|  | /* | 
|  | * RDMA protocol and interfaces | 
|  | * | 
|  | * Copyright IBM, Corp. 2010-2013 | 
|  | * | 
|  | * Authors: | 
|  | *  Michael R. Hines <mrhines@us.ibm.com> | 
|  | *  Jiuxing Liu <jl@us.ibm.com> | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2 or | 
|  | * later.  See the COPYING file in the top-level directory. | 
|  | * | 
|  | */ | 
|  | #include "qemu-common.h" | 
|  | #include "migration/migration.h" | 
|  | #include "migration/qemu-file.h" | 
|  | #include "exec/cpu-common.h" | 
|  | #include "qemu/main-loop.h" | 
|  | #include "qemu/sockets.h" | 
|  | #include "qemu/bitmap.h" | 
|  | #include "block/coroutine.h" | 
|  | #include <stdio.h> | 
|  | #include <sys/types.h> | 
|  | #include <sys/socket.h> | 
|  | #include <netdb.h> | 
|  | #include <arpa/inet.h> | 
|  | #include <string.h> | 
|  | #include <rdma/rdma_cma.h> | 
|  |  | 
|  | //#define DEBUG_RDMA | 
|  | //#define DEBUG_RDMA_VERBOSE | 
|  | //#define DEBUG_RDMA_REALLY_VERBOSE | 
|  |  | 
|  | #ifdef DEBUG_RDMA | 
|  | #define DPRINTF(fmt, ...) \ | 
|  | do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0) | 
|  | #else | 
|  | #define DPRINTF(fmt, ...) \ | 
|  | do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #ifdef DEBUG_RDMA_VERBOSE | 
|  | #define DDPRINTF(fmt, ...) \ | 
|  | do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0) | 
|  | #else | 
|  | #define DDPRINTF(fmt, ...) \ | 
|  | do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #ifdef DEBUG_RDMA_REALLY_VERBOSE | 
|  | #define DDDPRINTF(fmt, ...) \ | 
|  | do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0) | 
|  | #else | 
|  | #define DDDPRINTF(fmt, ...) \ | 
|  | do { } while (0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Print and error on both the Monitor and the Log file. | 
|  | */ | 
|  | #define ERROR(errp, fmt, ...) \ | 
|  | do { \ | 
|  | fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \ | 
|  | if (errp && (*(errp) == NULL)) { \ | 
|  | error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \ | 
|  | } \ | 
|  | } while (0) | 
|  |  | 
|  | #define RDMA_RESOLVE_TIMEOUT_MS 10000 | 
|  |  | 
|  | /* Do not merge data if larger than this. */ | 
|  | #define RDMA_MERGE_MAX (2 * 1024 * 1024) | 
|  | #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096) | 
|  |  | 
|  | #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */ | 
|  |  | 
|  | /* | 
|  | * This is only for non-live state being migrated. | 
|  | * Instead of RDMA_WRITE messages, we use RDMA_SEND | 
|  | * messages for that state, which requires a different | 
|  | * delivery design than main memory. | 
|  | */ | 
|  | #define RDMA_SEND_INCREMENT 32768 | 
|  |  | 
|  | /* | 
|  | * Maximum size infiniband SEND message | 
|  | */ | 
|  | #define RDMA_CONTROL_MAX_BUFFER (512 * 1024) | 
|  | #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096 | 
|  |  | 
|  | #define RDMA_CONTROL_VERSION_CURRENT 1 | 
|  | /* | 
|  | * Capabilities for negotiation. | 
|  | */ | 
|  | #define RDMA_CAPABILITY_PIN_ALL 0x01 | 
|  |  | 
|  | /* | 
|  | * Add the other flags above to this list of known capabilities | 
|  | * as they are introduced. | 
|  | */ | 
|  | static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL; | 
|  |  | 
|  | #define CHECK_ERROR_STATE() \ | 
|  | do { \ | 
|  | if (rdma->error_state) { \ | 
|  | if (!rdma->error_reported) { \ | 
|  | fprintf(stderr, "RDMA is in an error state waiting migration" \ | 
|  | " to abort!\n"); \ | 
|  | rdma->error_reported = 1; \ | 
|  | } \ | 
|  | return rdma->error_state; \ | 
|  | } \ | 
|  | } while (0); | 
|  |  | 
|  | /* | 
|  | * A work request ID is 64-bits and we split up these bits | 
|  | * into 3 parts: | 
|  | * | 
|  | * bits 0-15 : type of control message, 2^16 | 
|  | * bits 16-29: ram block index, 2^14 | 
|  | * bits 30-63: ram block chunk number, 2^34 | 
|  | * | 
|  | * The last two bit ranges are only used for RDMA writes, | 
|  | * in order to track their completion and potentially | 
|  | * also track unregistration status of the message. | 
|  | */ | 
|  | #define RDMA_WRID_TYPE_SHIFT  0UL | 
|  | #define RDMA_WRID_BLOCK_SHIFT 16UL | 
|  | #define RDMA_WRID_CHUNK_SHIFT 30UL | 
|  |  | 
|  | #define RDMA_WRID_TYPE_MASK \ | 
|  | ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL) | 
|  |  | 
|  | #define RDMA_WRID_BLOCK_MASK \ | 
|  | (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL)) | 
|  |  | 
|  | #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK) | 
|  |  | 
|  | /* | 
|  | * RDMA migration protocol: | 
|  | * 1. RDMA Writes (data messages, i.e. RAM) | 
|  | * 2. IB Send/Recv (control channel messages) | 
|  | */ | 
|  | enum { | 
|  | RDMA_WRID_NONE = 0, | 
|  | RDMA_WRID_RDMA_WRITE = 1, | 
|  | RDMA_WRID_SEND_CONTROL = 2000, | 
|  | RDMA_WRID_RECV_CONTROL = 4000, | 
|  | }; | 
|  |  | 
|  | const char *wrid_desc[] = { | 
|  | [RDMA_WRID_NONE] = "NONE", | 
|  | [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA", | 
|  | [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND", | 
|  | [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV", | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Work request IDs for IB SEND messages only (not RDMA writes). | 
|  | * This is used by the migration protocol to transmit | 
|  | * control messages (such as device state and registration commands) | 
|  | * | 
|  | * We could use more WRs, but we have enough for now. | 
|  | */ | 
|  | enum { | 
|  | RDMA_WRID_READY = 0, | 
|  | RDMA_WRID_DATA, | 
|  | RDMA_WRID_CONTROL, | 
|  | RDMA_WRID_MAX, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * SEND/RECV IB Control Messages. | 
|  | */ | 
|  | enum { | 
|  | RDMA_CONTROL_NONE = 0, | 
|  | RDMA_CONTROL_ERROR, | 
|  | RDMA_CONTROL_READY,               /* ready to receive */ | 
|  | RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */ | 
|  | RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */ | 
|  | RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */ | 
|  | RDMA_CONTROL_COMPRESS,            /* page contains repeat values */ | 
|  | RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */ | 
|  | RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */ | 
|  | RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */ | 
|  | RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */ | 
|  | RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */ | 
|  | }; | 
|  |  | 
|  | const char *control_desc[] = { | 
|  | [RDMA_CONTROL_NONE] = "NONE", | 
|  | [RDMA_CONTROL_ERROR] = "ERROR", | 
|  | [RDMA_CONTROL_READY] = "READY", | 
|  | [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE", | 
|  | [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST", | 
|  | [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT", | 
|  | [RDMA_CONTROL_COMPRESS] = "COMPRESS", | 
|  | [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST", | 
|  | [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT", | 
|  | [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED", | 
|  | [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST", | 
|  | [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED", | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Memory and MR structures used to represent an IB Send/Recv work request. | 
|  | * This is *not* used for RDMA writes, only IB Send/Recv. | 
|  | */ | 
|  | typedef struct { | 
|  | uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */ | 
|  | struct   ibv_mr *control_mr;               /* registration metadata */ | 
|  | size_t   control_len;                      /* length of the message */ | 
|  | uint8_t *control_curr;                     /* start of unconsumed bytes */ | 
|  | } RDMAWorkRequestData; | 
|  |  | 
|  | /* | 
|  | * Negotiate RDMA capabilities during connection-setup time. | 
|  | */ | 
|  | typedef struct { | 
|  | uint32_t version; | 
|  | uint32_t flags; | 
|  | } RDMACapabilities; | 
|  |  | 
|  | static void caps_to_network(RDMACapabilities *cap) | 
|  | { | 
|  | cap->version = htonl(cap->version); | 
|  | cap->flags = htonl(cap->flags); | 
|  | } | 
|  |  | 
|  | static void network_to_caps(RDMACapabilities *cap) | 
|  | { | 
|  | cap->version = ntohl(cap->version); | 
|  | cap->flags = ntohl(cap->flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Representation of a RAMBlock from an RDMA perspective. | 
|  | * This is not transmitted, only local. | 
|  | * This and subsequent structures cannot be linked lists | 
|  | * because we're using a single IB message to transmit | 
|  | * the information. It's small anyway, so a list is overkill. | 
|  | */ | 
|  | typedef struct RDMALocalBlock { | 
|  | uint8_t  *local_host_addr; /* local virtual address */ | 
|  | uint64_t remote_host_addr; /* remote virtual address */ | 
|  | uint64_t offset; | 
|  | uint64_t length; | 
|  | struct   ibv_mr **pmr;     /* MRs for chunk-level registration */ | 
|  | struct   ibv_mr *mr;       /* MR for non-chunk-level registration */ | 
|  | uint32_t *remote_keys;     /* rkeys for chunk-level registration */ | 
|  | uint32_t remote_rkey;      /* rkeys for non-chunk-level registration */ | 
|  | int      index;            /* which block are we */ | 
|  | bool     is_ram_block; | 
|  | int      nb_chunks; | 
|  | unsigned long *transit_bitmap; | 
|  | unsigned long *unregister_bitmap; | 
|  | } RDMALocalBlock; | 
|  |  | 
|  | /* | 
|  | * Also represents a RAMblock, but only on the dest. | 
|  | * This gets transmitted by the dest during connection-time | 
|  | * to the source VM and then is used to populate the | 
|  | * corresponding RDMALocalBlock with | 
|  | * the information needed to perform the actual RDMA. | 
|  | */ | 
|  | typedef struct QEMU_PACKED RDMARemoteBlock { | 
|  | uint64_t remote_host_addr; | 
