++){ | 
 | 		rate  = OPL->freqbase;						/* frequency rate */ | 
 | 		if( i < 60 ) rate *= 1.0+(i&3)*0.25;		/* b0-1 : x1 , x1.25 , x1.5 , x1.75 */ | 
 | 		rate *= 1<<((i>>2)-1);						/* b2-5 : shift bit */ | 
 | 		rate *= (double)(EG_ENT<<ENV_BITS); | 
 | 		OPL->AR_TABLE[i] = rate / ARRATE; | 
 | 		OPL->DR_TABLE[i] = rate / DRRATE; | 
 | 	} | 
 | 	for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++) | 
 | 	{ | 
 | 		OPL->AR_TABLE[i] = EG_AED-1; | 
 | 		OPL->DR_TABLE[i] = OPL->DR_TABLE[60]; | 
 | 	} | 
 | #if 0 | 
 | 	for (i = 0;i < 64 ;i++){	/* make for overflow area */ | 
 | 		LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i, | 
 | 			((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate), | 
 | 			((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) )); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | /* ---------- generic table initialize ---------- */ | 
 | static int OPLOpenTable( void ) | 
 | { | 
 | 	int s,t; | 
 | 	double rate; | 
 | 	int i,j; | 
 | 	double pom; | 
 |  | 
 | 	/* allocate dynamic tables */ | 
 | 	if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL) | 
 | 		return 0; | 
 | 	if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL) | 
 | 	{ | 
 | 		free(TL_TABLE); | 
 | 		return 0; | 
 | 	} | 
 | 	if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL) | 
 | 	{ | 
 | 		free(TL_TABLE); | 
 | 		free(SIN_TABLE); | 
 | 		return 0; | 
 | 	} | 
 | 	if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL) | 
 | 	{ | 
 | 		free(TL_TABLE); | 
 | 		free(SIN_TABLE); | 
 | 		free(AMS_TABLE); | 
 | 		return 0; | 
 | 	} | 
 | 	/* make total level table */ | 
 | 	for (t = 0;t < EG_ENT-1 ;t++){ | 
 | 		rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20);	/* dB -> voltage */ | 
 | 		TL_TABLE[       t] =  (int)rate; | 
 | 		TL_TABLE[TL_MAX+t] = -TL_TABLE[t]; | 
 | /*		LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/ | 
 | 	} | 
 | 	/* fill volume off area */ | 
 | 	for ( t = EG_ENT-1; t < TL_MAX ;t++){ | 
 | 		TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0; | 
 | 	} | 
 |  | 
 | 	/* make sinwave table (total level offet) */ | 
 | 	/* degree 0 = degree 180                   = off */ | 
 | 	SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2]         = &TL_TABLE[EG_ENT-1]; | 
 | 	for (s = 1;s <= SIN_ENT/4;s++){ | 
 | 		pom = sin(2*PI*s/SIN_ENT); /* sin     */ | 
 | 		pom = 20*log10(1/pom);	   /* decibel */ | 
 | 		j = pom / EG_STEP;         /* TL_TABLE steps */ | 
 |  | 
 |         /* degree 0   -  90    , degree 180 -  90 : plus section */ | 
 | 		SIN_TABLE[          s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j]; | 
 |         /* degree 180 - 270    , degree 360 - 270 : minus section */ | 
 | 		SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT  -s] = &TL_TABLE[TL_MAX+j]; | 
 | /*		LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/ | 
 | 	} | 
 | 	for (s = 0;s < SIN_ENT;s++) | 
 | 	{ | 
 | 		SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT]; | 
 | 		SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)]; | 
 | 		SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s]; | 
 | 	} | 
 |  | 
