| /* | 
 |  * QEMU System Emulator | 
 |  * | 
 |  * Copyright (c) 2003-2008 Fabrice Bellard | 
 |  * | 
 |  * Permission is hereby granted, free of charge, to any person obtaining a copy | 
 |  * of this software and associated documentation files (the "Software"), to deal | 
 |  * in the Software without restriction, including without limitation the rights | 
 |  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
 |  * copies of the Software, and to permit persons to whom the Software is | 
 |  * furnished to do so, subject to the following conditions: | 
 |  * | 
 |  * The above copyright notice and this permission notice shall be included in | 
 |  * all copies or substantial portions of the Software. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
 |  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
 |  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | 
 |  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
 |  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
 |  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | 
 |  * THE SOFTWARE. | 
 |  */ | 
 |  | 
 | /* Needed early for CONFIG_BSD etc. */ | 
 | #include "config-host.h" | 
 |  | 
 | #include "monitor/monitor.h" | 
 | #include "sysemu/sysemu.h" | 
 | #include "exec/gdbstub.h" | 
 | #include "sysemu/dma.h" | 
 | #include "sysemu/kvm.h" | 
 | #include "qmp-commands.h" | 
 |  | 
 | #include "qemu/thread.h" | 
 | #include "sysemu/cpus.h" | 
 | #include "sysemu/qtest.h" | 
 | #include "qemu/main-loop.h" | 
 | #include "qemu/bitmap.h" | 
 | #include "qemu/seqlock.h" | 
 |  | 
 | #ifndef _WIN32 | 
 | #include "qemu/compatfd.h" | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_LINUX | 
 |  | 
 | #include <sys/prctl.h> | 
 |  | 
 | #ifndef PR_MCE_KILL | 
 | #define PR_MCE_KILL 33 | 
 | #endif | 
 |  | 
 | #ifndef PR_MCE_KILL_SET | 
 | #define PR_MCE_KILL_SET 1 | 
 | #endif | 
 |  | 
 | #ifndef PR_MCE_KILL_EARLY | 
 | #define PR_MCE_KILL_EARLY 1 | 
 | #endif | 
 |  | 
 | #endif /* CONFIG_LINUX */ | 
 |  | 
 | static CPUState *next_cpu; | 
 |  | 
 | bool cpu_is_stopped(CPUState *cpu) | 
 | { | 
 |     return cpu->stopped || !runstate_is_running(); | 
 | } | 
 |  | 
 | static bool cpu_thread_is_idle(CPUState *cpu) | 
 | { | 
 |     if (cpu->stop || cpu->queued_work_first) { | 
 |         return false; | 
 |     } | 
 |     if (cpu_is_stopped(cpu)) { | 
 |         return true; | 
 |     } | 
 |     if (!cpu->halted || cpu_has_work(cpu) || | 
 |         kvm_halt_in_kernel()) { | 
 |         return false; | 
 |     } | 
 |     return true; | 
 | } | 
 |  | 
 | static bool all_cpu_threads_idle(void) | 
 | { | 
 |     CPUState *cpu; | 
 |  | 
 |     CPU_FOREACH(cpu) { | 
 |         if (!cpu_thread_is_idle(cpu)) { | 
 |             return false; | 
 |         } | 
 |     } | 
 |     return true; | 
 | } | 
 |  | 
 | /***********************************************************/ | 
 | /* guest cycle counter */ | 
 |  | 
 | /* Protected by TimersState seqlock */ | 
 |  | 
 | /* Compensate for varying guest execution speed.  */ | 
 | static int64_t qemu_icount_bias; | 
 | static int64_t vm_clock_warp_start; | 
 | /* Conversion factor from emulated instructions to virtual clock ticks.  */ | 
 | static int icount_time_shift; | 
 | /* Arbitrarily pick 1MIPS as the minimum allowable speed.  */ | 
 | #define MAX_ICOUNT_SHIFT 10 | 
 |  | 
 | /* Only written by TCG thread */ | 
 | static int64_t qemu_icount; | 
 |  | 
 | static QEMUTimer *icount_rt_timer; | 
 | static QEMUTimer *icount_vm_timer; | 
 | static QEMUTimer *icount_warp_timer; | 
 |  | 
 | typedef struct TimersState { | 
 |     /* Protected by BQL.  */ | 
 |     int64_t cpu_ticks_prev; | 
 |     int64_t cpu_ticks_offset; | 
 |  | 
 |     /* cpu_clock_offset can be read out of BQL, so protect it with | 
 |      * this lock. | 
 |      */ | 
 |     QemuSeqLock vm_clock_seqlock; | 
 |     int64_t cpu_clock_offset; | 
 |     int32_t cpu_ticks_enabled; | 
 |     int64_t dummy; | 
 | } TimersState; | 
 |  | 
 | static TimersState timers_state; | 
 |  | 
 | /* Return the virtual CPU time, based on the instruction counter.  */ | 
 | static int64_t cpu_get_icount_locked(void) | 
 | { | 
 |     int64_t icount; | 
 |     CPUState *cpu = current_cpu; | 
 |  | 
 |     icount = qemu_icount; | 
 |     if (cpu) { | 
 |         if (!cpu_can_do_io(cpu)) { | 
 |             fprintf(stderr, "Bad clock read\n"); | 
 |         } | 
 |         icount -= (cpu->icount_decr.u16.low + cpu->icount_extra); | 
 |     } | 
 |     return qemu_icount_bias + (icount << icount_time_shift); | 
 | } | 
 |  | 
 | int64_t cpu_get_icount(void) | 
 | { | 
 |     int64_t icount; | 
 |     unsigned start; | 
 |  | 
 |     do { | 
 |         start = seqlock_read_begin(&timers_state.vm_clock_seqlock); | 
 |         icount = cpu_get_icount_locked(); | 
 |     } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start)); | 
 |  | 
 |     return icount; | 
 | } | 
 |  | 
 | /* return the host CPU cycle counter and handle stop/restart */ | 
 | /* Caller must hold the BQL */ | 
 | int64_t cpu_get_ticks(void) | 
 | { | 
 |     int64_t ticks; | 
 |  | 
 |     if (use_icount) { | 
 |         return cpu_get_icount(); | 
 |     } | 
 |  | 
 |     ticks = timers_state.cpu_ticks_offset; | 
 |     if (timers_state.cpu_ticks_enabled) { | 
 |         ticks += cpu_get_real_ticks(); | 
 |     } | 
 |  | 
 |     if (timers_state.cpu_ticks_prev > ticks) { | 
 |         /* Note: non increasing ticks may happen if the host uses | 
 |            software suspend */ | 
 |         timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks; | 
 |         ticks = timers_state.cpu_ticks_prev; | 
 |     } | 
 |  | 
 |     timers_state.cpu_ticks_prev = ticks; | 
 |     return ticks; | 
 | } | 
 |  | 
 | static int64_t cpu_get_clock_locked(void) | 
 | { | 
 |     int64_t ticks; | 
 |  | 
 |     ticks = timers_state.cpu_clock_offset; | 