|  | uint64_t offset; | 
|  | uint64_t length; | 
|  | uint32_t remote_rkey; | 
|  | uint32_t padding; | 
|  | } RDMARemoteBlock; | 
|  |  | 
|  | static uint64_t htonll(uint64_t v) | 
|  | { | 
|  | union { uint32_t lv[2]; uint64_t llv; } u; | 
|  | u.lv[0] = htonl(v >> 32); | 
|  | u.lv[1] = htonl(v & 0xFFFFFFFFULL); | 
|  | return u.llv; | 
|  | } | 
|  |  | 
|  | static uint64_t ntohll(uint64_t v) { | 
|  | union { uint32_t lv[2]; uint64_t llv; } u; | 
|  | u.llv = v; | 
|  | return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]); | 
|  | } | 
|  |  | 
|  | static void remote_block_to_network(RDMARemoteBlock *rb) | 
|  | { | 
|  | rb->remote_host_addr = htonll(rb->remote_host_addr); | 
|  | rb->offset = htonll(rb->offset); | 
|  | rb->length = htonll(rb->length); | 
|  | rb->remote_rkey = htonl(rb->remote_rkey); | 
|  | } | 
|  |  | 
|  | static void network_to_remote_block(RDMARemoteBlock *rb) | 
|  | { | 
|  | rb->remote_host_addr = ntohll(rb->remote_host_addr); | 
|  | rb->offset = ntohll(rb->offset); | 
|  | rb->length = ntohll(rb->length); | 
|  | rb->remote_rkey = ntohl(rb->remote_rkey); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Virtual address of the above structures used for transmitting | 
|  | * the RAMBlock descriptions at connection-time. | 
|  | * This structure is *not* transmitted. | 
|  | */ | 
|  | typedef struct RDMALocalBlocks { | 
|  | int nb_blocks; | 
|  | bool     init;             /* main memory init complete */ | 
|  | RDMALocalBlock *block; | 
|  | } RDMALocalBlocks; | 
|  |  | 
|  | /* | 
|  | * Main data structure for RDMA state. | 
|  | * While there is only one copy of this structure being allocated right now, | 
|  | * this is the place where one would start if you wanted to consider | 
|  | * having more than one RDMA connection open at the same time. | 
|  | */ | 
|  | typedef struct RDMAContext { | 
|  | char *host; | 
|  | int port; | 
|  |  | 
|  | RDMAWorkRequestData wr_data[RDMA_WRID_MAX]; | 
|  |  | 
|  | /* | 
|  | * This is used by *_exchange_send() to figure out whether or not | 
|  | * the initial "READY" message has already been received or not. | 
|  | * This is because other functions may potentially poll() and detect | 
|  | * the READY message before send() does, in which case we need to | 
|  | * know if it completed. | 
|  | */ | 
|  | int control_ready_expected; | 
|  |  | 
|  | /* number of outstanding writes */ | 
|  | int nb_sent; | 
|  |  | 
|  | /* store info about current buffer so that we can | 
|  | merge it with future sends */ | 
|  | uint64_t current_addr; | 
|  | uint64_t current_length; | 
|  | /* index of ram block the current buffer belongs to */ | 
|  | int current_index; | 
|  | /* index of the chunk in the current ram block */ | 
|  | int current_chunk; | 
|  |  | 
|  | bool pin_all; | 
|  |  | 
|  | /* | 
|  | * infiniband-specific variables for opening the device | 
|  | * and maintaining connection state and so forth. | 
|  | * | 
|  | * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in | 
|  | * cm_id->verbs, cm_id->channel, and cm_id->qp. | 
|  | */ | 
|  | struct rdma_cm_id *cm_id;               /* connection manager ID */ | 
|  | struct rdma_cm_id *listen_id; | 
|  | bool connected; | 
|  |  | 
|  | struct ibv_context          *verbs; | 
|  | struct rdma_event_channel   *channel; | 
|  | struct ibv_qp *qp;                      /* queue pair */ | 
|  | struct ibv_comp_channel *comp_channel;  /* completion channel */ | 
|  | struct ibv_pd *pd;                      /* protection domain */ | 
|  | struct ibv_cq *cq;                      /* completion queue */ | 
|  |  | 
|  | /* | 
|  | * If a previous write failed (perhaps because of a failed | 
|  | * memory registration, then do not attempt any future work | 
|  | * and remember the error state. | 
|  | */ | 
|  | int error_state; | 
|  | int error_reported; | 
|  |  | 
|  | /* | 
|  | * Description of ram blocks used throughout the code. | 
|  | */ | 
|  | RDMALocalBlocks local_ram_blocks; | 
|  | RDMARemoteBlock *block; | 
|  |  | 
|  | /* | 
|  | * Migration on *destination* started. | 
|  | * Then use coroutine yield function. | 
|  | * Source runs in a thread, so we don't care. | 
|  | */ | 
|  | int migration_started_on_destination; | 
|  |  | 
|  | int total_registrations; | 
|  | int total_writes; | 
|  |  | 
|  | int unregister_current, unregister_next; | 
|  | uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX]; | 
|  |  | 
|  | GHashTable *blockmap; | 
|  | } RDMAContext; | 
|  |  | 
|  | /* | 
|  | * Interface to the rest of the migration call stack. | 
|  | */ | 
|  | typedef struct QEMUFileRDMA { | 
|  | RDMAContext *rdma; | 
|  | size_t len; | 
|  | void *file; | 
|  | } QEMUFileRDMA; | 
|  |  | 
|  | /* | 
|  | * Main structure for IB Send/Recv control messages. | 
|  | * This gets prepended at the beginning of every Send/Recv. | 
|  | */ | 
|  | typedef struct QEMU_PACKED { | 
|  | uint32_t len;     /* Total length of data portion */ | 
|  | uint32_t type;    /* which control command to perform */ | 
|  | uint32_t repeat;  /* number of commands in data portion of same type */ | 
|  | uint32_t padding; | 
|  | } RDMAControlHeader; | 
|  |  | 
|  | static void control_to_network(RDMAControlHeader *control) | 
|  | { | 
|  | control->type = htonl(control->type); | 
|  | control->len = htonl(control->len); | 
|  | control->repeat = htonl(control->repeat); | 
|  | } | 
|  |  | 
|  | static void network_to_control(RDMAControlHeader *control) | 
|  | { | 
|  | control->type = ntohl(control->type); | 
|  | control->len = ntohl(control->len); | 
|  | control->repeat = ntohl(control->repeat); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Register a single Chunk. | 
|  | * Information sent by the source VM to inform the dest | 
|  | * to register an single chunk of memory before we can perform | 
|  | * the actual RDMA operation. | 
|  | */ | 
|  | typedef struct QEMU_PACKED { | 
|  | union QEMU_PACKED { | 
|  | uint64_t current_addr;  /* offset into the ramblock of the chunk */ | 
|  | uint64_t chunk;         /* chunk to lookup if unregistering */ | 
|  | } key; | 
|  | uint32_t current_index; /* which ramblock the chunk belongs to */ | 
|  | uint32_t padding; | 
|  | uint64_t chunks;            /* how many sequential chunks to register */ | 
|  | } RDMARegister; | 
|  |  | 
|  | static void register_to_network(RDMARegister *reg) | 
|  | { | 
|  | reg->key.current_addr = htonll(reg->key.current_addr); | 
|  | reg->current_index = htonl(reg->current_index); | 
|  | reg->chunks = htonll(reg->chunks); | 
|  | } | 
|  |  | 
|  | static void network_to_register(RDMARegister *reg) | 
|  | { | 
|  | reg->key.current_addr = ntohll(reg->key.current_addr); | 
|  | reg->current_index = ntohl(reg->current_index); | 
|  | reg->chunks = ntohll(reg->chunks); | 
|  | } | 
|  |  | 
|  | typedef struct QEMU_PACKED { | 
|  | uint32_t value;     /* if zero, we will madvise() */ | 
|  | uint32_t block_idx; /* which ram block index */ | 
|  | uint64_t offset;    /* where in the remote ramblock this chunk */ | 
|  | uint64_t length;    /* length of the chunk */ | 
|  | } RDMACompress; | 
|  |  | 
|  | static void compress_to_network(RDMACompress *comp) | 
|  | { | 
|  | comp->value = htonl(comp->value); | 
|  | comp->block_idx = htonl(comp->block_idx); | 
|  | comp->offset = htonll(comp->offset); | 
|  | comp->length = htonll(comp->length); | 
|  | } | 
|  |  | 
|  | static void network_to_compress(RDMACompress *comp) | 
|  | { | 
|  | comp->value = ntohl(comp->value); | 
|  | comp->block_idx = ntohl(comp->block_idx); | 
|  | comp->offset = ntohll(comp->offset); | 
|  | comp->length = ntohll(comp->length); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The result of the dest's memory registration produces an "rkey" | 
|  | * which the source VM must reference in order to perform | 
|  | * the RDMA operation. | 
|  | */ | 
|  | typedef struct QEMU_PACKED { | 
|  | uint32_t rkey; | 
|  | uint32_t padding; | 
|  | uint64_t host_addr; | 
|  | } RDMARegisterResult; | 
|  |  | 
|  | static void result_to_network(RDMARegisterResult *result) | 
|  | { | 
|  | result->rkey = htonl(result->rkey); | 
|  | result->host_addr = htonll(result->host_addr); | 
|  | }; | 
|  |  | 
|  | static void network_to_result(RDMARegisterResult *result) | 
|  | { | 
|  | result->rkey = ntohl(result->rkey); | 
|  | result->host_addr = ntohll(result->host_addr); | 
|  | }; | 
|  |  | 
|  | const char *print_wrid(int wrid); | 
|  | static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head, | 
|  | uint8_t *data, RDMAControlHeader *resp, | 
|  | int *resp_idx, | 
|  | int (*callback)(RDMAContext *rdma)); | 
|  |  | 
|  | static inline uint64_t ram_chunk_index(const uint8_t *start, | 
|  | const uint8_t *host) | 
|  | { | 
|  | return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT; | 
|  | } | 
|  |  | 
|  | static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block, | 
|  | uint64_t i) | 
|  | { | 
|  | return (uint8_t *) (((uintptr_t) rdma_ram_block->local_host_addr) | 
|  | + (i << RDMA_REG_CHUNK_SHIFT)); | 
|  | } | 
|  |  | 
|  | static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block, | 
|  | uint64_t i) | 
|  | { | 
|  | uint8_t *result = ram_chunk_start(rdma_ram_block, i) + | 
|  | (1UL << RDMA_REG_CHUNK_SHIFT); | 
|  |  | 
|  | if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) { | 
|  | result = rdma_ram_block->local_host_addr + rdma_ram_block->length; | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static int __qemu_rdma_add_block(RDMAContext *rdma, void *host_addr, | 
|  | ram_addr_t block_offset, uint64_t length) | 
|  | { | 
|  | RDMALocalBlocks *local = &rdma->local_ram_blocks; | 