 | 	/* envelope counter -> envelope output table */ | 
 | 	for (i=0; i<EG_ENT; i++) | 
 | 	{ | 
 | 		/* ATTACK curve */ | 
 | 		pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT; | 
 | 		/* if( pom >= EG_ENT ) pom = EG_ENT-1; */ | 
 | 		ENV_CURVE[i] = (int)pom; | 
 | 		/* DECAY ,RELEASE curve */ | 
 | 		ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i; | 
 | 	} | 
 | 	/* off */ | 
 | 	ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1; | 
 | 	/* make LFO ams table */ | 
 | 	for (i=0; i<AMS_ENT; i++) | 
 | 	{ | 
 | 		pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */ | 
 | 		AMS_TABLE[i]         = (1.0/EG_STEP)*pom; /* 1dB   */ | 
 | 		AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */ | 
 | 	} | 
 | 	/* make LFO vibrate table */ | 
 | 	for (i=0; i<VIB_ENT; i++) | 
 | 	{ | 
 | 		/* 100cent = 1seminote = 6% ?? */ | 
 | 		pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */ | 
 | 		VIB_TABLE[i]         = VIB_RATE + (pom*0.07); /* +- 7cent */ | 
 | 		VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */ | 
 | 		/* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */ | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 |  | 
 | static void OPLCloseTable( void ) | 
 | { | 
 | 	free(TL_TABLE); | 
 | 	free(SIN_TABLE); | 
 | 	free(AMS_TABLE); | 
 | 	free(VIB_TABLE); | 
 | } | 
 |  | 
 | /* CSM Key Control */ | 
 | INLINE void CSMKeyControll(OPL_CH *CH) | 
 | { | 
 | 	OPL_SLOT *slot1 = &CH->SLOT[SLOT1]; | 
 | 	OPL_SLOT *slot2 = &CH->SLOT[SLOT2]; | 
 | 	/* all key off */ | 
 | 	OPL_KEYOFF(slot1); | 
 | 	OPL_KEYOFF(slot2); | 
 | 	/* total level latch */ | 
 | 	slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl); | 
 | 	slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl); | 
 | 	/* key on */ | 
 | 	CH->op1_out[0] = CH->op1_out[1] = 0; | 
 | 	OPL_KEYON(slot1); | 
 | 	OPL_KEYON(slot2); | 
 | } | 
 |  | 
 | /* ---------- opl initialize ---------- */ | 
 | static void OPL_initialize(FM_OPL *OPL) | 
 | { | 
 | 	int fn; | 
 |  | 
 | 	/* frequency base */ | 
 | 	OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72  : 0; | 
 | 	/* Timer base time */ | 
 | 	OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 ); | 
 | 	/* make time tables */ | 
 | 	init_timetables( OPL , OPL_ARRATE , OPL_DRRATE ); | 
 | 	/* make fnumber -> increment counter table */ | 
 | 	for( fn=0 ; fn < 1024 ; fn++ ) | 
 | 	{ | 
 | 		OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2; | 
 | 	} | 
 | 	/* LFO freq.table */ | 
 | 	OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0; | 
 | 	OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0; | 
 | } | 
 |  | 
 | /* ---------- write a OPL registers ---------- */ | 
 | static void OPLWriteReg(FM_OPL *OPL, int r, int v) | 
 | { | 
 | 	OPL_CH *CH; | 
 | 	int slot; | 
 | 	int block_fnum; | 
 |  | 
 | 	switch(r&0xe0) | 
 | 	{ | 
 | 	case 0x00: /* 00-1f:control */ | 
 | 		switch(r&0x1f) | 
 | 		{ | 
 | 		case 0x01: | 
 | 			/* wave selector enable */ | 
 | 			if(OPL->type&OPL_TYPE_WAVESEL) | 
 | 			{ | 
 | 				OPL->wavesel = v&0x20; | 
 | 				if(!OPL->wavesel) | 
 | 				{ | 
 | 					/* preset compatible mode */ | 
 | 					int c; | 