 |     if (timers_state.cpu_ticks_enabled) { | 
 |         ticks += get_clock(); | 
 |     } | 
 |  | 
 |     return ticks; | 
 | } | 
 |  | 
 | /* return the host CPU monotonic timer and handle stop/restart */ | 
 | int64_t cpu_get_clock(void) | 
 | { | 
 |     int64_t ti; | 
 |     unsigned start; | 
 |  | 
 |     do { | 
 |         start = seqlock_read_begin(&timers_state.vm_clock_seqlock); | 
 |         ti = cpu_get_clock_locked(); | 
 |     } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start)); | 
 |  | 
 |     return ti; | 
 | } | 
 |  | 
 | /* enable cpu_get_ticks() | 
 |  * Caller must hold BQL which server as mutex for vm_clock_seqlock. | 
 |  */ | 
 | void cpu_enable_ticks(void) | 
 | { | 
 |     /* Here, the really thing protected by seqlock is cpu_clock_offset. */ | 
 |     seqlock_write_lock(&timers_state.vm_clock_seqlock); | 
 |     if (!timers_state.cpu_ticks_enabled) { | 
 |         timers_state.cpu_ticks_offset -= cpu_get_real_ticks(); | 
 |         timers_state.cpu_clock_offset -= get_clock(); | 
 |         timers_state.cpu_ticks_enabled = 1; | 
 |     } | 
 |     seqlock_write_unlock(&timers_state.vm_clock_seqlock); | 
 | } | 
 |  | 
 | /* disable cpu_get_ticks() : the clock is stopped. You must not call | 
 |  * cpu_get_ticks() after that. | 
 |  * Caller must hold BQL which server as mutex for vm_clock_seqlock. | 
 |  */ | 
 | void cpu_disable_ticks(void) | 
 | { | 
 |     /* Here, the really thing protected by seqlock is cpu_clock_offset. */ | 
 |     seqlock_write_lock(&timers_state.vm_clock_seqlock); | 
 |     if (timers_state.cpu_ticks_enabled) { | 
 |         timers_state.cpu_ticks_offset += cpu_get_real_ticks(); | 
 |         timers_state.cpu_clock_offset = cpu_get_clock_locked(); | 
 |         timers_state.cpu_ticks_enabled = 0; | 
 |     } | 
 |     seqlock_write_unlock(&timers_state.vm_clock_seqlock); | 
 | } | 
 |  | 
 | /* Correlation between real and virtual time is always going to be | 
 |    fairly approximate, so ignore small variation. | 
 |    When the guest is idle real and virtual time will be aligned in | 
 |    the IO wait loop.  */ | 
 | #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10) | 
 |  | 
 | static void icount_adjust(void) | 
 | { | 
 |     int64_t cur_time; | 
 |     int64_t cur_icount; | 
 |     int64_t delta; | 
 |  | 
 |     /* Protected by TimersState mutex.  */ | 
 |     static int64_t last_delta; | 
 |  | 
 |     /* If the VM is not running, then do nothing.  */ | 
 |     if (!runstate_is_running()) { | 
 |         return; | 
 |     } | 
 |  | 
 |     seqlock_write_lock(&timers_state.vm_clock_seqlock); | 
 |     cur_time = cpu_get_clock_locked(); | 
 |     cur_icount = cpu_get_icount_locked(); | 
 |  | 
 |     delta = cur_icount - cur_time; | 
 |     /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */ | 
 |     if (delta > 0 | 
 |         && last_delta + ICOUNT_WOBBLE < delta * 2 | 
 |         && icount_time_shift > 0) { | 
 |         /* The guest is getting too far ahead.  Slow time down.  */ | 
 |         icount_time_shift--; | 
 |     } | 
 |     if (delta < 0 | 
 |         && last_delta - ICOUNT_WOBBLE > delta * 2 | 
 |         && icount_time_shift < MAX_ICOUNT_SHIFT) { | 
 |         /* The guest is getting too far behind.  Speed time up.  */ | 
 |         icount_time_shift++; | 
 |     } | 
 |     last_delta = delta; | 
 |     qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift); | 
 |     seqlock_write_unlock(&timers_state.vm_clock_seqlock); | 
 | } | 
 |  | 
 | static void icount_adjust_rt(void *opaque) | 
 | { | 
 |     timer_mod(icount_rt_timer, | 
 |                    qemu_clock_get_ms(QEMU_CLOCK_REALTIME) + 1000); | 
 |     icount_adjust(); | 
 | } | 
 |  | 
 | static void icount_adjust_vm(void *opaque) | 
 | { | 
 |     timer_mod(icount_vm_timer, | 
 |                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + | 
 |                    get_ticks_per_sec() / 10); | 
 |     icount_adjust(); | 
 | } | 
 |  | 
 | static int64_t qemu_icount_round(int64_t count) | 
 | { | 
 |     return (count + (1 << icount_time_shift) - 1) >> icount_time_shift; | 
 | } | 
 |  | 
 | static void icount_warp_rt(void *opaque) | 
 | { | 
 |     /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start | 
 |      * changes from -1 to another value, so the race here is okay. | 
 |      */ | 
 |     if (atomic_read(&vm_clock_warp_start) == -1) { | 
 |         return; | 
 |     } | 
 |  | 
 |     seqlock_write_lock(&timers_state.vm_clock_seqlock); | 
 |     if (runstate_is_running()) { | 
 |         int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); | 
 |         int64_t warp_delta; | 
 |  | 
 |         warp_delta = clock - vm_clock_warp_start; | 
 |         if (use_icount == 2) { | 
 |             /* | 
 |              * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too | 
 |              * far ahead of real time. | 
 |              */ | 
 |             int64_t cur_time = cpu_get_clock_locked(); | 
 |             int64_t cur_icount = cpu_get_icount_locked(); | 
 |             int64_t delta = cur_time - cur_icount; | 
 |             warp_delta = MIN(warp_delta, delta); | 
 |         } | 
 |         qemu_icount_bias += warp_delta; | 
 |     } | 
 |     vm_clock_warp_start = -1; | 
 |     seqlock_write_unlock(&timers_state.vm_clock_seqlock); | 
 |  | 
 |     if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) { | 
 |         qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | 
 |     } | 
 | } | 
 |  | 
 | void qtest_clock_warp(int64_t dest) | 
 | { | 
 |     int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
 |     assert(qtest_enabled()); | 
 |     while (clock < dest) { | 
 |         int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); | 
 |         int64_t warp = MIN(dest - clock, deadline); | 
 |         seqlock_write_lock(&timers_state.vm_clock_seqlock); | 