|  | RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap, | 
|  | (void *) block_offset); | 
|  | RDMALocalBlock *old = local->block; | 
|  |  | 
|  | assert(block == NULL); | 
|  |  | 
|  | local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1)); | 
|  |  | 
|  | if (local->nb_blocks) { | 
|  | int x; | 
|  |  | 
|  | for (x = 0; x < local->nb_blocks; x++) { | 
|  | g_hash_table_remove(rdma->blockmap, (void *)old[x].offset); | 
|  | g_hash_table_insert(rdma->blockmap, (void *)old[x].offset, | 
|  | &local->block[x]); | 
|  | } | 
|  | memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks); | 
|  | g_free(old); | 
|  | } | 
|  |  | 
|  | block = &local->block[local->nb_blocks]; | 
|  |  | 
|  | block->local_host_addr = host_addr; | 
|  | block->offset = block_offset; | 
|  | block->length = length; | 
|  | block->index = local->nb_blocks; | 
|  | block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL; | 
|  | block->transit_bitmap = bitmap_new(block->nb_chunks); | 
|  | bitmap_clear(block->transit_bitmap, 0, block->nb_chunks); | 
|  | block->unregister_bitmap = bitmap_new(block->nb_chunks); | 
|  | bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks); | 
|  | block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t)); | 
|  |  | 
|  | block->is_ram_block = local->init ? false : true; | 
|  |  | 
|  | g_hash_table_insert(rdma->blockmap, (void *) block_offset, block); | 
|  |  | 
|  | DDPRINTF("Added Block: %d, addr: %" PRIu64 ", offset: %" PRIu64 | 
|  | " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n", | 
|  | local->nb_blocks, (uint64_t) block->local_host_addr, block->offset, | 
|  | block->length, (uint64_t) (block->local_host_addr + block->length), | 
|  | BITS_TO_LONGS(block->nb_chunks) * | 
|  | sizeof(unsigned long) * 8, block->nb_chunks); | 
|  |  | 
|  | local->nb_blocks++; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Memory regions need to be registered with the device and queue pairs setup | 
|  | * in advanced before the migration starts. This tells us where the RAM blocks | 
|  | * are so that we can register them individually. | 
|  | */ | 
|  | static void qemu_rdma_init_one_block(void *host_addr, | 
|  | ram_addr_t block_offset, ram_addr_t length, void *opaque) | 
|  | { | 
|  | __qemu_rdma_add_block(opaque, host_addr, block_offset, length); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Identify the RAMBlocks and their quantity. They will be references to | 
|  | * identify chunk boundaries inside each RAMBlock and also be referenced | 
|  | * during dynamic page registration. | 
|  | */ | 
|  | static int qemu_rdma_init_ram_blocks(RDMAContext *rdma) | 
|  | { | 
|  | RDMALocalBlocks *local = &rdma->local_ram_blocks; | 
|  |  | 
|  | assert(rdma->blockmap == NULL); | 
|  | rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal); | 
|  | memset(local, 0, sizeof *local); | 
|  | qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma); | 
|  | DPRINTF("Allocated %d local ram block structures\n", local->nb_blocks); | 
|  | rdma->block = (RDMARemoteBlock *) g_malloc0(sizeof(RDMARemoteBlock) * | 
|  | rdma->local_ram_blocks.nb_blocks); | 
|  | local->init = true; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __qemu_rdma_delete_block(RDMAContext *rdma, ram_addr_t block_offset) | 
|  | { | 
|  | RDMALocalBlocks *local = &rdma->local_ram_blocks; | 
|  | RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap, | 
|  | (void *) block_offset); | 
|  | RDMALocalBlock *old = local->block; | 
|  | int x; | 
|  |  | 
|  | assert(block); | 
|  |  | 
|  | if (block->pmr) { | 
|  | int j; | 
|  |  | 
|  | for (j = 0; j < block->nb_chunks; j++) { | 
|  | if (!block->pmr[j]) { | 
|  | continue; | 
|  | } | 
|  | ibv_dereg_mr(block->pmr[j]); | 
|  | rdma->total_registrations--; | 
|  | } | 
|  | g_free(block->pmr); | 
|  | block->pmr = NULL; | 
|  | } | 
|  |  | 
|  | if (block->mr) { | 
|  | ibv_dereg_mr(block->mr); | 
|  | rdma->total_registrations--; | 
|  | block->mr = NULL; | 
|  | } | 
|  |  | 
|  | g_free(block->transit_bitmap); | 
|  | block->transit_bitmap = NULL; | 
|  |  | 
|  | g_free(block->unregister_bitmap); | 
|  | block->unregister_bitmap = NULL; | 
|  |  | 
|  | g_free(block->remote_keys); | 
|  | block->remote_keys = NULL; | 
|  |  | 
|  | for (x = 0; x < local->nb_blocks; x++) { | 
|  | g_hash_table_remove(rdma->blockmap, (void *)old[x].offset); | 
|  | } | 
|  |  | 
|  | if (local->nb_blocks > 1) { | 
|  |  | 
|  | local->block = g_malloc0(sizeof(RDMALocalBlock) * | 
|  | (local->nb_blocks - 1)); | 
|  |  | 
|  | if (block->index) { | 
|  | memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index); | 
|  | } | 
|  |  | 
|  | if (block->index < (local->nb_blocks - 1)) { | 
|  | memcpy(local->block + block->index, old + (block->index + 1), | 
|  | sizeof(RDMALocalBlock) * | 
|  | (local->nb_blocks - (block->index + 1))); | 
|  | } | 
|  | } else { | 
|  | assert(block == local->block); | 
|  | local->block = NULL; | 
|  | } | 
|  |  | 
|  | DDPRINTF("Deleted Block: %d, addr: %" PRIu64 ", offset: %" PRIu64 | 
|  | " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n", | 
|  | local->nb_blocks, (uint64_t) block->local_host_addr, block->offset, | 
|  | block->length, (uint64_t) (block->local_host_addr + block->length), | 
|  | BITS_TO_LONGS(block->nb_chunks) * | 
|  | sizeof(unsigned long) * 8, block->nb_chunks); | 
|  |  | 
|  | g_free(old); | 
|  |  | 
|  | local->nb_blocks--; | 
|  |  | 
|  | if (local->nb_blocks) { | 
|  | for (x = 0; x < local->nb_blocks; x++) { | 
|  | g_hash_table_insert(rdma->blockmap, (void *)local->block[x].offset, | 
|  | &local->block[x]); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Put in the log file which RDMA device was opened and the details | 
|  | * associated with that device. | 
|  | */ | 
|  | static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs) | 
|  | { | 
|  | struct ibv_port_attr port; | 
|  |  | 
|  | if (ibv_query_port(verbs, 1, &port)) { | 
|  | fprintf(stderr, "FAILED TO QUERY PORT INFORMATION!\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | printf("%s RDMA Device opened: kernel name %s " | 
|  | "uverbs device name %s, " | 
|  | "infiniband_verbs class device path %s, " | 
|  | "infiniband class device path %s, " | 
|  | "transport: (%d) %s\n", | 
|  | who, | 
|  | verbs->device->name, | 
|  | verbs->device->dev_name, | 
|  | verbs->device->dev_path, | 
|  | verbs->device->ibdev_path, | 
|  | port.link_layer, | 
|  | (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" : | 
|  | ((port.link_layer == IBV_LINK_LAYER_ETHERNET) | 
|  | ? "Ethernet" : "Unknown")); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Put in the log file the RDMA gid addressing information, | 
|  | * useful for folks who have trouble understanding the | 
|  | * RDMA device hierarchy in the kernel. | 
|  | */ | 
|  | static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id) | 
|  | { | 
|  | char sgid[33]; | 
|  | char dgid[33]; | 
|  | inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid); | 
|  | inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid); | 
|  | DPRINTF("%s Source GID: %s, Dest GID: %s\n", who, sgid, dgid); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * As of now, IPv6 over RoCE / iWARP is not supported by linux. | 
|  | * We will try the next addrinfo struct, and fail if there are | 
|  | * no other valid addresses to bind against. | 
|  | * | 
|  | * If user is listening on '[::]', then we will not have a opened a device | 
|  | * yet and have no way of verifying if the device is RoCE or not. | 
|  | * | 
|  | * In this case, the source VM will throw an error for ALL types of | 
|  | * connections (both IPv4 and IPv6) if the destination machine does not have | 
|  | * a regular infiniband network available for use. | 
|  | * | 
|  | * The only way to guarantee that an error is thrown for broken kernels is | 
|  | * for the management software to choose a *specific* interface at bind time | 
|  | * and validate what time of hardware it is. | 
|  | * | 
|  | * Unfortunately, this puts the user in a fix: | 
|  | * | 
|  | *  If the source VM connects with an IPv4 address without knowing that the | 
|  | *  destination has bound to '[::]' the migration will unconditionally fail | 
|  | *  unless the management software is explicitly listening on the the IPv4 | 
|  | *  address while using a RoCE-based device. | 
|  | * | 
|  | *  If the source VM connects with an IPv6 address, then we're OK because we can | 
|  | *  throw an error on the source (and similarly on the destination). | 
|  | * | 
|  | *  But in mixed environments, this will be broken for a while until it is fixed | 
|  | *  inside linux. | 
|  | * | 
|  | * We do provide a *tiny* bit of help in this function: We can list all of the | 
|  | * devices in the system and check to see if all the devices are RoCE or | 
|  | * Infiniband. | 
|  | * | 
|  | * If we detect that we have a *pure* RoCE environment, then we can safely | 
|  | * thrown an error even if the management software has specified '[::]' as the | 
|  | * bind address. | 
|  | * | 
|  | * However, if there is are multiple hetergeneous devices, then we cannot make | 
|  | * this assumption and the user just has to be sure they know what they are | 
|  | * doing. | 
|  | * | 
|  | * Patches are being reviewed on linux-rdma. | 
|  | */ | 
|  | static int qemu_rdma_broken_ipv6_kernel(Error **errp, struct ibv_context *verbs) | 
|  | { | 
|  | struct ibv_port_attr port_attr; | 
|  |  | 
|  | /* This bug only exists in linux, to our knowledge. */ | 
|  | #ifdef CONFIG_LINUX | 
|  |  | 
|  | /* | 
|  | * Verbs are only NULL if management has bound to '[::]'. | 
|  | * | 