 | 					for(c=0;c<OPL->max_ch;c++) | 
 | 					{ | 
 | 						OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0]; | 
 | 						OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0]; | 
 | 					} | 
 | 				} | 
 | 			} | 
 | 			return; | 
 | 		case 0x02:	/* Timer 1 */ | 
 | 			OPL->T[0] = (256-v)*4; | 
 | 			break; | 
 | 		case 0x03:	/* Timer 2 */ | 
 | 			OPL->T[1] = (256-v)*16; | 
 | 			return; | 
 | 		case 0x04:	/* IRQ clear / mask and Timer enable */ | 
 | 			if(v&0x80) | 
 | 			{	/* IRQ flag clear */ | 
 | 				OPL_STATUS_RESET(OPL,0x7f); | 
 | 			} | 
 | 			else | 
 | 			{	/* set IRQ mask ,timer enable*/ | 
 | 				UINT8 st1 = v&1; | 
 | 				UINT8 st2 = (v>>1)&1; | 
 | 				/* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */ | 
 | 				OPL_STATUS_RESET(OPL,v&0x78); | 
 | 				OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01); | 
 | 				/* timer 2 */ | 
 | 				if(OPL->st[1] != st2) | 
 | 				{ | 
 | 					double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0; | 
 | 					OPL->st[1] = st2; | 
 | 					if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval); | 
 | 				} | 
 | 				/* timer 1 */ | 
 | 				if(OPL->st[0] != st1) | 
 | 				{ | 
 | 					double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0; | 
 | 					OPL->st[0] = st1; | 
 | 					if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval); | 
 | 				} | 
 | 			} | 
 | 			return; | 
 | #if BUILD_Y8950 | 
 | 		case 0x06:		/* Key Board OUT */ | 
 | 			if(OPL->type&OPL_TYPE_KEYBOARD) | 
 | 			{ | 
 | 				if(OPL->keyboardhandler_w) | 
 | 					OPL->keyboardhandler_w(OPL->keyboard_param,v); | 
 | 				else | 
 | 					LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n")); | 
 | 			} | 
 | 			return; | 
 | 		case 0x07:	/* DELTA-T control : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */ | 
 | 			if(OPL->type&OPL_TYPE_ADPCM) | 
 | 				YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v); | 
 | 			return; | 
 | 		case 0x08:	/* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */ | 
 | 			OPL->mode = v; | 
 | 			v&=0x1f;	/* for DELTA-T unit */ | 
 | 		case 0x09:		/* START ADD */ | 
 | 		case 0x0a: | 
 | 		case 0x0b:		/* STOP ADD  */ | 
 | 		case 0x0c: | 
 | 		case 0x0d:		/* PRESCALE   */ | 
 | 		case 0x0e: | 
 | 		case 0x0f:		/* ADPCM data */ | 
 | 		case 0x10: 		/* DELTA-N    */ | 
 | 		case 0x11: 		/* DELTA-N    */ | 
 | 		case 0x12: 		/* EG-CTRL    */ | 
 | 			if(OPL->type&OPL_TYPE_ADPCM) | 
 | 				YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v); | 
 | 			return; | 
 | #if 0 | 
 | 		case 0x15:		/* DAC data    */ | 
 | 		case 0x16: | 
 | 		case 0x17:		/* SHIFT    */ | 
 | 			return; | 
 | 		case 0x18:		/* I/O CTRL (Direction) */ | 
 | 			if(OPL->type&OPL_TYPE_IO) | 
 | 				OPL->portDirection = v&0x0f; | 
 | 			return; | 
 | 		case 0x19:		/* I/O DATA */ | 
 | 			if(OPL->type&OPL_TYPE_IO) | 
 | 			{ | 
 | 				OPL->portLatch = v; | 
 | 				if(OPL->porthandler_w) | 
 | 					OPL->porthandler_w(OPL->port_param,v&OPL->portDirection); | 
 | 			} | 
 | 			return; | 
 | 		case 0x1a:		/* PCM data */ | 
 | 			return; | 
 | #endif | 
 | #endif | 
 | 		} | 
 | 		break; | 
 | 	case 0x20:	/* am,vib,ksr,eg type,mul */ | 