 |         qemu_icount_bias += warp; | 
 |         seqlock_write_unlock(&timers_state.vm_clock_seqlock); | 
 |  | 
 |         qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL); | 
 |         clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); | 
 |     } | 
 |     qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | 
 | } | 
 |  | 
 | void qemu_clock_warp(QEMUClockType type) | 
 | { | 
 |     int64_t clock; | 
 |     int64_t deadline; | 
 |  | 
 |     /* | 
 |      * There are too many global variables to make the "warp" behavior | 
 |      * applicable to other clocks.  But a clock argument removes the | 
 |      * need for if statements all over the place. | 
 |      */ | 
 |     if (type != QEMU_CLOCK_VIRTUAL || !use_icount) { | 
 |         return; | 
 |     } | 
 |  | 
 |     /* | 
 |      * If the CPUs have been sleeping, advance QEMU_CLOCK_VIRTUAL timer now. | 
 |      * This ensures that the deadline for the timer is computed correctly below. | 
 |      * This also makes sure that the insn counter is synchronized before the | 
 |      * CPU starts running, in case the CPU is woken by an event other than | 
 |      * the earliest QEMU_CLOCK_VIRTUAL timer. | 
 |      */ | 
 |     icount_warp_rt(NULL); | 
 |     timer_del(icount_warp_timer); | 
 |     if (!all_cpu_threads_idle()) { | 
 |         return; | 
 |     } | 
 |  | 
 |     if (qtest_enabled()) { | 
 |         /* When testing, qtest commands advance icount.  */ | 
 | 	return; | 
 |     } | 
 |  | 
 |     /* We want to use the earliest deadline from ALL vm_clocks */ | 
 |     clock = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); | 
 |     deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); | 
 |     if (deadline < 0) { | 
 |         return; | 
 |     } | 
 |  | 
 |     if (deadline > 0) { | 
 |         /* | 
 |          * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to | 
 |          * sleep.  Otherwise, the CPU might be waiting for a future timer | 
 |          * interrupt to wake it up, but the interrupt never comes because | 
 |          * the vCPU isn't running any insns and thus doesn't advance the | 
 |          * QEMU_CLOCK_VIRTUAL. | 
 |          * | 
 |          * An extreme solution for this problem would be to never let VCPUs | 
 |          * sleep in icount mode if there is a pending QEMU_CLOCK_VIRTUAL | 
 |          * timer; rather time could just advance to the next QEMU_CLOCK_VIRTUAL | 
 |          * event.  Instead, we do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL | 
 |          * after some e"real" time, (related to the time left until the next | 
 |          * event) has passed. The QEMU_CLOCK_REALTIME timer will do this. | 
 |          * This avoids that the warps are visible externally; for example, | 
 |          * you will not be sending network packets continuously instead of | 
 |          * every 100ms. | 
 |          */ | 
 |         seqlock_write_lock(&timers_state.vm_clock_seqlock); | 
 |         if (vm_clock_warp_start == -1 || vm_clock_warp_start > clock) { | 
 |             vm_clock_warp_start = clock; | 
 |         } | 
 |         seqlock_write_unlock(&timers_state.vm_clock_seqlock); | 
 |         timer_mod_anticipate(icount_warp_timer, clock + deadline); | 
 |     } else if (deadline == 0) { | 
 |         qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | 
 |     } | 
 | } | 
 |  | 
 | static const VMStateDescription vmstate_timers = { | 
 |     .name = "timer", | 
 |     .version_id = 2, | 
 |     .minimum_version_id = 1, | 
 |     .fields = (VMStateField[]) { | 
 |         VMSTATE_INT64(cpu_ticks_offset, TimersState), | 
 |         VMSTATE_INT64(dummy, TimersState), | 
 |         VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2), | 
 |         VMSTATE_END_OF_LIST() | 
 |     } | 
 | }; | 
 |  | 
 | void configure_icount(const char *option) | 
 | { | 
 |     seqlock_init(&timers_state.vm_clock_seqlock, NULL); | 
 |     vmstate_register(NULL, 0, &vmstate_timers, &timers_state); | 
 |     if (!option) { | 
 |         return; | 
 |     } | 
 |  | 
 |     icount_warp_timer = timer_new_ns(QEMU_CLOCK_REALTIME, | 
 |                                           icount_warp_rt, NULL); | 
 |     if (strcmp(option, "auto") != 0) { | 
 |         icount_time_shift = strtol(option, NULL, 0); | 
 |         use_icount = 1; | 
 |         return; | 
 |     } | 
 |  | 
 |     use_icount = 2; | 
 |  | 
 |     /* 125MIPS seems a reasonable initial guess at the guest speed. | 
 |        It will be corrected fairly quickly anyway.  */ | 
 |     icount_time_shift = 3; | 
 |  | 
 |     /* Have both realtime and virtual time triggers for speed adjustment. | 
 |        The realtime trigger catches emulated time passing too slowly, | 
 |        the virtual time trigger catches emulated time passing too fast. | 
 |        Realtime triggers occur even when idle, so use them less frequently | 
 |        than VM triggers.  */ | 
 |     icount_rt_timer = timer_new_ms(QEMU_CLOCK_REALTIME, | 
 |                                         icount_adjust_rt, NULL); | 
 |     timer_mod(icount_rt_timer, | 
 |                    qemu_clock_get_ms(QEMU_CLOCK_REALTIME) + 1000); | 
 |     icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, | 
 |                                         icount_adjust_vm, NULL); | 
 |     timer_mod(icount_vm_timer, | 
 |                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + | 
 |                    get_ticks_per_sec() / 10); | 
 | } | 
 |  | 
 | /***********************************************************/ | 
 | void hw_error(const char *fmt, ...) | 
 | { | 
 |     va_list ap; | 
 |     CPUState *cpu; | 
 |  | 
 |     va_start(ap, fmt); | 
 |     fprintf(stderr, "qemu: hardware error: "); | 
 |     vfprintf(stderr, fmt, ap); | 
 |     fprintf(stderr, "\n"); | 
 |     CPU_FOREACH(cpu) { | 
 |         fprintf(stderr, "CPU #%d:\n", cpu->cpu_index); | 