|  | * Let's iterate through all the devices and see if there any pure IB | 
|  | * devices (non-ethernet). | 
|  | * | 
|  | * If not, then we can safely proceed with the migration. | 
|  | * Otherwise, there are no guarantees until the bug is fixed in linux. | 
|  | */ | 
|  | if (!verbs) { | 
|  | int num_devices, x; | 
|  | struct ibv_device ** dev_list = ibv_get_device_list(&num_devices); | 
|  | bool roce_found = false; | 
|  | bool ib_found = false; | 
|  |  | 
|  | for (x = 0; x < num_devices; x++) { | 
|  | verbs = ibv_open_device(dev_list[x]); | 
|  |  | 
|  | if (ibv_query_port(verbs, 1, &port_attr)) { | 
|  | ibv_close_device(verbs); | 
|  | ERROR(errp, "Could not query initial IB port"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) { | 
|  | ib_found = true; | 
|  | } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) { | 
|  | roce_found = true; | 
|  | } | 
|  |  | 
|  | ibv_close_device(verbs); | 
|  |  | 
|  | } | 
|  |  | 
|  | if (roce_found) { | 
|  | if (ib_found) { | 
|  | fprintf(stderr, "WARN: migrations may fail:" | 
|  | " IPv6 over RoCE / iWARP in linux" | 
|  | " is broken. But since you appear to have a" | 
|  | " mixed RoCE / IB environment, be sure to only" | 
|  | " migrate over the IB fabric until the kernel " | 
|  | " fixes the bug.\n"); | 
|  | } else { | 
|  | ERROR(errp, "You only have RoCE / iWARP devices in your systems" | 
|  | " and your management software has specified '[::]'" | 
|  | ", but IPv6 over RoCE / iWARP is not supported in Linux."); | 
|  | return -ENONET; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we have a verbs context, that means that some other than '[::]' was | 
|  | * used by the management software for binding. In which case we can actually | 
|  | * warn the user about a potential broken kernel; | 
|  | */ | 
|  |  | 
|  | /* IB ports start with 1, not 0 */ | 
|  | if (ibv_query_port(verbs, 1, &port_attr)) { | 
|  | ERROR(errp, "Could not query initial IB port"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) { | 
|  | ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 " | 
|  | "(but patches on linux-rdma in progress)"); | 
|  | return -ENONET; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Figure out which RDMA device corresponds to the requested IP hostname | 
|  | * Also create the initial connection manager identifiers for opening | 
|  | * the connection. | 
|  | */ | 
|  | static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp) | 
|  | { | 
|  | int ret; | 
|  | struct rdma_addrinfo *res; | 
|  | char port_str[16]; | 
|  | struct rdma_cm_event *cm_event; | 
|  | char ip[40] = "unknown"; | 
|  | struct rdma_addrinfo *e; | 
|  |  | 
|  | if (rdma->host == NULL || !strcmp(rdma->host, "")) { | 
|  | ERROR(errp, "RDMA hostname has not been set"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* create CM channel */ | 
|  | rdma->channel = rdma_create_event_channel(); | 
|  | if (!rdma->channel) { | 
|  | ERROR(errp, "could not create CM channel"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* create CM id */ | 
|  | ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP); | 
|  | if (ret) { | 
|  | ERROR(errp, "could not create channel id"); | 
|  | goto err_resolve_create_id; | 
|  | } | 
|  |  | 
|  | snprintf(port_str, 16, "%d", rdma->port); | 
|  | port_str[15] = '\0'; | 
|  |  | 
|  | ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res); | 
|  | if (ret < 0) { | 
|  | ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host); | 
|  | goto err_resolve_get_addr; | 
|  | } | 
|  |  | 
|  | for (e = res; e != NULL; e = e->ai_next) { | 
|  | inet_ntop(e->ai_family, | 
|  | &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip); | 
|  | DPRINTF("Trying %s => %s\n", rdma->host, ip); | 
|  |  | 
|  | ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr, | 
|  | RDMA_RESOLVE_TIMEOUT_MS); | 
|  | if (!ret) { | 
|  | if (e->ai_family == AF_INET6) { | 
|  | ret = qemu_rdma_broken_ipv6_kernel(errp, rdma->cm_id->verbs); | 
|  | if (ret) { | 
|  | continue; | 
|  | } | 
|  | } | 
|  | goto route; | 
|  | } | 
|  | } | 
|  |  | 
|  | ERROR(errp, "could not resolve address %s", rdma->host); | 
|  | goto err_resolve_get_addr; | 
|  |  | 
|  | route: | 
|  | qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id); | 
|  |  | 
|  | ret = rdma_get_cm_event(rdma->channel, &cm_event); | 
|  | if (ret) { | 
|  | ERROR(errp, "could not perform event_addr_resolved"); | 
|  | goto err_resolve_get_addr; | 
|  | } | 
|  |  | 
|  | if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) { | 
|  | ERROR(errp, "result not equal to event_addr_resolved %s", | 
|  | rdma_event_str(cm_event->event)); | 
|  | perror("rdma_resolve_addr"); | 
|  | rdma_ack_cm_event(cm_event); | 
|  | ret = -EINVAL; | 
|  | goto err_resolve_get_addr; | 
|  | } | 
|  | rdma_ack_cm_event(cm_event); | 
|  |  | 
|  | /* resolve route */ | 
|  | ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS); | 
|  | if (ret) { | 
|  | ERROR(errp, "could not resolve rdma route"); | 
|  | goto err_resolve_get_addr; | 
|  | } | 
|  |  | 
|  | ret = rdma_get_cm_event(rdma->channel, &cm_event); | 
|  | if (ret) { | 
|  | ERROR(errp, "could not perform event_route_resolved"); | 
|  | goto err_resolve_get_addr; | 
|  | } | 
|  | if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) { | 
|  | ERROR(errp, "result not equal to event_route_resolved: %s", | 
|  | rdma_event_str(cm_event->event)); | 
|  | rdma_ack_cm_event(cm_event); | 
|  | ret = -EINVAL; | 
|  | goto err_resolve_get_addr; | 
|  | } | 
|  | rdma_ack_cm_event(cm_event); | 
|  | rdma->verbs = rdma->cm_id->verbs; | 
|  | qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs); | 
|  | qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id); | 
|  | return 0; | 
|  |  | 
|  | err_resolve_get_addr: | 
|  | rdma_destroy_id(rdma->cm_id); | 
|  | rdma->cm_id = NULL; | 
|  | err_resolve_create_id: | 
|  | rdma_destroy_event_channel(rdma->channel); | 
|  | rdma->channel = NULL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create protection domain and completion queues | 
|  | */ | 
|  | static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma) | 
|  | { | 
|  | /* allocate pd */ | 
|  | rdma->pd = ibv_alloc_pd(rdma->verbs); | 
|  | if (!rdma->pd) { | 
|  | fprintf(stderr, "failed to allocate protection domain\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* create completion channel */ | 
|  | rdma->comp_channel = ibv_create_comp_channel(rdma->verbs); | 
|  | if (!rdma->comp_channel) { | 
|  | fprintf(stderr, "failed to allocate completion channel\n"); | 
|  | goto err_alloc_pd_cq; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Completion queue can be filled by both read and write work requests, | 
|  | * so must reflect the sum of both possible queue sizes. | 
|  | */ | 
|  | rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3), | 
|  | NULL, rdma->comp_channel, 0); | 
|  | if (!rdma->cq) { | 
|  | fprintf(stderr, "failed to allocate completion queue\n"); | 
|  | goto err_alloc_pd_cq; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_alloc_pd_cq: | 
|  | if (rdma->pd) { | 
|  | ibv_dealloc_pd(rdma->pd); | 
|  | } | 
|  | if (rdma->comp_channel) { | 
|  | ibv_destroy_comp_channel(rdma->comp_channel); | 
|  | } | 
|  | rdma->pd = NULL; | 
|  | rdma->comp_channel = NULL; | 
|  | return -1; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create queue pairs. | 
|  | */ | 
|  | static int qemu_rdma_alloc_qp(RDMAContext *rdma) | 
|  | { | 
|  | struct ibv_qp_init_attr attr = { 0 }; | 
|  | int ret; | 
|  |  | 
|  | attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX; | 
|  | attr.cap.max_recv_wr = 3; | 
|  | attr.cap.max_send_sge = 1; | 
|  | attr.cap.max_recv_sge = 1; | 
|  | attr.send_cq = rdma->cq; | 
|  | attr.recv_cq = rdma->cq; | 
|  | attr.qp_type = IBV_QPT_RC; | 
|  |  | 
|  | ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr); | 
|  | if (ret) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | rdma->qp = rdma->cm_id->qp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma) | 
|  | { | 
|  | int i; | 
|  | RDMALocalBlocks *local = &rdma->local_ram_blocks; | 
|  |  | 
|  | for (i = 0; i < local->nb_blocks; i++) { | 
|  | local->block[i].mr = | 
|  | ibv_reg_mr(rdma->pd, | 
|  | local->block[i].local_host_addr, | 
|  | local->block[i].length, | 
|  | IBV_ACCESS_LOCAL_WRITE | | 
|  | IBV_ACCESS_REMOTE_WRITE | 
|  | ); | 
|  | if (!local->block[i].mr) { | 
|  | perror("Failed to register local dest ram block!\n"); | 
|  | break; | 
|  | } | 
|  | rdma->total_registrations++; | 
|  | } | 
|  |  | 
|  | if (i >= local->nb_blocks) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | for (i--; i >= 0; i--) { | 
|  | ibv_dereg_mr(local->block[i].mr); | 
|  | rdma->total_registrations--; | 
|  | } | 
|  |  | 
|  | return -1; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the ram block that corresponds to the page requested to be | 
|  | * transmitted by QEMU. | 
|  | * | 
|  | * Once the block is found, also identify which 'chunk' within that | 
|  | * block that the page belongs to. | 
|  | * | 
|  | * This search cannot fail or the migration will fail. | 
|  | */ | 
|  | static int qemu_rdma_search_ram_block(RDMAContext *rdma, | 
|  | uint64_t block_offset, | 
|  | uint64_t offset, | 
|  | uint64_t length, | 
|  | uint64_t *block_index, | 
|  | uint64_t *chunk_index) | 
|  | { | 
|  | uint64_t current_addr = block_offset + offset; | 
|  | RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap, | 
|  | (void *) block_offset); | 
|  | assert(block); | 
|  | assert(current_addr >= block->offset); | 
|  | assert((current_addr + length) <= (block->offset + block->length)); | 
|  |  | 
|  | *block_index = block->index; | 