 | 		slot = slot_array[r&0x1f]; | 
 | 		if(slot == -1) return; | 
 | 		set_mul(OPL,slot,v); | 
 | 		return; | 
 | 	case 0x40: | 
 | 		slot = slot_array[r&0x1f]; | 
 | 		if(slot == -1) return; | 
 | 		set_ksl_tl(OPL,slot,v); | 
 | 		return; | 
 | 	case 0x60: | 
 | 		slot = slot_array[r&0x1f]; | 
 | 		if(slot == -1) return; | 
 | 		set_ar_dr(OPL,slot,v); | 
 | 		return; | 
 | 	case 0x80: | 
 | 		slot = slot_array[r&0x1f]; | 
 | 		if(slot == -1) return; | 
 | 		set_sl_rr(OPL,slot,v); | 
 | 		return; | 
 | 	case 0xa0: | 
 | 		switch(r) | 
 | 		{ | 
 | 		case 0xbd: | 
 | 			/* amsep,vibdep,r,bd,sd,tom,tc,hh */ | 
 | 			{ | 
 | 			UINT8 rkey = OPL->rhythm^v; | 
 | 			OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0]; | 
 | 			OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0]; | 
 | 			OPL->rhythm  = v&0x3f; | 
 | 			if(OPL->rhythm&0x20) | 
 | 			{ | 
 | #if 0 | 
 | 				usrintf_showmessage("OPL Rhythm mode select"); | 
 | #endif | 
 | 				/* BD key on/off */ | 
 | 				if(rkey&0x10) | 
 | 				{ | 
 | 					if(v&0x10) | 
 | 					{ | 
 | 						OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0; | 
 | 						OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]); | 
 | 						OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]); | 
 | 					} | 
 | 					else | 
 | 					{ | 
 | 						OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]); | 
 | 						OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]); | 
 | 					} | 
 | 				} | 
 | 				/* SD key on/off */ | 
 | 				if(rkey&0x08) | 
 | 				{ | 
 | 					if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]); | 
 | 					else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]); | 
 | 				}/* TAM key on/off */ | 
 | 				if(rkey&0x04) | 
 | 				{ | 
 | 					if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]); | 
 | 					else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]); | 
 | 				} | 
 | 				/* TOP-CY key on/off */ | 
 | 				if(rkey&0x02) | 
 | 				{ | 
 | 					if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]); | 
 | 					else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]); | 
 | 				} | 
 | 				/* HH key on/off */ | 
 | 				if(rkey&0x01) | 
 | 				{ | 
 | 					if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]); | 
 | 					else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]); | 
 | 				} | 
 | 			} | 
 | 			} | 
 | 			return; | 
 | 		} | 
 | 		/* keyon,block,fnum */ | 
 | 		if( (r&0x0f) > 8) return; | 
 | 		CH = &OPL->P_CH[r&0x0f]; | 
 | 		if(!(r&0x10)) | 
 | 		{	/* a0-a8 */ | 
 | 			block_fnum  = (CH->block_fnum&0x1f00) | v; | 
 | 		} | 
 | 		else | 
 | 		{	/* b0-b8 */ | 
 | 			int keyon = (v>>5)&1; | 
 | 			block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff); | 
 | 			if(CH->keyon != keyon) | 
 | 			{ | 
 | 				if( (CH->keyon=keyon) ) | 
 | 				{ | 
 | 					CH->op1_out[0] = CH->op1_out[1] = 0; | 
 | 					OPL_KEYON(&CH->SLOT[SLOT1]); | 
 | 					OPL_KEYON(&CH->SLOT[SLOT2]); | 
 | 				} | 
 | 				else | 
 | 				{ | 
 | 					OPL_KEYOFF(&CH->SLOT[SLOT1]); | 
 | 					OPL_KEYOFF(&CH->SLOT[SLOT2]); | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		/* update */ | 