 |         cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU); | 
 |     } | 
 |     va_end(ap); | 
 |     abort(); | 
 | } | 
 |  | 
 | void cpu_synchronize_all_states(void) | 
 | { | 
 |     CPUState *cpu; | 
 |  | 
 |     CPU_FOREACH(cpu) { | 
 |         cpu_synchronize_state(cpu); | 
 |     } | 
 | } | 
 |  | 
 | void cpu_synchronize_all_post_reset(void) | 
 | { | 
 |     CPUState *cpu; | 
 |  | 
 |     CPU_FOREACH(cpu) { | 
 |         cpu_synchronize_post_reset(cpu); | 
 |     } | 
 | } | 
 |  | 
 | void cpu_synchronize_all_post_init(void) | 
 | { | 
 |     CPUState *cpu; | 
 |  | 
 |     CPU_FOREACH(cpu) { | 
 |         cpu_synchronize_post_init(cpu); | 
 |     } | 
 | } | 
 |  | 
 | static int do_vm_stop(RunState state) | 
 | { | 
 |     int ret = 0; | 
 |  | 
 |     if (runstate_is_running()) { | 
 |         cpu_disable_ticks(); | 
 |         pause_all_vcpus(); | 
 |         runstate_set(state); | 
 |         vm_state_notify(0, state); | 
 |         monitor_protocol_event(QEVENT_STOP, NULL); | 
 |     } | 
 |  | 
 |     bdrv_drain_all(); | 
 |     ret = bdrv_flush_all(); | 
 |  | 
 |     return ret; | 
 | } | 
 |  | 
 | static bool cpu_can_run(CPUState *cpu) | 
 | { | 
 |     if (cpu->stop) { | 
 |         return false; | 
 |     } | 
 |     if (cpu_is_stopped(cpu)) { | 
 |         return false; | 
 |     } | 
 |     return true; | 
 | } | 
 |  | 
 | static void cpu_handle_guest_debug(CPUState *cpu) | 
 | { | 
 |     gdb_set_stop_cpu(cpu); | 
 |     qemu_system_debug_request(); | 
 |     cpu->stopped = true; | 
 | } | 
 |  | 
 | static void cpu_signal(int sig) | 
 | { | 
 |     if (current_cpu) { | 
 |         cpu_exit(current_cpu); | 
 |     } | 
 |     exit_request = 1; | 
 | } | 
 |  | 
 | #ifdef CONFIG_LINUX | 
 | static void sigbus_reraise(void) | 
 | { | 
 |     sigset_t set; | 
 |     struct sigaction action; | 
 |  | 
 |     memset(&action, 0, sizeof(action)); | 
 |     action.sa_handler = SIG_DFL; | 
 |     if (!sigaction(SIGBUS, &action, NULL)) { | 
 |         raise(SIGBUS); | 
 |         sigemptyset(&set); | 
 |         sigaddset(&set, SIGBUS); | 
 |         sigprocmask(SIG_UNBLOCK, &set, NULL); | 
 |     } | 
 |     perror("Failed to re-raise SIGBUS!\n"); | 
 |     abort(); | 
 | } | 
 |  | 
 | static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo, | 
 |                            void *ctx) | 
 | { | 
 |     if (kvm_on_sigbus(siginfo->ssi_code, | 
 |                       (void *)(intptr_t)siginfo->ssi_addr)) { | 
 |         sigbus_reraise(); | 
 |     } | 
 | } | 
 |  | 
 | static void qemu_init_sigbus(void) | 
 | { | 
 |     struct sigaction action; | 
 |  | 
 |     memset(&action, 0, sizeof(action)); | 
 |     action.sa_flags = SA_SIGINFO; | 
 |     action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler; | 
 |     sigaction(SIGBUS, &action, NULL); | 
 |  | 
 |     prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0); | 
 | } | 
 |  | 
 | static void qemu_kvm_eat_signals(CPUState *cpu) | 
 | { | 
 |     struct timespec ts = { 0, 0 }; | 
 |     siginfo_t siginfo; | 
 |     sigset_t waitset; | 
 |     sigset_t chkset; | 
 |     int r; | 
 |  | 
 |     sigemptyset(&waitset); | 
 |     sigaddset(&waitset, SIG_IPI); | 
 |     sigaddset(&waitset, SIGBUS); | 
 |  | 
 |     do { | 
 |         r = sigtimedwait(&waitset, &siginfo, &ts); | 
 |         if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { | 
 |             perror("sigtimedwait"); | 
 |             exit(1); | 
 |         } | 
 |  | 
 |         switch (r) { | 
 |         case SIGBUS: | 
 |             if (kvm_on_sigbus_vcpu(cpu, siginfo.si_code, siginfo.si_addr)) { | 
 |                 sigbus_reraise(); | 
 |             } | 
 |             break; | 
 |         default: | 
 |             break; | 
 |         } | 
 |  | 
 |         r = sigpending(&chkset); | 
 |         if (r == -1) { | 
 |             perror("sigpending"); | 
 |             exit(1); | 
 |         } | 
 |     } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS)); | 
 | } | 
 |  | 
 | #else /* !CONFIG_LINUX */ | 
 |  | 
 | static void qemu_init_sigbus(void) | 
 | { | 
 | } | 
 |  | 
 | static void qemu_kvm_eat_signals(CPUState *cpu) | 
 | { | 
 | } | 
 | #endif /* !CONFIG_LINUX */ | 
 |  | 
 | #ifndef _WIN32 | 
 | static void dummy_signal(int sig) | 
 | { | 
 | } | 
 |  | 
 | static void qemu_kvm_init_cpu_signals(CPUState *cpu) | 
 | { | 
 |     int r; | 
 |     sigset_t set; | 
 |     struct sigaction sigact; | 
 |  | 
 |     memset(&sigact, 0, sizeof(sigact)); | 
 |     sigact.sa_handler = dummy_signal; | 
 |     sigaction(SIG_IPI, &sigact, NULL); | 
 |  | 
 |     pthread_sigmask(SIG_BLOCK, NULL, &set); | 
 |     sigdelset(&set, SIG_IPI); | 
 |     sigdelset(&set, SIGBUS); | 
 |     r = kvm_set_signal_mask(cpu, &set); | 
 |     if (r) { | 
 |         fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); | 
 |         exit(1); | 
 |     } | 
 | } | 
 |  | 
 | static void qemu_tcg_init_cpu_signals(void) | 
 | { | 
 |     sigset_t set; | 
 |     struct sigaction sigact; | 
 |  | 
 |     memset(&sigact, 0, sizeof(sigact)); | 
 |     sigact.sa_handler = cpu_signal; | 
 |     sigaction(SIG_IPI, &sigact, NULL); | 
 |  | 
 |     sigemptyset(&set); | 
 |     sigaddset(&set, SIG_IPI); | 
 |     pthread_sigmask(SIG_UNBLOCK, &set, NULL); | 
 | } | 
 |  | 
 | #else /* _WIN32 */ | 
 | static void qemu_kvm_init_cpu_signals(CPUState *cpu) | 
 | { | 
 |     abort(); | 
 | } | 
 |  | 
 | static void qemu_tcg_init_cpu_signals(void) | 
 | { | 
 | } | 
 | #endif /* _WIN32 */ | 
 |  | 
 | static QemuMutex qemu_global_mutex; | 
 | static QemuCond qemu_io_proceeded_cond; | 
 | static bool iothread_requesting_mutex; | 
 |  | 
 | static QemuThread io_thread; | 
 |  | 
 | static QemuThread *tcg_cpu_thread; | 
 | static QemuCond *tcg_halt_cond; | 
 |  | 
 | /* cpu creation */ | 
 | static QemuCond qemu_cpu_cond; | 
 | /* system init */ | 