|  | *chunk_index = ram_chunk_index(block->local_host_addr, | 
|  | block->local_host_addr + (current_addr - block->offset)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Register a chunk with IB. If the chunk was already registered | 
|  | * previously, then skip. | 
|  | * | 
|  | * Also return the keys associated with the registration needed | 
|  | * to perform the actual RDMA operation. | 
|  | */ | 
|  | static int qemu_rdma_register_and_get_keys(RDMAContext *rdma, | 
|  | RDMALocalBlock *block, uint8_t *host_addr, | 
|  | uint32_t *lkey, uint32_t *rkey, int chunk, | 
|  | uint8_t *chunk_start, uint8_t *chunk_end) | 
|  | { | 
|  | if (block->mr) { | 
|  | if (lkey) { | 
|  | *lkey = block->mr->lkey; | 
|  | } | 
|  | if (rkey) { | 
|  | *rkey = block->mr->rkey; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* allocate memory to store chunk MRs */ | 
|  | if (!block->pmr) { | 
|  | block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *)); | 
|  | if (!block->pmr) { | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If 'rkey', then we're the destination, so grant access to the source. | 
|  | * | 
|  | * If 'lkey', then we're the source VM, so grant access only to ourselves. | 
|  | */ | 
|  | if (!block->pmr[chunk]) { | 
|  | uint64_t len = chunk_end - chunk_start; | 
|  |  | 
|  | DDPRINTF("Registering %" PRIu64 " bytes @ %p\n", | 
|  | len, chunk_start); | 
|  |  | 
|  | block->pmr[chunk] = ibv_reg_mr(rdma->pd, | 
|  | chunk_start, len, | 
|  | (rkey ? (IBV_ACCESS_LOCAL_WRITE | | 
|  | IBV_ACCESS_REMOTE_WRITE) : 0)); | 
|  |  | 
|  | if (!block->pmr[chunk]) { | 
|  | perror("Failed to register chunk!"); | 
|  | fprintf(stderr, "Chunk details: block: %d chunk index %d" | 
|  | " start %" PRIu64 " end %" PRIu64 " host %" PRIu64 | 
|  | " local %" PRIu64 " registrations: %d\n", | 
|  | block->index, chunk, (uint64_t) chunk_start, | 
|  | (uint64_t) chunk_end, (uint64_t) host_addr, | 
|  | (uint64_t) block->local_host_addr, | 
|  | rdma->total_registrations); | 
|  | return -1; | 
|  | } | 
|  | rdma->total_registrations++; | 
|  | } | 
|  |  | 
|  | if (lkey) { | 
|  | *lkey = block->pmr[chunk]->lkey; | 
|  | } | 
|  | if (rkey) { | 
|  | *rkey = block->pmr[chunk]->rkey; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Register (at connection time) the memory used for control | 
|  | * channel messages. | 
|  | */ | 
|  | static int qemu_rdma_reg_control(RDMAContext *rdma, int idx) | 
|  | { | 
|  | rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd, | 
|  | rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER, | 
|  | IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE); | 
|  | if (rdma->wr_data[idx].control_mr) { | 
|  | rdma->total_registrations++; | 
|  | return 0; | 
|  | } | 
|  | fprintf(stderr, "qemu_rdma_reg_control failed!\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | const char *print_wrid(int wrid) | 
|  | { | 
|  | if (wrid >= RDMA_WRID_RECV_CONTROL) { | 
|  | return wrid_desc[RDMA_WRID_RECV_CONTROL]; | 
|  | } | 
|  | return wrid_desc[wrid]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * RDMA requires memory registration (mlock/pinning), but this is not good for | 
|  | * overcommitment. | 
|  | * | 
|  | * In preparation for the future where LRU information or workload-specific | 
|  | * writable writable working set memory access behavior is available to QEMU | 
|  | * it would be nice to have in place the ability to UN-register/UN-pin | 
|  | * particular memory regions from the RDMA hardware when it is determine that | 
|  | * those regions of memory will likely not be accessed again in the near future. | 
|  | * | 
|  | * While we do not yet have such information right now, the following | 
|  | * compile-time option allows us to perform a non-optimized version of this | 
|  | * behavior. | 
|  | * | 
|  | * By uncommenting this option, you will cause *all* RDMA transfers to be | 
|  | * unregistered immediately after the transfer completes on both sides of the | 
|  | * connection. This has no effect in 'rdma-pin-all' mode, only regular mode. | 
|  | * | 
|  | * This will have a terrible impact on migration performance, so until future | 
|  | * workload information or LRU information is available, do not attempt to use | 
|  | * this feature except for basic testing. | 
|  | */ | 
|  | //#define RDMA_UNREGISTRATION_EXAMPLE | 
|  |  | 
|  | /* | 
|  | * Perform a non-optimized memory unregistration after every transfer | 
|  | * for demonsration purposes, only if pin-all is not requested. | 
|  | * | 
|  | * Potential optimizations: | 
|  | * 1. Start a new thread to run this function continuously | 
|  | - for bit clearing | 
|  | - and for receipt of unregister messages | 
|  | * 2. Use an LRU. | 
|  | * 3. Use workload hints. | 
|  | */ | 
|  | static int qemu_rdma_unregister_waiting(RDMAContext *rdma) | 
|  | { | 
|  | while (rdma->unregistrations[rdma->unregister_current]) { | 
|  | int ret; | 
|  | uint64_t wr_id = rdma->unregistrations[rdma->unregister_current]; | 
|  | uint64_t chunk = | 
|  | (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT; | 
|  | uint64_t index = | 
|  | (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT; | 
|  | RDMALocalBlock *block = | 
|  | &(rdma->local_ram_blocks.block[index]); | 
|  | RDMARegister reg = { .current_index = index }; | 
|  | RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED, | 
|  | }; | 
|  | RDMAControlHeader head = { .len = sizeof(RDMARegister), | 
|  | .type = RDMA_CONTROL_UNREGISTER_REQUEST, | 
|  | .repeat = 1, | 
|  | }; | 
|  |  | 
|  | DDPRINTF("Processing unregister for chunk: %" PRIu64 | 
|  | " at position %d\n", chunk, rdma->unregister_current); | 
|  |  | 
|  | rdma->unregistrations[rdma->unregister_current] = 0; | 
|  | rdma->unregister_current++; | 
|  |  | 
|  | if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) { | 
|  | rdma->unregister_current = 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Unregistration is speculative (because migration is single-threaded | 
|  | * and we cannot break the protocol's inifinband message ordering). | 
|  | * Thus, if the memory is currently being used for transmission, | 
|  | * then abort the attempt to unregister and try again | 
|  | * later the next time a completion is received for this memory. | 
|  | */ | 
|  | clear_bit(chunk, block->unregister_bitmap); | 
|  |  | 
|  | if (test_bit(chunk, block->transit_bitmap)) { | 
|  | DDPRINTF("Cannot unregister inflight chunk: %" PRIu64 "\n", chunk); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | DDPRINTF("Sending unregister for chunk: %" PRIu64 "\n", chunk); | 
|  |  | 
|  | ret = ibv_dereg_mr(block->pmr[chunk]); | 
|  | block->pmr[chunk] = NULL; | 
|  | block->remote_keys[chunk] = 0; | 
|  |  | 
|  | if (ret != 0) { | 
|  | perror("unregistration chunk failed"); | 
|  | return -ret; | 
|  | } | 
|  | rdma->total_registrations--; | 
|  |  | 
|  | reg.key.chunk = chunk; | 
|  | register_to_network(®); | 
|  | ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) ®, | 
|  | &resp, NULL, NULL); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | DDPRINTF("Unregister for chunk: %" PRIu64 " complete.\n", chunk); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index, | 
|  | uint64_t chunk) | 
|  | { | 
|  | uint64_t result = wr_id & RDMA_WRID_TYPE_MASK; | 
|  |  | 
|  | result |= (index << RDMA_WRID_BLOCK_SHIFT); | 
|  | result |= (chunk << RDMA_WRID_CHUNK_SHIFT); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set bit for unregistration in the next iteration. | 
|  | * We cannot transmit right here, but will unpin later. | 
|  | */ | 
|  | static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index, | 
|  | uint64_t chunk, uint64_t wr_id) | 
|  | { | 
|  | if (rdma->unregistrations[rdma->unregister_next] != 0) { | 
|  | fprintf(stderr, "rdma migration: queue is full!\n"); | 
|  | } else { | 
|  | RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]); | 
|  |  | 
|  | if (!test_and_set_bit(chunk, block->unregister_bitmap)) { | 
|  | DDPRINTF("Appending unregister chunk %" PRIu64 | 
|  | " at position %d\n", chunk, rdma->unregister_next); | 
|  |  | 
|  | rdma->unregistrations[rdma->unregister_next++] = | 
|  | qemu_rdma_make_wrid(wr_id, index, chunk); | 
|  |  | 
|  | if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) { | 
|  | rdma->unregister_next = 0; | 
|  | } | 
|  | } else { | 
|  | DDPRINTF("Unregister chunk %" PRIu64 " already in queue.\n", | 
|  | chunk); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Consult the connection manager to see a work request | 
|  | * (of any kind) has completed. | 
|  | * Return the work request ID that completed. | 
|  | */ | 
|  | static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out, | 
|  | uint32_t *byte_len) | 
|  | { | 
|  | int ret; | 
|  | struct ibv_wc wc; | 
|  | uint64_t wr_id; | 
|  |  | 
|  | ret = ibv_poll_cq(rdma->cq, 1, &wc); | 
|  |  | 
|  | if (!ret) { | 
|  | *wr_id_out = RDMA_WRID_NONE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "ibv_poll_cq return %d!\n", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK; | 
|  |  | 
|  | if (wc.status != IBV_WC_SUCCESS) { | 
|  | fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n", | 
|  | wc.status, ibv_wc_status_str(wc.status)); | 
|  | fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (rdma->control_ready_expected && | 
|  | (wr_id >= RDMA_WRID_RECV_CONTROL)) { | 
|  | DDDPRINTF("completion %s #%" PRId64 " received (%" PRId64 ")" | 
|  | " left %d\n", wrid_desc[RDMA_WRID_RECV_CONTROL], | 
|  | wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent); | 
|  | rdma->control_ready_expected = 0; | 
|  | } | 
|  |  | 
|  | if (wr_id == RDMA_WRID_RDMA_WRITE) { | 