 | 		if(CH->block_fnum != block_fnum) | 
 | 		{ | 
 | 			int blockRv = 7-(block_fnum>>10); | 
 | 			int fnum   = block_fnum&0x3ff; | 
 | 			CH->block_fnum = block_fnum; | 
 |  | 
 | 			CH->ksl_base = KSL_TABLE[block_fnum>>6]; | 
 | 			CH->fc = OPL->FN_TABLE[fnum]>>blockRv; | 
 | 			CH->kcode = CH->block_fnum>>9; | 
 | 			if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1; | 
 | 			CALC_FCSLOT(CH,&CH->SLOT[SLOT1]); | 
 | 			CALC_FCSLOT(CH,&CH->SLOT[SLOT2]); | 
 | 		} | 
 | 		return; | 
 | 	case 0xc0: | 
 | 		/* FB,C */ | 
 | 		if( (r&0x0f) > 8) return; | 
 | 		CH = &OPL->P_CH[r&0x0f]; | 
 | 		{ | 
 | 		int feedback = (v>>1)&7; | 
 | 		CH->FB   = feedback ? (8+1) - feedback : 0; | 
 | 		CH->CON = v&1; | 
 | 		set_algorithm(CH); | 
 | 		} | 
 | 		return; | 
 | 	case 0xe0: /* wave type */ | 
 | 		slot = slot_array[r&0x1f]; | 
 | 		if(slot == -1) return; | 
 | 		CH = &OPL->P_CH[slot/2]; | 
 | 		if(OPL->wavesel) | 
 | 		{ | 
 | 			/* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */ | 
 | 			CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT]; | 
 | 		} | 
 | 		return; | 
 | 	} | 
 | } | 
 |  | 
 | /* lock/unlock for common table */ | 
 | static int OPL_LockTable(void) | 
 | { | 
 | 	num_lock++; | 
 | 	if(num_lock>1) return 0; | 
 | 	/* first time */ | 
 | 	cur_chip = NULL; | 
 | 	/* allocate total level table (128kb space) */ | 
 | 	if( !OPLOpenTable() ) | 
 | 	{ | 
 | 		num_lock--; | 
 | 		return -1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void OPL_UnLockTable(void) | 
 | { | 
 | 	if(num_lock) num_lock--; | 
 | 	if(num_lock) return; | 
 | 	/* last time */ | 
 | 	cur_chip = NULL; | 
 | 	OPLCloseTable(); | 
 | } | 
 |  | 
 | #if (BUILD_YM3812 || BUILD_YM3526) | 
 | /*******************************************************************************/ | 
 | /*		YM3812 local section                                                   */ | 
 | /*******************************************************************************/ | 
 |  | 
 | /* ---------- update one of chip ----------- */ | 
 | void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length) | 
 | { | 
 |     int i; | 
 | 	int data; | 
 | 	OPLSAMPLE *buf = buffer; | 
 | 	UINT32 amsCnt  = OPL->amsCnt; | 
 | 	UINT32 vibCnt  = OPL->vibCnt; | 
 | 	UINT8 rhythm = OPL->rhythm&0x20; | 
 | 	OPL_CH *CH,*R_CH; | 
 |  | 
 | 	if( (void *)OPL != cur_chip ){ | 
 | 		cur_chip = (void *)OPL; | 
 | 		/* channel pointers */ | 
 | 		S_CH = OPL->P_CH; | 
 | 		E_CH = &S_CH[9]; | 
 | 		/* rhythm slot */ | 
 | 		SLOT7_1 = &S_CH[7].SLOT[SLOT1]; | 
 | 		SLOT7_2 = &S_CH[7].SLOT[SLOT2]; | 
 | 		SLOT8_1 = &S_CH[8].SLOT[SLOT1]; | 
 | 		SLOT8_2 = &S_CH[8].SLOT[SLOT2]; | 
 | 		/* LFO state */ | 
 | 		amsIncr = OPL->amsIncr; | 
 | 		vibIncr = OPL->vibIncr; | 
 | 		ams_table = OPL->ams_table; | 
 | 		vib_table = OPL->vib_table; | 
 | 	} | 
 | 	R_CH = rhythm ? &S_CH[6] : E_CH; | 
 |     for( i=0; i < length ; i++ ) | 
 | 	{ | 
 | 		/*            channel A         channel B         channel C      */ | 
 | 		/* LFO */ | 
 | 		ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT]; | 
 | 		vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT]; | 