 | static QemuCond qemu_pause_cond; | 
 | static QemuCond qemu_work_cond; | 
 |  | 
 | void qemu_init_cpu_loop(void) | 
 | { | 
 |     qemu_init_sigbus(); | 
 |     qemu_cond_init(&qemu_cpu_cond); | 
 |     qemu_cond_init(&qemu_pause_cond); | 
 |     qemu_cond_init(&qemu_work_cond); | 
 |     qemu_cond_init(&qemu_io_proceeded_cond); | 
 |     qemu_mutex_init(&qemu_global_mutex); | 
 |  | 
 |     qemu_thread_get_self(&io_thread); | 
 | } | 
 |  | 
 | void run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data) | 
 | { | 
 |     struct qemu_work_item wi; | 
 |  | 
 |     if (qemu_cpu_is_self(cpu)) { | 
 |         func(data); | 
 |         return; | 
 |     } | 
 |  | 
 |     wi.func = func; | 
 |     wi.data = data; | 
 |     wi.free = false; | 
 |     if (cpu->queued_work_first == NULL) { | 
 |         cpu->queued_work_first = &wi; | 
 |     } else { | 
 |         cpu->queued_work_last->next = &wi; | 
 |     } | 
 |     cpu->queued_work_last = &wi; | 
 |     wi.next = NULL; | 
 |     wi.done = false; | 
 |  | 
 |     qemu_cpu_kick(cpu); | 
 |     while (!wi.done) { | 
 |         CPUState *self_cpu = current_cpu; | 
 |  | 
 |         qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex); | 
 |         current_cpu = self_cpu; | 
 |     } | 
 | } | 
 |  | 
 | void async_run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data) | 
 | { | 
 |     struct qemu_work_item *wi; | 
 |  | 
 |     if (qemu_cpu_is_self(cpu)) { | 
 |         func(data); | 
 |         return; | 
 |     } | 
 |  | 
 |     wi = g_malloc0(sizeof(struct qemu_work_item)); | 
 |     wi->func = func; | 
 |     wi->data = data; | 
 |     wi->free = true; | 
 |     if (cpu->queued_work_first == NULL) { | 
 |         cpu->queued_work_first = wi; | 
 |     } else { | 
 |         cpu->queued_work_last->next = wi; | 
 |     } | 
 |     cpu->queued_work_last = wi; | 
 |     wi->next = NULL; | 
 |     wi->done = false; | 
 |  | 
 |     qemu_cpu_kick(cpu); | 
 | } | 
 |  | 
 | static void flush_queued_work(CPUState *cpu) | 
 | { | 
 |     struct qemu_work_item *wi; | 
 |  | 
 |     if (cpu->queued_work_first == NULL) { | 
 |         return; | 
 |     } | 
 |  | 
 |     while ((wi = cpu->queued_work_first)) { | 
 |         cpu->queued_work_first = wi->next; | 
 |         wi->func(wi->data); | 
 |         wi->done = true; | 
 |         if (wi->free) { | 
 |             g_free(wi); | 
 |         } | 
 |     } | 
 |     cpu->queued_work_last = NULL; | 
 |     qemu_cond_broadcast(&qemu_work_cond); | 
 | } | 
 |  | 
 | static void qemu_wait_io_event_common(CPUState *cpu) | 
 | { | 
 |     if (cpu->stop) { | 
 |         cpu->stop = false; | 
 |         cpu->stopped = true; | 
 |         qemu_cond_signal(&qemu_pause_cond); | 
 |     } | 
 |     flush_queued_work(cpu); | 
 |     cpu->thread_kicked = false; | 
 | } | 
 |  | 
 | static void qemu_tcg_wait_io_event(void) | 
 | { | 
 |     CPUState *cpu; | 
 |  | 
 |     while (all_cpu_threads_idle()) { | 
 |        /* Start accounting real time to the virtual clock if the CPUs | 
 |           are idle.  */ | 
 |         qemu_clock_warp(QEMU_CLOCK_VIRTUAL); | 
 |         qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex); | 
 |     } | 
 |  | 
 |     while (iothread_requesting_mutex) { | 
 |         qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex); | 
 |     } | 
 |  | 
 |     CPU_FOREACH(cpu) { | 
 |         qemu_wait_io_event_common(cpu); | 
 |     } | 
 | } | 
 |  | 
 | static void qemu_kvm_wait_io_event(CPUState *cpu) | 
 | { | 
 |     while (cpu_thread_is_idle(cpu)) { | 
 |         qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex); | 
 |     } | 
 |  | 
 |     qemu_kvm_eat_signals(cpu); | 
 |     qemu_wait_io_event_common(cpu); | 
 | } | 
 |  | 
 | static void *qemu_kvm_cpu_thread_fn(void *arg) | 
 | { | 
 |     CPUState *cpu = arg; | 
 |     int r; | 
 |  | 
 |     qemu_mutex_lock(&qemu_global_mutex); | 
 |     qemu_thread_get_self(cpu->thread); | 
 |     cpu->thread_id = qemu_get_thread_id(); | 
 |     current_cpu = cpu; | 
 |  | 
 |     r = kvm_init_vcpu(cpu); | 
 |     if (r < 0) { | 
 |         fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r)); | 
 |         exit(1); | 
 |     } | 
 |  | 
 |     qemu_kvm_init_cpu_signals(cpu); | 
 |  | 
 |     /* signal CPU creation */ | 
 |     cpu->created = true; | 
 |     qemu_cond_signal(&qemu_cpu_cond); | 
 |  | 
 |     while (1) { | 
 |         if (cpu_can_run(cpu)) { | 
 |             r = kvm_cpu_exec(cpu); | 
 |             if (r == EXCP_DEBUG) { | 
 |                 cpu_handle_guest_debug(cpu); | 
 |             } | 
 |         } | 
 |         qemu_kvm_wait_io_event(cpu); | 
 |     } | 
 |  | 
 |     return NULL; | 
 | } | 
 |  | 
 | static void *qemu_dummy_cpu_thread_fn(void *arg) | 
 | { | 
 | #ifdef _WIN32 | 
 |     fprintf(stderr, "qtest is not supported under Windows\n"); | 
 |     exit(1); | 
 | #else | 
 |     CPUState *cpu = arg; | 
 |     sigset_t waitset; | 
 |     int r; | 
 |  | 
 |     qemu_mutex_lock_iothread(); | 
 |     qemu_thread_get_self(cpu->thread); | 
 |     cpu->thread_id = qemu_get_thread_id(); | 
 |  | 
 |     sigemptyset(&waitset); | 
 |     sigaddset(&waitset, SIG_IPI); | 
 |  | 
 |     /* signal CPU creation */ | 
 |     cpu->created = true; | 
 |     qemu_cond_signal(&qemu_cpu_cond); | 
 |  | 
 |     current_cpu = cpu; | 
 |     while (1) { | 
 |         current_cpu = NULL; | 
 |         qemu_mutex_unlock_iothread(); | 
 |         do { | 
 |             int sig; | 
 |             r = sigwait(&waitset, &sig); | 
 |         } while (r == -1 && (errno == EAGAIN || errno == EINTR)); | 
 |         if (r == -1) { | 
 |             perror("sigwait"); | 
 |             exit(1); | 
 |         } | 
 |         qemu_mutex_lock_iothread(); | 
 |         current_cpu = cpu; | 
 |         qemu_wait_io_event_common(cpu); | 
 |     } | 
 |  | 
 |     return NULL; | 
 | #endif | 
 | } | 
 |  | 