|  | uint64_t chunk = | 
|  | (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT; | 
|  | uint64_t index = | 
|  | (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT; | 
|  | RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]); | 
|  |  | 
|  | DDDPRINTF("completions %s (%" PRId64 ") left %d, " | 
|  | "block %" PRIu64 ", chunk: %" PRIu64 " %p %p\n", | 
|  | print_wrid(wr_id), wr_id, rdma->nb_sent, index, chunk, | 
|  | block->local_host_addr, (void *)block->remote_host_addr); | 
|  |  | 
|  | clear_bit(chunk, block->transit_bitmap); | 
|  |  | 
|  | if (rdma->nb_sent > 0) { | 
|  | rdma->nb_sent--; | 
|  | } | 
|  |  | 
|  | if (!rdma->pin_all) { | 
|  | /* | 
|  | * FYI: If one wanted to signal a specific chunk to be unregistered | 
|  | * using LRU or workload-specific information, this is the function | 
|  | * you would call to do so. That chunk would then get asynchronously | 
|  | * unregistered later. | 
|  | */ | 
|  | #ifdef RDMA_UNREGISTRATION_EXAMPLE | 
|  | qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id); | 
|  | #endif | 
|  | } | 
|  | } else { | 
|  | DDDPRINTF("other completion %s (%" PRId64 ") received left %d\n", | 
|  | print_wrid(wr_id), wr_id, rdma->nb_sent); | 
|  | } | 
|  |  | 
|  | *wr_id_out = wc.wr_id; | 
|  | if (byte_len) { | 
|  | *byte_len = wc.byte_len; | 
|  | } | 
|  |  | 
|  | return  0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Block until the next work request has completed. | 
|  | * | 
|  | * First poll to see if a work request has already completed, | 
|  | * otherwise block. | 
|  | * | 
|  | * If we encounter completed work requests for IDs other than | 
|  | * the one we're interested in, then that's generally an error. | 
|  | * | 
|  | * The only exception is actual RDMA Write completions. These | 
|  | * completions only need to be recorded, but do not actually | 
|  | * need further processing. | 
|  | */ | 
|  | static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested, | 
|  | uint32_t *byte_len) | 
|  | { | 
|  | int num_cq_events = 0, ret = 0; | 
|  | struct ibv_cq *cq; | 
|  | void *cq_ctx; | 
|  | uint64_t wr_id = RDMA_WRID_NONE, wr_id_in; | 
|  |  | 
|  | if (ibv_req_notify_cq(rdma->cq, 0)) { | 
|  | return -1; | 
|  | } | 
|  | /* poll cq first */ | 
|  | while (wr_id != wrid_requested) { | 
|  | ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; | 
|  |  | 
|  | if (wr_id == RDMA_WRID_NONE) { | 
|  | break; | 
|  | } | 
|  | if (wr_id != wrid_requested) { | 
|  | DDDPRINTF("A Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n", | 
|  | print_wrid(wrid_requested), | 
|  | wrid_requested, print_wrid(wr_id), wr_id); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (wr_id == wrid_requested) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | /* | 
|  | * Coroutine doesn't start until process_incoming_migration() | 
|  | * so don't yield unless we know we're running inside of a coroutine. | 
|  | */ | 
|  | if (rdma->migration_started_on_destination) { | 
|  | yield_until_fd_readable(rdma->comp_channel->fd); | 
|  | } | 
|  |  | 
|  | if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) { | 
|  | perror("ibv_get_cq_event"); | 
|  | goto err_block_for_wrid; | 
|  | } | 
|  |  | 
|  | num_cq_events++; | 
|  |  | 
|  | if (ibv_req_notify_cq(cq, 0)) { | 
|  | goto err_block_for_wrid; | 
|  | } | 
|  |  | 
|  | while (wr_id != wrid_requested) { | 
|  | ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len); | 
|  | if (ret < 0) { | 
|  | goto err_block_for_wrid; | 
|  | } | 
|  |  | 
|  | wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; | 
|  |  | 
|  | if (wr_id == RDMA_WRID_NONE) { | 
|  | break; | 
|  | } | 
|  | if (wr_id != wrid_requested) { | 
|  | DDDPRINTF("B Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n", | 
|  | print_wrid(wrid_requested), wrid_requested, | 
|  | print_wrid(wr_id), wr_id); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (wr_id == wrid_requested) { | 
|  | goto success_block_for_wrid; | 
|  | } | 
|  | } | 
|  |  | 
|  | success_block_for_wrid: | 
|  | if (num_cq_events) { | 
|  | ibv_ack_cq_events(cq, num_cq_events); | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | err_block_for_wrid: | 
|  | if (num_cq_events) { | 
|  | ibv_ack_cq_events(cq, num_cq_events); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Post a SEND message work request for the control channel | 
|  | * containing some data and block until the post completes. | 
|  | */ | 
|  | static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf, | 
|  | RDMAControlHeader *head) | 
|  | { | 
|  | int ret = 0; | 
|  | RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL]; | 
|  | struct ibv_send_wr *bad_wr; | 
|  | struct ibv_sge sge = { | 
|  | .addr = (uint64_t)(wr->control), | 
|  | .length = head->len + sizeof(RDMAControlHeader), | 
|  | .lkey = wr->control_mr->lkey, | 
|  | }; | 
|  | struct ibv_send_wr send_wr = { | 
|  | .wr_id = RDMA_WRID_SEND_CONTROL, | 
|  | .opcode = IBV_WR_SEND, | 
|  | .send_flags = IBV_SEND_SIGNALED, | 
|  | .sg_list = &sge, | 
|  | .num_sge = 1, | 
|  | }; | 
|  |  | 
|  | DDDPRINTF("CONTROL: sending %s..\n", control_desc[head->type]); | 
|  |  | 
|  | /* | 
|  | * We don't actually need to do a memcpy() in here if we used | 
|  | * the "sge" properly, but since we're only sending control messages | 
|  | * (not RAM in a performance-critical path), then its OK for now. | 
|  | * | 
|  | * The copy makes the RDMAControlHeader simpler to manipulate | 
|  | * for the time being. | 
|  | */ | 
|  | assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head)); | 
|  | memcpy(wr->control, head, sizeof(RDMAControlHeader)); | 
|  | control_to_network((void *) wr->control); | 
|  |  | 
|  | if (buf) { | 
|  | memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len); | 
|  | } | 
|  |  | 
|  |  | 
|  | ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr); | 
|  |  | 
|  | if (ret > 0) { | 
|  | fprintf(stderr, "Failed to use post IB SEND for control!\n"); | 
|  | return -ret; | 
|  | } | 
|  |  | 
|  | ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL); | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "rdma migration: send polling control error!\n"); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Post a RECV work request in anticipation of some future receipt | 
|  | * of data on the control channel. | 
|  | */ | 
|  | static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx) | 
|  | { | 
|  | struct ibv_recv_wr *bad_wr; | 
|  | struct ibv_sge sge = { | 
|  | .addr = (uint64_t)(rdma->wr_data[idx].control), | 
|  | .length = RDMA_CONTROL_MAX_BUFFER, | 
|  | .lkey = rdma->wr_data[idx].control_mr->lkey, | 
|  | }; | 
|  |  | 
|  | struct ibv_recv_wr recv_wr = { | 
|  | .wr_id = RDMA_WRID_RECV_CONTROL + idx, | 
|  | .sg_list = &sge, | 
|  | .num_sge = 1, | 
|  | }; | 
|  |  | 
|  |  | 
|  | if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Block and wait for a RECV control channel message to arrive. | 
|  | */ | 
|  | static int qemu_rdma_exchange_get_response(RDMAContext *rdma, | 
|  | RDMAControlHeader *head, int expecting, int idx) | 
|  | { | 
|  | uint32_t byte_len; | 
|  | int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx, | 
|  | &byte_len); | 
|  |  | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "rdma migration: recv polling control error!\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | network_to_control((void *) rdma->wr_data[idx].control); | 
|  | memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader)); | 
|  |  | 
|  | DDDPRINTF("CONTROL: %s receiving...\n", control_desc[expecting]); | 
|  |  | 
|  | if (expecting == RDMA_CONTROL_NONE) { | 
|  | DDDPRINTF("Surprise: got %s (%d)\n", | 
|  | control_desc[head->type], head->type); | 
|  | } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) { | 
|  | fprintf(stderr, "Was expecting a %s (%d) control message" | 
|  | ", but got: %s (%d), length: %d\n", | 
|  | control_desc[expecting], expecting, | 
|  | control_desc[head->type], head->type, head->len); | 
|  | return -EIO; | 
|  | } | 
|  | if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) { | 
|  | fprintf(stderr, "too long length: %d\n", head->len); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (sizeof(*head) + head->len != byte_len) { | 
|  | fprintf(stderr, "Malformed length: %d byte_len %d\n", | 
|  | head->len, byte_len); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When a RECV work request has completed, the work request's | 
|  | * buffer is pointed at the header. | 
|  | * | 
|  | * This will advance the pointer to the data portion | 
|  | * of the control message of the work request's buffer that | 
|  | * was populated after the work request finished. | 
|  | */ | 
|  | static void qemu_rdma_move_header(RDMAContext *rdma, int idx, | 
|  | RDMAControlHeader *head) | 
|  | { | 
|  | rdma->wr_data[idx].control_len = head->len; | 
|  | rdma->wr_data[idx].control_curr = | 
|  | rdma->wr_data[idx].control + sizeof(RDMAControlHeader); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is an 'atomic' high-level operation to deliver a single, unified | 
|  | * control-channel message. | 
|  | * | 
|  | * Additionally, if the user is expecting some kind of reply to this message, | 
|  | * they can request a 'resp' response message be filled in by posting an | 
|  | * additional work request on behalf of the user and waiting for an additional | 
|  | * completion. | 
|  | * | 
|  | * The extra (optional) response is used during registration to us from having | 
|  | * to perform an *additional* exchange of message just to provide a response by | 
|  | * instead piggy-backing on the acknowledgement. | 
|  | */ | 