 | 		outd[0] = 0; | 
 | 		/* FM part */ | 
 | 		for(CH=S_CH ; CH < R_CH ; CH++) | 
 | 			OPL_CALC_CH(CH); | 
 | 		/* Rythn part */ | 
 | 		if(rhythm) | 
 | 			OPL_CALC_RH(S_CH); | 
 | 		/* limit check */ | 
 | 		data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT ); | 
 | 		/* store to sound buffer */ | 
 | 		buf[i] = data >> OPL_OUTSB; | 
 | 	} | 
 |  | 
 | 	OPL->amsCnt = amsCnt; | 
 | 	OPL->vibCnt = vibCnt; | 
 | #ifdef OPL_OUTPUT_LOG | 
 | 	if(opl_dbg_fp) | 
 | 	{ | 
 | 		for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++) | 
 | 			if( opl_dbg_opl[opl_dbg_chip] == OPL) break; | 
 | 		fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256); | 
 | 	} | 
 | #endif | 
 | } | 
 | #endif /* (BUILD_YM3812 || BUILD_YM3526) */ | 
 |  | 
 | #if BUILD_Y8950 | 
 |  | 
 | void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length) | 
 | { | 
 |     int i; | 
 | 	int data; | 
 | 	OPLSAMPLE *buf = buffer; | 
 | 	UINT32 amsCnt  = OPL->amsCnt; | 
 | 	UINT32 vibCnt  = OPL->vibCnt; | 
 | 	UINT8 rhythm = OPL->rhythm&0x20; | 
 | 	OPL_CH *CH,*R_CH; | 
 | 	YM_DELTAT *DELTAT = OPL->deltat; | 
 |  | 
 | 	/* setup DELTA-T unit */ | 
 | 	YM_DELTAT_DECODE_PRESET(DELTAT); | 
 |  | 
 | 	if( (void *)OPL != cur_chip ){ | 
 | 		cur_chip = (void *)OPL; | 
 | 		/* channel pointers */ | 
 | 		S_CH = OPL->P_CH; | 
 | 		E_CH = &S_CH[9]; | 
 | 		/* rhythm slot */ | 
 | 		SLOT7_1 = &S_CH[7].SLOT[SLOT1]; | 
 | 		SLOT7_2 = &S_CH[7].SLOT[SLOT2]; | 
 | 		SLOT8_1 = &S_CH[8].SLOT[SLOT1]; | 
 | 		SLOT8_2 = &S_CH[8].SLOT[SLOT2]; | 
 | 		/* LFO state */ | 
 | 		amsIncr = OPL->amsIncr; | 
 | 		vibIncr = OPL->vibIncr; | 
 | 		ams_table = OPL->ams_table; | 
 | 		vib_table = OPL->vib_table; | 
 | 	} | 
 | 	R_CH = rhythm ? &S_CH[6] : E_CH; | 
 |     for( i=0; i < length ; i++ ) | 
 | 	{ | 
 | 		/*            channel A         channel B         channel C      */ | 
 | 		/* LFO */ | 
 | 		ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT]; | 
 | 		vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT]; | 
 | 		outd[0] = 0; | 
 | 		/* deltaT ADPCM */ | 
 | 		if( DELTAT->portstate ) | 
 | 			YM_DELTAT_ADPCM_CALC(DELTAT); | 
 | 		/* FM part */ | 
 | 		for(CH=S_CH ; CH < R_CH ; CH++) | 
 | 			OPL_CALC_CH(CH); | 
 | 		/* Rythn part */ | 
 | 		if(rhythm) | 
 | 			OPL_CALC_RH(S_CH); | 
 | 		/* limit check */ | 
 | 		data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT ); | 
 | 		/* store to sound buffer */ | 
 | 		buf[i] = data >> OPL_OUTSB; | 
 | 	} | 
 | 	OPL->amsCnt = amsCnt; | 
 | 	OPL->vibCnt = vibCnt; | 
 | 	/* deltaT START flag */ | 
 | 	if( !DELTAT->portstate ) | 
 | 		OPL->status &= 0xfe; | 
 | } | 
 | #endif | 
 |  | 
 | /* ---------- reset one of chip ---------- */ | 
 | void OPLResetChip(FM_OPL *OPL) | 
 | { | 
 | 	int c,s; | 
 | 	int i; | 
 |  | 
 | 	/* reset chip */ | 
 | 	OPL->mode   = 0;	/* normal mode */ | 
 | 	OPL_STATUS_RESET(OPL,0x7f); | 
 | 	/* reset with register write */ | 
 | 	OPLWriteReg(OPL,0x01,0); /* wabesel disable */ | 
 | 	OPLWriteReg(OPL,0x02,0); /* Timer1 */ | 
 | 	OPLWriteReg(OPL,0x03,0); /* Timer2 */ | 
 | 	OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */ | 