 | static void tcg_exec_all(void); | 
 |  | 
 | static void *qemu_tcg_cpu_thread_fn(void *arg) | 
 | { | 
 |     CPUState *cpu = arg; | 
 |  | 
 |     qemu_tcg_init_cpu_signals(); | 
 |     qemu_thread_get_self(cpu->thread); | 
 |  | 
 |     qemu_mutex_lock(&qemu_global_mutex); | 
 |     CPU_FOREACH(cpu) { | 
 |         cpu->thread_id = qemu_get_thread_id(); | 
 |         cpu->created = true; | 
 |     } | 
 |     qemu_cond_signal(&qemu_cpu_cond); | 
 |  | 
 |     /* wait for initial kick-off after machine start */ | 
 |     while (QTAILQ_FIRST(&cpus)->stopped) { | 
 |         qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex); | 
 |  | 
 |         /* process any pending work */ | 
 |         CPU_FOREACH(cpu) { | 
 |             qemu_wait_io_event_common(cpu); | 
 |         } | 
 |     } | 
 |  | 
 |     while (1) { | 
 |         tcg_exec_all(); | 
 |  | 
 |         if (use_icount) { | 
 |             int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); | 
 |  | 
 |             if (deadline == 0) { | 
 |                 qemu_clock_notify(QEMU_CLOCK_VIRTUAL); | 
 |             } | 
 |         } | 
 |         qemu_tcg_wait_io_event(); | 
 |     } | 
 |  | 
 |     return NULL; | 
 | } | 
 |  | 
 | static void qemu_cpu_kick_thread(CPUState *cpu) | 
 | { | 
 | #ifndef _WIN32 | 
 |     int err; | 
 |  | 
 |     err = pthread_kill(cpu->thread->thread, SIG_IPI); | 
 |     if (err) { | 
 |         fprintf(stderr, "qemu:%s: %s", __func__, strerror(err)); | 
 |         exit(1); | 
 |     } | 
 | #else /* _WIN32 */ | 
 |     if (!qemu_cpu_is_self(cpu)) { | 
 |         CONTEXT tcgContext; | 
 |  | 
 |         if (SuspendThread(cpu->hThread) == (DWORD)-1) { | 
 |             fprintf(stderr, "qemu:%s: GetLastError:%lu\n", __func__, | 
 |                     GetLastError()); | 
 |             exit(1); | 
 |         } | 
 |  | 
 |         /* On multi-core systems, we are not sure that the thread is actually | 
 |          * suspended until we can get the context. | 
 |          */ | 
 |         tcgContext.ContextFlags = CONTEXT_CONTROL; | 
 |         while (GetThreadContext(cpu->hThread, &tcgContext) != 0) { | 
 |             continue; | 
 |         } | 
 |  | 
 |         cpu_signal(0); | 
 |  | 
 |         if (ResumeThread(cpu->hThread) == (DWORD)-1) { | 
 |             fprintf(stderr, "qemu:%s: GetLastError:%lu\n", __func__, | 
 |                     GetLastError()); | 
 |             exit(1); | 
 |         } | 
 |     } | 
 | #endif | 
 | } | 
 |  | 
 | void qemu_cpu_kick(CPUState *cpu) | 
 | { | 
 |     qemu_cond_broadcast(cpu->halt_cond); | 
 |     if (!tcg_enabled() && !cpu->thread_kicked) { | 
 |         qemu_cpu_kick_thread(cpu); | 
 |         cpu->thread_kicked = true; | 
 |     } | 
 | } | 
 |  | 
 | void qemu_cpu_kick_self(void) | 
 | { | 
 | #ifndef _WIN32 | 
 |     assert(current_cpu); | 
 |  | 
 |     if (!current_cpu->thread_kicked) { | 
 |         qemu_cpu_kick_thread(current_cpu); | 
 |         current_cpu->thread_kicked = true; | 
 |     } | 
 | #else | 
 |     abort(); | 
 | #endif | 
 | } | 
 |  | 
 | bool qemu_cpu_is_self(CPUState *cpu) | 
 | { | 
 |     return qemu_thread_is_self(cpu->thread); | 
 | } | 
 |  | 
 | static bool qemu_in_vcpu_thread(void) | 
 | { | 
 |     return current_cpu && qemu_cpu_is_self(current_cpu); | 
 | } | 
 |  | 
 | void qemu_mutex_lock_iothread(void) | 
 | { | 
 |     if (!tcg_enabled()) { | 
 |         qemu_mutex_lock(&qemu_global_mutex); | 
 |     } else { | 
 |         iothread_requesting_mutex = true; | 
 |         if (qemu_mutex_trylock(&qemu_global_mutex)) { | 
 |             qemu_cpu_kick_thread(first_cpu); | 
 |             qemu_mutex_lock(&qemu_global_mutex); | 
 |         } | 
 |         iothread_requesting_mutex = false; | 
 |         qemu_cond_broadcast(&qemu_io_proceeded_cond); | 
 |     } | 
 | } | 
 |  | 
 | void qemu_mutex_unlock_iothread(void) | 
 | { | 
 |     qemu_mutex_unlock(&qemu_global_mutex); | 
 | } | 
 |  | 
 | static int all_vcpus_paused(void) | 
 | { | 
 |     CPUState *cpu; | 
 |  | 
 |     CPU_FOREACH(cpu) { | 
 |         if (!cpu->stopped) { | 
 |             return 0; | 
 |         } | 
 |     } | 
 |  | 
 |     return 1; | 
 | } | 
 |  | 
 | void pause_all_vcpus(void) | 
 | { | 
 |     CPUState *cpu; | 
 |  | 
 |     qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false); | 
 |     CPU_FOREACH(cpu) { | 
 |         cpu->stop = true; | 
 |         qemu_cpu_kick(cpu); | 
 |     } | 
 |  | 
 |     if (qemu_in_vcpu_thread()) { | 
 |         cpu_stop_current(); | 
 |         if (!kvm_enabled()) { | 
 |             CPU_FOREACH(cpu) { | 
 |                 cpu->stop = false; | 
 |                 cpu->stopped = true; | 
 |             } | 
 |             return; | 
 |         } | 
 |     } | 
 |  | 
 |     while (!all_vcpus_paused()) { | 
 |         qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex); | 
 |         CPU_FOREACH(cpu) { | 
 |             qemu_cpu_kick(cpu); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void cpu_resume(CPUState *cpu) | 
 | { | 
 |     cpu->stop = false; | 
 |     cpu->stopped = false; | 
 |     qemu_cpu_kick(cpu); | 
 | } | 
 |  | 
 | void resume_all_vcpus(void) | 
 | { | 
 |     CPUState *cpu; | 
 |  | 
 |     qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true); | 
 |     CPU_FOREACH(cpu) { | 
 |         cpu_resume(cpu); | 
 |     } | 
 | } | 
 |  | 
 | /* For temporary buffers for forming a name */ | 
 | #define VCPU_THREAD_NAME_SIZE 16 | 
 |  | 
 | static void qemu_tcg_init_vcpu(CPUState *cpu) | 
 | { | 
 |     char thread_name[VCPU_THREAD_NAME_SIZE]; | 
 |  | 
 |     tcg_cpu_address_space_init(cpu, cpu->as); | 
 |  | 
 |     /* share a single thread for all cpus with TCG */ | 
 |     if (!tcg_cpu_thread) { | 
 |         cpu->thread = g_malloc0(sizeof(QemuThread)); | 
 |         cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | 
 |         qemu_cond_init(cpu->halt_cond); | 