|  | static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head, | 
|  | uint8_t *data, RDMAControlHeader *resp, | 
|  | int *resp_idx, | 
|  | int (*callback)(RDMAContext *rdma)) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * Wait until the dest is ready before attempting to deliver the message | 
|  | * by waiting for a READY message. | 
|  | */ | 
|  | if (rdma->control_ready_expected) { | 
|  | RDMAControlHeader resp; | 
|  | ret = qemu_rdma_exchange_get_response(rdma, | 
|  | &resp, RDMA_CONTROL_READY, RDMA_WRID_READY); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the user is expecting a response, post a WR in anticipation of it. | 
|  | */ | 
|  | if (resp) { | 
|  | ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA); | 
|  | if (ret) { | 
|  | fprintf(stderr, "rdma migration: error posting" | 
|  | " extra control recv for anticipated result!"); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Post a WR to replace the one we just consumed for the READY message. | 
|  | */ | 
|  | ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); | 
|  | if (ret) { | 
|  | fprintf(stderr, "rdma migration: error posting first control recv!"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Deliver the control message that was requested. | 
|  | */ | 
|  | ret = qemu_rdma_post_send_control(rdma, data, head); | 
|  |  | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "Failed to send control buffer!\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we're expecting a response, block and wait for it. | 
|  | */ | 
|  | if (resp) { | 
|  | if (callback) { | 
|  | DDPRINTF("Issuing callback before receiving response...\n"); | 
|  | ret = callback(rdma); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | DDPRINTF("Waiting for response %s\n", control_desc[resp->type]); | 
|  | ret = qemu_rdma_exchange_get_response(rdma, resp, | 
|  | resp->type, RDMA_WRID_DATA); | 
|  |  | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp); | 
|  | if (resp_idx) { | 
|  | *resp_idx = RDMA_WRID_DATA; | 
|  | } | 
|  | DDPRINTF("Response %s received.\n", control_desc[resp->type]); | 
|  | } | 
|  |  | 
|  | rdma->control_ready_expected = 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is an 'atomic' high-level operation to receive a single, unified | 
|  | * control-channel message. | 
|  | */ | 
|  | static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head, | 
|  | int expecting) | 
|  | { | 
|  | RDMAControlHeader ready = { | 
|  | .len = 0, | 
|  | .type = RDMA_CONTROL_READY, | 
|  | .repeat = 1, | 
|  | }; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Inform the source that we're ready to receive a message. | 
|  | */ | 
|  | ret = qemu_rdma_post_send_control(rdma, NULL, &ready); | 
|  |  | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "Failed to send control buffer!\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Block and wait for the message. | 
|  | */ | 
|  | ret = qemu_rdma_exchange_get_response(rdma, head, | 
|  | expecting, RDMA_WRID_READY); | 
|  |  | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | qemu_rdma_move_header(rdma, RDMA_WRID_READY, head); | 
|  |  | 
|  | /* | 
|  | * Post a new RECV work request to replace the one we just consumed. | 
|  | */ | 
|  | ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); | 
|  | if (ret) { | 
|  | fprintf(stderr, "rdma migration: error posting second control recv!"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write an actual chunk of memory using RDMA. | 
|  | * | 
|  | * If we're using dynamic registration on the dest-side, we have to | 
|  | * send a registration command first. | 
|  | */ | 
|  | static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma, | 
|  | int current_index, uint64_t current_addr, | 
|  | uint64_t length) | 
|  | { | 
|  | struct ibv_sge sge; | 
|  | struct ibv_send_wr send_wr = { 0 }; | 
|  | struct ibv_send_wr *bad_wr; | 
|  | int reg_result_idx, ret, count = 0; | 
|  | uint64_t chunk, chunks; | 
|  | uint8_t *chunk_start, *chunk_end; | 
|  | RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]); | 
|  | RDMARegister reg; | 
|  | RDMARegisterResult *reg_result; | 
|  | RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT }; | 
|  | RDMAControlHeader head = { .len = sizeof(RDMARegister), | 
|  | .type = RDMA_CONTROL_REGISTER_REQUEST, | 
|  | .repeat = 1, | 
|  | }; | 
|  |  | 
|  | retry: | 
|  | sge.addr = (uint64_t)(block->local_host_addr + | 
|  | (current_addr - block->offset)); | 
|  | sge.length = length; | 
|  |  | 
|  | chunk = ram_chunk_index(block->local_host_addr, (uint8_t *) sge.addr); | 
|  | chunk_start = ram_chunk_start(block, chunk); | 
|  |  | 
|  | if (block->is_ram_block) { | 
|  | chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT); | 
|  |  | 
|  | if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) { | 
|  | chunks--; | 
|  | } | 
|  | } else { | 
|  | chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT); | 
|  |  | 
|  | if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) { | 
|  | chunks--; | 
|  | } | 
|  | } | 
|  |  | 
|  | DDPRINTF("Writing %" PRIu64 " chunks, (%" PRIu64 " MB)\n", | 
|  | chunks + 1, (chunks + 1) * (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024); | 
|  |  | 
|  | chunk_end = ram_chunk_end(block, chunk + chunks); | 
|  |  | 
|  | if (!rdma->pin_all) { | 
|  | #ifdef RDMA_UNREGISTRATION_EXAMPLE | 
|  | qemu_rdma_unregister_waiting(rdma); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | while (test_bit(chunk, block->transit_bitmap)) { | 
|  | (void)count; | 
|  | DDPRINTF("(%d) Not clobbering: block: %d chunk %" PRIu64 | 
|  | " current %" PRIu64 " len %" PRIu64 " %d %d\n", | 
|  | count++, current_index, chunk, | 
|  | sge.addr, length, rdma->nb_sent, block->nb_chunks); | 
|  |  | 
|  | ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); | 
|  |  | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "Failed to Wait for previous write to complete " | 
|  | "block %d chunk %" PRIu64 | 
|  | " current %" PRIu64 " len %" PRIu64 " %d\n", | 
|  | current_index, chunk, sge.addr, length, rdma->nb_sent); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!rdma->pin_all || !block->is_ram_block) { | 
|  | if (!block->remote_keys[chunk]) { | 
|  | /* | 
|  | * This chunk has not yet been registered, so first check to see | 
|  | * if the entire chunk is zero. If so, tell the other size to | 
|  | * memset() + madvise() the entire chunk without RDMA. | 
|  | */ | 
|  |  | 
|  | if (can_use_buffer_find_nonzero_offset((void *)sge.addr, length) | 
|  | && buffer_find_nonzero_offset((void *)sge.addr, | 
|  | length) == length) { | 
|  | RDMACompress comp = { | 
|  | .offset = current_addr, | 
|  | .value = 0, | 
|  | .block_idx = current_index, | 
|  | .length = length, | 
|  | }; | 
|  |  | 
|  | head.len = sizeof(comp); | 
|  | head.type = RDMA_CONTROL_COMPRESS; | 
|  |  | 
|  | DDPRINTF("Entire chunk is zero, sending compress: %" | 
|  | PRIu64 " for %d " | 
|  | "bytes, index: %d, offset: %" PRId64 "...\n", | 
|  | chunk, sge.length, current_index, current_addr); | 
|  |  | 
|  | compress_to_network(&comp); | 
|  | ret = qemu_rdma_exchange_send(rdma, &head, | 
|  | (uint8_t *) &comp, NULL, NULL, NULL); | 
|  |  | 
|  | if (ret < 0) { | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | acct_update_position(f, sge.length, true); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Otherwise, tell other side to register. | 
|  | */ | 
|  | reg.current_index = current_index; | 
|  | if (block->is_ram_block) { | 
|  | reg.key.current_addr = current_addr; | 
|  | } else { | 
|  | reg.key.chunk = chunk; | 
|  | } | 
|  | reg.chunks = chunks; | 
|  |  | 
|  | DDPRINTF("Sending registration request chunk %" PRIu64 " for %d " | 
|  | "bytes, index: %d, offset: %" PRId64 "...\n", | 
|  | chunk, sge.length, current_index, current_addr); | 
|  |  | 
|  | register_to_network(®); | 
|  | ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) ®, | 
|  | &resp, ®_result_idx, NULL); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* try to overlap this single registration with the one we sent. */ | 
|  | if (qemu_rdma_register_and_get_keys(rdma, block, | 
|  | (uint8_t *) sge.addr, | 
|  | &sge.lkey, NULL, chunk, | 
|  | chunk_start, chunk_end)) { | 
|  | fprintf(stderr, "cannot get lkey!\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | reg_result = (RDMARegisterResult *) | 
|  | rdma->wr_data[reg_result_idx].control_curr; | 
|  |  | 
|  | network_to_result(reg_result); | 
|  |  | 
|  | DDPRINTF("Received registration result:" | 
|  | " my key: %x their key %x, chunk %" PRIu64 "\n", | 
|  | block->remote_keys[chunk], reg_result->rkey, chunk); | 
|  |  | 
|  | block->remote_keys[chunk] = reg_result->rkey; | 
|  | block->remote_host_addr = reg_result->host_addr; | 
|  | } else { | 
|  | /* already registered before */ | 
|  | if (qemu_rdma_register_and_get_keys(rdma, block, | 
|  | (uint8_t *)sge.addr, | 
|  | &sge.lkey, NULL, chunk, | 
|  | chunk_start, chunk_end)) { | 
|  | fprintf(stderr, "cannot get lkey!\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | send_wr.wr.rdma.rkey = block->remote_keys[chunk]; | 
|  | } else { | 
|  | send_wr.wr.rdma.rkey = block->remote_rkey; | 
|  |  | 
|  | if (qemu_rdma_register_and_get_keys(rdma, block, (uint8_t *)sge.addr, | 
|  | &sge.lkey, NULL, chunk, | 
|  | chunk_start, chunk_end)) { | 
|  | fprintf(stderr, "cannot get lkey!\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Encode the ram block index and chunk within this wrid. | 
|  | * We will use this information at the time of completion | 
|  | * to figure out which bitmap to check against and then which | 
|  | * chunk in the bitmap to look for. | 
|  | */ | 