 | 	for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0); | 
 | 	/* reset OPerator paramater */ | 
 | 	for( c = 0 ; c < OPL->max_ch ; c++ ) | 
 | 	{ | 
 | 		OPL_CH *CH = &OPL->P_CH[c]; | 
 | 		/* OPL->P_CH[c].PAN = OPN_CENTER; */ | 
 | 		for(s = 0 ; s < 2 ; s++ ) | 
 | 		{ | 
 | 			/* wave table */ | 
 | 			CH->SLOT[s].wavetable = &SIN_TABLE[0]; | 
 | 			/* CH->SLOT[s].evm = ENV_MOD_RR; */ | 
 | 			CH->SLOT[s].evc = EG_OFF; | 
 | 			CH->SLOT[s].eve = EG_OFF+1; | 
 | 			CH->SLOT[s].evs = 0; | 
 | 		} | 
 | 	} | 
 | #if BUILD_Y8950 | 
 | 	if(OPL->type&OPL_TYPE_ADPCM) | 
 | 	{ | 
 | 		YM_DELTAT *DELTAT = OPL->deltat; | 
 |  | 
 | 		DELTAT->freqbase = OPL->freqbase; | 
 | 		DELTAT->output_pointer = outd; | 
 | 		DELTAT->portshift = 5; | 
 | 		DELTAT->output_range = DELTAT_MIXING_LEVEL<<TL_BITS; | 
 | 		YM_DELTAT_ADPCM_Reset(DELTAT,0); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | /* ----------  Create one of vietual YM3812 ----------       */ | 
 | /* 'rate'  is sampling rate and 'bufsiz' is the size of the  */ | 
 | FM_OPL *OPLCreate(int type, int clock, int rate) | 
 | { | 
 | 	char *ptr; | 
 | 	FM_OPL *OPL; | 
 | 	int state_size; | 
 | 	int max_ch = 9; /* normaly 9 channels */ | 
 |  | 
 | 	if( OPL_LockTable() ==-1) return NULL; | 
 | 	/* allocate OPL state space */ | 
 | 	state_size  = sizeof(FM_OPL); | 
 | 	state_size += sizeof(OPL_CH)*max_ch; | 
 | #if BUILD_Y8950 | 
 | 	if(type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT); | 
 | #endif | 
 | 	/* allocate memory block */ | 
 | 	ptr = malloc(state_size); | 
 | 	if(ptr==NULL) return NULL; | 
 | 	/* clear */ | 
 | 	memset(ptr,0,state_size); | 
 | 	OPL        = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL); | 
 | 	OPL->P_CH  = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch; | 
 | #if BUILD_Y8950 | 
 | 	if(type&OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT); | 
 | #endif | 
 | 	/* set channel state pointer */ | 
 | 	OPL->type  = type; | 
 | 	OPL->clock = clock; | 
 | 	OPL->rate  = rate; | 
 | 	OPL->max_ch = max_ch; | 
 | 	/* init grobal tables */ | 
 | 	OPL_initialize(OPL); | 
 | 	/* reset chip */ | 
 | 	OPLResetChip(OPL); | 
 | #ifdef OPL_OUTPUT_LOG | 
 | 	if(!opl_dbg_fp) | 
 | 	{ | 
 | 		opl_dbg_fp = fopen("opllog.opl","wb"); | 
 | 		opl_dbg_maxchip = 0; | 
 | 	} | 
 | 	if(opl_dbg_fp) | 
 | 	{ | 
 | 		opl_dbg_opl[opl_dbg_maxchip] = OPL; | 
 | 		fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip, | 
 | 			type, | 
 | 			clock&0xff, | 
 | 			(clock/0x100)&0xff, | 
 | 			(clock/0x10000)&0xff, | 
 | 			(clock/0x1000000)&0xff); | 
 | 		opl_dbg_maxchip++; | 
 | 	} | 
 | #endif | 
 | 	return OPL; | 
 | } | 
 |  | 
 | /* ----------  Destroy one of vietual YM3812 ----------       */ | 
 | void OPLDestroy(FM_OPL *OPL) | 
 | { | 
 | #ifdef OPL_OUTPUT_LOG | 
 | 	if(opl_dbg_fp) | 
 | 	{ | 
 | 		fclose(opl_dbg_fp); | 
 | 		opl_dbg_fp = NULL; | 
 | 	} | 
 | #endif | 
 | 	OPL_UnLockTable(); | 
 | 	free(OPL); | 
 | } | 
 |  | 
 | /* ----------  Option handlers ----------       */ | 
 |  | 
 | void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset) | 
 | { | 
 | 	OPL->TimerHandler   = TimerHandler; | 