 |         tcg_halt_cond = cpu->halt_cond; | 
 |         snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG", | 
 |                  cpu->cpu_index); | 
 |         qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn, | 
 |                            cpu, QEMU_THREAD_JOINABLE); | 
 | #ifdef _WIN32 | 
 |         cpu->hThread = qemu_thread_get_handle(cpu->thread); | 
 | #endif | 
 |         while (!cpu->created) { | 
 |             qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | 
 |         } | 
 |         tcg_cpu_thread = cpu->thread; | 
 |     } else { | 
 |         cpu->thread = tcg_cpu_thread; | 
 |         cpu->halt_cond = tcg_halt_cond; | 
 |     } | 
 | } | 
 |  | 
 | static void qemu_kvm_start_vcpu(CPUState *cpu) | 
 | { | 
 |     char thread_name[VCPU_THREAD_NAME_SIZE]; | 
 |  | 
 |     cpu->thread = g_malloc0(sizeof(QemuThread)); | 
 |     cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | 
 |     qemu_cond_init(cpu->halt_cond); | 
 |     snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM", | 
 |              cpu->cpu_index); | 
 |     qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn, | 
 |                        cpu, QEMU_THREAD_JOINABLE); | 
 |     while (!cpu->created) { | 
 |         qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | 
 |     } | 
 | } | 
 |  | 
 | static void qemu_dummy_start_vcpu(CPUState *cpu) | 
 | { | 
 |     char thread_name[VCPU_THREAD_NAME_SIZE]; | 
 |  | 
 |     cpu->thread = g_malloc0(sizeof(QemuThread)); | 
 |     cpu->halt_cond = g_malloc0(sizeof(QemuCond)); | 
 |     qemu_cond_init(cpu->halt_cond); | 
 |     snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY", | 
 |              cpu->cpu_index); | 
 |     qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu, | 
 |                        QEMU_THREAD_JOINABLE); | 
 |     while (!cpu->created) { | 
 |         qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); | 
 |     } | 
 | } | 
 |  | 
 | void qemu_init_vcpu(CPUState *cpu) | 
 | { | 
 |     cpu->nr_cores = smp_cores; | 
 |     cpu->nr_threads = smp_threads; | 
 |     cpu->stopped = true; | 
 |     if (kvm_enabled()) { | 
 |         qemu_kvm_start_vcpu(cpu); | 
 |     } else if (tcg_enabled()) { | 
 |         qemu_tcg_init_vcpu(cpu); | 
 |     } else { | 
 |         qemu_dummy_start_vcpu(cpu); | 
 |     } | 
 | } | 
 |  | 
 | void cpu_stop_current(void) | 
 | { | 
 |     if (current_cpu) { | 
 |         current_cpu->stop = false; | 
 |         current_cpu->stopped = true; | 
 |         cpu_exit(current_cpu); | 
 |         qemu_cond_signal(&qemu_pause_cond); | 
 |     } | 
 | } | 
 |  | 
 | int vm_stop(RunState state) | 
 | { | 
 |     if (qemu_in_vcpu_thread()) { | 
 |         qemu_system_vmstop_request(state); | 
 |         /* | 
 |          * FIXME: should not return to device code in case | 
 |          * vm_stop() has been requested. | 
 |          */ | 
 |         cpu_stop_current(); | 
 |         return 0; | 
 |     } | 
 |  | 
 |     return do_vm_stop(state); | 
 | } | 
 |  | 
 | /* does a state transition even if the VM is already stopped, | 
 |    current state is forgotten forever */ | 
 | int vm_stop_force_state(RunState state) | 
 | { | 
 |     if (runstate_is_running()) { | 
 |         return vm_stop(state); | 
 |     } else { | 
 |         runstate_set(state); | 
 |         /* Make sure to return an error if the flush in a previous vm_stop() | 
 |          * failed. */ | 
 |         return bdrv_flush_all(); | 
 |     } | 
 | } | 
 |  | 
 | static int tcg_cpu_exec(CPUArchState *env) | 
 | { | 
 |     CPUState *cpu = ENV_GET_CPU(env); | 
 |     int ret; | 
 | #ifdef CONFIG_PROFILER | 
 |     int64_t ti; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_PROFILER | 
 |     ti = profile_getclock(); | 
 | #endif | 
 |     if (use_icount) { | 
 |         int64_t count; | 
 |         int64_t deadline; | 
 |         int decr; | 
 |         qemu_icount -= (cpu->icount_decr.u16.low + cpu->icount_extra); | 
 |         cpu->icount_decr.u16.low = 0; | 
 |         cpu->icount_extra = 0; | 
 |         deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); | 
 |  | 
 |         /* Maintain prior (possibly buggy) behaviour where if no deadline | 
 |          * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than | 
 |          * INT32_MAX nanoseconds ahead, we still use INT32_MAX | 
 |          * nanoseconds. | 
 |          */ | 
 |         if ((deadline < 0) || (deadline > INT32_MAX)) { | 
 |             deadline = INT32_MAX; | 
 |         } | 
 |  | 
 |         count = qemu_icount_round(deadline); | 
 |         qemu_icount += count; | 
 |         decr = (count > 0xffff) ? 0xffff : count; | 
 |         count -= decr; | 
 |         cpu->icount_decr.u16.low = decr; | 
 |         cpu->icount_extra = count; | 
 |     } | 
 |     ret = cpu_exec(env); | 
 | #ifdef CONFIG_PROFILER | 
 |     qemu_time += profile_getclock() - ti; | 
 | #endif | 
 |     if (use_icount) { | 
 |         /* Fold pending instructions back into the | 
 |            instruction counter, and clear the interrupt flag.  */ | 
 |         qemu_icount -= (cpu->icount_decr.u16.low + cpu->icount_extra); | 
 |         cpu->icount_decr.u32 = 0; | 
 |         cpu->icount_extra = 0; | 
 |     } | 
 |     return ret; | 
 | } | 
 |  | 
 | static void tcg_exec_all(void) | 
 | { | 
 |     int r; | 
 |  | 
 |     /* Account partial waits to QEMU_CLOCK_VIRTUAL.  */ | 
 |     qemu_clock_warp(QEMU_CLOCK_VIRTUAL); | 
 |  | 
 |     if (next_cpu == NULL) { | 
 |         next_cpu = first_cpu; | 
 |     } | 
 |     for (; next_cpu != NULL && !exit_request; next_cpu = CPU_NEXT(next_cpu)) { | 
 |         CPUState *cpu = next_cpu; | 
 |         CPUArchState *env = cpu->env_ptr; | 
 |  | 
 |         qemu_clock_enable(QEMU_CLOCK_VIRTUAL, | 
 |                           (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0); | 
 |  | 