 | 	OPL->TimerParam = channelOffset; | 
 | } | 
 | void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param) | 
 | { | 
 | 	OPL->IRQHandler     = IRQHandler; | 
 | 	OPL->IRQParam = param; | 
 | } | 
 | void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param) | 
 | { | 
 | 	OPL->UpdateHandler = UpdateHandler; | 
 | 	OPL->UpdateParam = param; | 
 | } | 
 | #if BUILD_Y8950 | 
 | void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param) | 
 | { | 
 | 	OPL->porthandler_w = PortHandler_w; | 
 | 	OPL->porthandler_r = PortHandler_r; | 
 | 	OPL->port_param = param; | 
 | } | 
 |  | 
 | void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param) | 
 | { | 
 | 	OPL->keyboardhandler_w = KeyboardHandler_w; | 
 | 	OPL->keyboardhandler_r = KeyboardHandler_r; | 
 | 	OPL->keyboard_param = param; | 
 | } | 
 | #endif | 
 | /* ---------- YM3812 I/O interface ---------- */ | 
 | int OPLWrite(FM_OPL *OPL,int a,int v) | 
 | { | 
 | 	if( !(a&1) ) | 
 | 	{	/* address port */ | 
 | 		OPL->address = v & 0xff; | 
 | 	} | 
 | 	else | 
 | 	{	/* data port */ | 
 | 		if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0); | 
 | #ifdef OPL_OUTPUT_LOG | 
 | 	if(opl_dbg_fp) | 
 | 	{ | 
 | 		for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++) | 
 | 			if( opl_dbg_opl[opl_dbg_chip] == OPL) break; | 
 | 		fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v); | 
 | 	} | 
 | #endif | 
 | 		OPLWriteReg(OPL,OPL->address,v); | 
 | 	} | 
 | 	return OPL->status>>7; | 
 | } | 
 |  | 
 | unsigned char OPLRead(FM_OPL *OPL,int a) | 
 | { | 
 | 	if( !(a&1) ) | 
 | 	{	/* status port */ | 
 | 		return OPL->status & (OPL->statusmask|0x80); | 
 | 	} | 
 | 	/* data port */ | 
 | 	switch(OPL->address) | 
 | 	{ | 
 | 	case 0x05: /* KeyBoard IN */ | 
 | 		if(OPL->type&OPL_TYPE_KEYBOARD) | 
 | 		{ | 
 | 			if(OPL->keyboardhandler_r) | 
 | 				return OPL->keyboardhandler_r(OPL->keyboard_param); | 
 | 			else { | 
 | 				LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n")); | 
 | 			} | 
 | 		} | 
 | 		return 0; | 
 | #if 0 | 
 | 	case 0x0f: /* ADPCM-DATA  */ | 
 | 		return 0; | 
 | #endif | 
 | 	case 0x19: /* I/O DATA    */ | 
 | 		if(OPL->type&OPL_TYPE_IO) | 
 | 		{ | 
 | 			if(OPL->porthandler_r) | 
 | 				return OPL->porthandler_r(OPL->port_param); | 
 | 			else { | 
 | 				LOG(LOG_WAR,("OPL:read unmapped I/O port\n")); | 
 | 			} | 
 | 		} | 
 | 		return 0; | 
 | 	case 0x1a: /* PCM-DATA    */ | 
 | 		return 0; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int OPLTimerOver(FM_OPL *OPL,int c) | 
 | { | 
 | 	if( c ) | 
 | 	{	/* Timer B */ | 
 | 		OPL_STATUS_SET(OPL,0x20); | 
 | 	} | 
 | 	else | 
 | 	{	/* Timer A */ | 
 | 		OPL_STATUS_SET(OPL,0x40); | 
 | 		/* CSM mode key,TL control */ | 
 | 		if( OPL->mode & 0x80 ) | 
 | 		{	/* CSM mode total level latch and auto key on */ | 
 | 			int ch; | 
 | 			if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0); | 
 | 			for(ch=0;ch<9;ch++) | 
 | 				CSMKeyControll( &OPL->P_CH[ch] ); | 
 | 		} | 
 | 	} | 
 | 	/* reload timer */ | 
 | 	if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase); | 
 | 	return OPL->status>>7; | 
 | } |