 |         if (cpu_can_run(cpu)) { | 
 |             r = tcg_cpu_exec(env); | 
 |             if (r == EXCP_DEBUG) { | 
 |                 cpu_handle_guest_debug(cpu); | 
 |                 break; | 
 |             } | 
 |         } else if (cpu->stop || cpu->stopped) { | 
 |             break; | 
 |         } | 
 |     } | 
 |     exit_request = 0; | 
 | } | 
 |  | 
 | void set_numa_modes(void) | 
 | { | 
 |     CPUState *cpu; | 
 |     int i; | 
 |  | 
 |     CPU_FOREACH(cpu) { | 
 |         for (i = 0; i < nb_numa_nodes; i++) { | 
 |             if (test_bit(cpu->cpu_index, node_cpumask[i])) { | 
 |                 cpu->numa_node = i; | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg) | 
 | { | 
 |     /* XXX: implement xxx_cpu_list for targets that still miss it */ | 
 | #if defined(cpu_list) | 
 |     cpu_list(f, cpu_fprintf); | 
 | #endif | 
 | } | 
 |  | 
 | CpuInfoList *qmp_query_cpus(Error **errp) | 
 | { | 
 |     CpuInfoList *head = NULL, *cur_item = NULL; | 
 |     CPUState *cpu; | 
 |  | 
 |     CPU_FOREACH(cpu) { | 
 |         CpuInfoList *info; | 
 | #if defined(TARGET_I386) | 
 |         X86CPU *x86_cpu = X86_CPU(cpu); | 
 |         CPUX86State *env = &x86_cpu->env; | 
 | #elif defined(TARGET_PPC) | 
 |         PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu); | 
 |         CPUPPCState *env = &ppc_cpu->env; | 
 | #elif defined(TARGET_SPARC) | 
 |         SPARCCPU *sparc_cpu = SPARC_CPU(cpu); | 
 |         CPUSPARCState *env = &sparc_cpu->env; | 
 | #elif defined(TARGET_MIPS) | 
 |         MIPSCPU *mips_cpu = MIPS_CPU(cpu); | 
 |         CPUMIPSState *env = &mips_cpu->env; | 
 | #endif | 
 |  | 
 |         cpu_synchronize_state(cpu); | 
 |  | 
 |         info = g_malloc0(sizeof(*info)); | 
 |         info->value = g_malloc0(sizeof(*info->value)); | 
 |         info->value->CPU = cpu->cpu_index; | 
 |         info->value->current = (cpu == first_cpu); | 
 |         info->value->halted = cpu->halted; | 
 |         info->value->thread_id = cpu->thread_id; | 
 | #if defined(TARGET_I386) | 
 |         info->value->has_pc = true; | 
 |         info->value->pc = env->eip + env->segs[R_CS].base; | 
 | #elif defined(TARGET_PPC) | 
 |         info->value->has_nip = true; | 
 |         info->value->nip = env->nip; | 
 | #elif defined(TARGET_SPARC) | 
 |         info->value->has_pc = true; | 
 |         info->value->pc = env->pc; | 
 |         info->value->has_npc = true; | 
 |         info->value->npc = env->npc; | 
 | #elif defined(TARGET_MIPS) | 
 |         info->value->has_PC = true; | 
 |         info->value->PC = env->active_tc.PC; | 
 | #endif | 
 |  | 
 |         /* XXX: waiting for the qapi to support GSList */ | 
 |         if (!cur_item) { | 
 |             head = cur_item = info; | 
 |         } else { | 
 |             cur_item->next = info; | 
 |             cur_item = info; | 
 |         } | 
 |     } | 
 |  | 
 |     return head; | 
 | } | 
 |  | 
 | void qmp_memsave(int64_t addr, int64_t size, const char *filename, | 
 |                  bool has_cpu, int64_t cpu_index, Error **errp) | 
 | { | 
 |     FILE *f; | 
 |     uint32_t l; | 
 |     CPUState *cpu; | 
 |     uint8_t buf[1024]; | 
 |  | 
 |     if (!has_cpu) { | 
 |         cpu_index = 0; | 
 |     } | 
 |  | 
 |     cpu = qemu_get_cpu(cpu_index); | 
 |     if (cpu == NULL) { | 
 |         error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index", | 
 |                   "a CPU number"); | 
 |         return; | 
 |     } | 
 |  | 
 |     f = fopen(filename, "wb"); | 
 |     if (!f) { | 
 |         error_setg_file_open(errp, errno, filename); | 
 |         return; | 
 |     } | 
 |  | 
 |     while (size != 0) { | 
 |         l = sizeof(buf); | 
 |         if (l > size) | 
 |             l = size; | 
 |         if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) { | 
 |             error_setg(errp, "Invalid addr 0x%016" PRIx64 "specified", addr); | 
 |             goto exit; | 
 |         } | 
 |         if (fwrite(buf, 1, l, f) != l) { | 
 |             error_set(errp, QERR_IO_ERROR); | 
 |             goto exit; | 
 |         } | 
 |         addr += l; | 
 |         size -= l; | 
 |     } | 
 |  | 
 | exit: | 
 |     fclose(f); | 
 | } | 
 |  | 
 | void qmp_pmemsave(int64_t addr, int64_t size, const char *filename, | 
 |                   Error **errp) | 
 | { | 
 |     FILE *f; | 
 |     uint32_t l; | 
 |     uint8_t buf[1024]; | 
 |  | 
 |     f = fopen(filename, "wb"); | 
 |     if (!f) { | 
 |         error_setg_file_open(errp, errno, filename); | 
 |         return; | 
 |     } | 
 |  | 
 |     while (size != 0) { | 
 |         l = sizeof(buf); | 
 |         if (l > size) | 
 |             l = size; | 
 |         cpu_physical_memory_read(addr, buf, l); | 
 |         if (fwrite(buf, 1, l, f) != l) { | 
 |             error_set(errp, QERR_IO_ERROR); | 
 |             goto exit; | 
 |         } | 
 |         addr += l; | 
 |         size -= l; | 
 |     } | 
 |  | 
 | exit: | 
 |     fclose(f); | 
 | } | 
 |  | 
 | void qmp_inject_nmi(Error **errp) | 
 | { | 
 | #if defined(TARGET_I386) | 
 |     CPUState *cs; | 
 |  | 
 |     CPU_FOREACH(cs) { | 
 |         X86CPU *cpu = X86_CPU(cs); | 
 |  | 
 |         if (!cpu->apic_state) { | 
 |             cpu_interrupt(cs, CPU_INTERRUPT_NMI); | 
 |         } else { | 
 |             apic_deliver_nmi(cpu->apic_state); | 
 |         } | 
 |     } | 
 | #elif defined(TARGET_S390X) | 
 |     CPUState *cs; | 
 |     S390CPU *cpu; | 
 |  | 
 |     CPU_FOREACH(cs) { | 
 |         cpu = S390_CPU(cs); | 
 |         if (cpu->env.cpu_num == monitor_get_cpu_index()) { | 
 |             if (s390_cpu_restart(S390_CPU(cs)) == -1) { | 
 |                 error_set(errp, QERR_UNSUPPORTED); | 
 |                 return; | 
 |             } | 
 |             break; | 
 |         } | 
 |     } | 
 | #else | 
 |     error_set(errp, QERR_UNSUPPORTED); | 
 | #endif | 
 | } |