|  | send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE, | 
|  | current_index, chunk); | 
|  |  | 
|  | send_wr.opcode = IBV_WR_RDMA_WRITE; | 
|  | send_wr.send_flags = IBV_SEND_SIGNALED; | 
|  | send_wr.sg_list = &sge; | 
|  | send_wr.num_sge = 1; | 
|  | send_wr.wr.rdma.remote_addr = block->remote_host_addr + | 
|  | (current_addr - block->offset); | 
|  |  | 
|  | DDDPRINTF("Posting chunk: %" PRIu64 ", addr: %lx" | 
|  | " remote: %lx, bytes %" PRIu32 "\n", | 
|  | chunk, sge.addr, send_wr.wr.rdma.remote_addr, | 
|  | sge.length); | 
|  |  | 
|  | /* | 
|  | * ibv_post_send() does not return negative error numbers, | 
|  | * per the specification they are positive - no idea why. | 
|  | */ | 
|  | ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr); | 
|  |  | 
|  | if (ret == ENOMEM) { | 
|  | DDPRINTF("send queue is full. wait a little....\n"); | 
|  | ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "rdma migration: failed to make " | 
|  | "room in full send queue! %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | goto retry; | 
|  |  | 
|  | } else if (ret > 0) { | 
|  | perror("rdma migration: post rdma write failed"); | 
|  | return -ret; | 
|  | } | 
|  |  | 
|  | set_bit(chunk, block->transit_bitmap); | 
|  | acct_update_position(f, sge.length, false); | 
|  | rdma->total_writes++; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Push out any unwritten RDMA operations. | 
|  | * | 
|  | * We support sending out multiple chunks at the same time. | 
|  | * Not all of them need to get signaled in the completion queue. | 
|  | */ | 
|  | static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!rdma->current_length) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = qemu_rdma_write_one(f, rdma, | 
|  | rdma->current_index, rdma->current_addr, rdma->current_length); | 
|  |  | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (ret == 0) { | 
|  | rdma->nb_sent++; | 
|  | DDDPRINTF("sent total: %d\n", rdma->nb_sent); | 
|  | } | 
|  |  | 
|  | rdma->current_length = 0; | 
|  | rdma->current_addr = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma, | 
|  | uint64_t offset, uint64_t len) | 
|  | { | 
|  | RDMALocalBlock *block; | 
|  | uint8_t *host_addr; | 
|  | uint8_t *chunk_end; | 
|  |  | 
|  | if (rdma->current_index < 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (rdma->current_chunk < 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | block = &(rdma->local_ram_blocks.block[rdma->current_index]); | 
|  | host_addr = block->local_host_addr + (offset - block->offset); | 
|  | chunk_end = ram_chunk_end(block, rdma->current_chunk); | 
|  |  | 
|  | if (rdma->current_length == 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only merge into chunk sequentially. | 
|  | */ | 
|  | if (offset != (rdma->current_addr + rdma->current_length)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (offset < block->offset) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if ((offset + len) > (block->offset + block->length)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if ((host_addr + len) > chunk_end) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We're not actually writing here, but doing three things: | 
|  | * | 
|  | * 1. Identify the chunk the buffer belongs to. | 
|  | * 2. If the chunk is full or the buffer doesn't belong to the current | 
|  | *    chunk, then start a new chunk and flush() the old chunk. | 
|  | * 3. To keep the hardware busy, we also group chunks into batches | 
|  | *    and only require that a batch gets acknowledged in the completion | 
|  | *    qeueue instead of each individual chunk. | 
|  | */ | 
|  | static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma, | 
|  | uint64_t block_offset, uint64_t offset, | 
|  | uint64_t len) | 
|  | { | 
|  | uint64_t current_addr = block_offset + offset; | 
|  | uint64_t index = rdma->current_index; | 
|  | uint64_t chunk = rdma->current_chunk; | 
|  | int ret; | 
|  |  | 
|  | /* If we cannot merge it, we flush the current buffer first. */ | 
|  | if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) { | 
|  | ret = qemu_rdma_write_flush(f, rdma); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | rdma->current_length = 0; | 
|  | rdma->current_addr = current_addr; | 
|  |  | 
|  | ret = qemu_rdma_search_ram_block(rdma, block_offset, | 
|  | offset, len, &index, &chunk); | 
|  | if (ret) { | 
|  | fprintf(stderr, "ram block search failed\n"); | 
|  | return ret; | 
|  | } | 
|  | rdma->current_index = index; | 
|  | rdma->current_chunk = chunk; | 
|  | } | 
|  |  | 
|  | /* merge it */ | 
|  | rdma->current_length += len; | 
|  |  | 
|  | /* flush it if buffer is too large */ | 
|  | if (rdma->current_length >= RDMA_MERGE_MAX) { | 
|  | return qemu_rdma_write_flush(f, rdma); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void qemu_rdma_cleanup(RDMAContext *rdma) | 
|  | { | 
|  | struct rdma_cm_event *cm_event; | 
|  | int ret, idx; | 
|  |  | 
|  | if (rdma->cm_id && rdma->connected) { | 
|  | if (rdma->error_state) { | 
|  | RDMAControlHeader head = { .len = 0, | 
|  | .type = RDMA_CONTROL_ERROR, | 
|  | .repeat = 1, | 
|  | }; | 
|  | fprintf(stderr, "Early error. Sending error.\n"); | 
|  | qemu_rdma_post_send_control(rdma, NULL, &head); | 
|  | } | 
|  |  | 
|  | ret = rdma_disconnect(rdma->cm_id); | 
|  | if (!ret) { | 
|  | DDPRINTF("waiting for disconnect\n"); | 
|  | ret = rdma_get_cm_event(rdma->channel, &cm_event); | 
|  | if (!ret) { | 
|  | rdma_ack_cm_event(cm_event); | 
|  | } | 
|  | } | 
|  | DDPRINTF("Disconnected.\n"); | 
|  | rdma->connected = false; | 
|  | } | 
|  |  | 
|  | g_free(rdma->block); | 
|  | rdma->block = NULL; | 
|  |  | 
|  | for (idx = 0; idx < RDMA_WRID_MAX; idx++) { | 
|  | if (rdma->wr_data[idx].control_mr) { | 
|  | rdma->total_registrations--; | 
|  | ibv_dereg_mr(rdma->wr_data[idx].control_mr); | 
|  | } | 
|  | rdma->wr_data[idx].control_mr = NULL; | 
|  | } | 
|  |  | 
|  | if (rdma->local_ram_blocks.block) { | 
|  | while (rdma->local_ram_blocks.nb_blocks) { | 
|  | __qemu_rdma_delete_block(rdma, | 
|  | rdma->local_ram_blocks.block->offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rdma->cq) { | 
|  | ibv_destroy_cq(rdma->cq); | 
|  | rdma->cq = NULL; | 
|  | } | 
|  | if (rdma->comp_channel) { | 
|  | ibv_destroy_comp_channel(rdma->comp_channel); | 
|  | rdma->comp_channel = NULL; | 
|  | } | 
|  | if (rdma->pd) { | 
|  | ibv_dealloc_pd(rdma->pd); | 
|  | rdma->pd = NULL; | 
|  | } | 
|  | if (rdma->listen_id) { | 
|  | rdma_destroy_id(rdma->listen_id); | 
|  | rdma->listen_id = NULL; | 
|  | } | 
|  | if (rdma->cm_id) { | 
|  | if (rdma->qp) { | 
|  | rdma_destroy_qp(rdma->cm_id); | 
|  | rdma->qp = NULL; | 
|  | } | 
|  | rdma_destroy_id(rdma->cm_id); | 
|  | rdma->cm_id = NULL; | 
|  | } | 
|  | if (rdma->channel) { | 
|  | rdma_destroy_event_channel(rdma->channel); | 
|  | rdma->channel = NULL; | 
|  | } | 
|  | g_free(rdma->host); | 
|  | rdma->host = NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all) | 
|  | { | 
|  | int ret, idx; | 
|  | Error *local_err = NULL, **temp = &local_err; | 
|  |  | 
|  | /* | 
|  | * Will be validated against destination's actual capabilities | 
|  | * after the connect() completes. | 
|  | */ | 
|  | rdma->pin_all = pin_all; | 
|  |  | 
|  | ret = qemu_rdma_resolve_host(rdma, temp); | 
|  | if (ret) { | 
|  | goto err_rdma_source_init; | 
|  | } | 
|  |  | 
|  | ret = qemu_rdma_alloc_pd_cq(rdma); | 
|  | if (ret) { | 
|  | ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()" | 
|  | " limits may be too low. Please check $ ulimit -a # and " | 
|  | "search for 'ulimit -l' in the output"); | 
|  | goto err_rdma_source_init; | 
|  | } | 
|  |  | 
|  | ret = qemu_rdma_alloc_qp(rdma); | 
|  | if (ret) { | 
|  | ERROR(temp, "rdma migration: error allocating qp!"); | 
|  | goto err_rdma_source_init; | 
|  | } | 
|  |  | 
|  | ret = qemu_rdma_init_ram_blocks(rdma); | 
|  | if (ret) { | 
|  | ERROR(temp, "rdma migration: error initializing ram blocks!"); | 
|  | goto err_rdma_source_init; | 
|  | } | 
|  |  | 
|  | for (idx = 0; idx < RDMA_WRID_MAX; idx++) { | 
|  | ret = qemu_rdma_reg_control(rdma, idx); | 
|  | if (ret) { | 
|  | ERROR(temp, "rdma migration: error registering %d control!", | 
|  | idx); | 
|  | goto err_rdma_source_init; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_rdma_source_init: | 
|  | error_propagate(errp, local_err); | 
|  | qemu_rdma_cleanup(rdma); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int qemu_rdma_connect(RDMAContext *rdma, Error **errp) | 
|  | { | 
|  | RDMACapabilities cap = { | 
|  | .version = RDMA_CONTROL_VERSION_CURRENT, | 
|  | .flags = 0, | 
|  | }; | 
|  | struct rdma_conn_param conn_param = { .initiator_depth = 2, | 
|  | .retry_count = 5, | 
|  | .private_data = &cap, | 
|  | .private_data_len = sizeof(cap), | 
|  | }; | 
|  | struct rdma_cm_event *cm_event; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Only negotiate the capability with destination if the user | 
|  | * on the source first requested the capability. | 
|  | */ | 
|  | if (rdma->pin_all) { | 
|  | DPRINTF("Server pin-all memory requested.\n"); | 
|  | cap.flags |= RDMA_CAPABILITY_PIN_ALL; | 
|  | } | 
|  |  | 
|  | caps_to_network(&cap); | 
|  |  | 
|  | ret = rdma_connect(rdma->cm_id, &conn_param); | 
|  | if (ret) { | 
|  | perror("rdma_connect"); | 
|  | ERROR(errp, "connecting to destination!"); | 
|  | rdma_destroy_id(rdma->cm_id); | 
|  | rdma->cm_id = NULL; | 
|  | goto err_rdma_source_connect; | 
|  | } | 
|  |  | 
|  | ret = rdma_get_cm_event(rdma->channel, &cm_event); | 
|  | if (ret) { | 
|  | perror("rdma_get_cm_event after rdma_connect"); | 
|  | ERROR(errp, "connecting to destination!"); | 
|  | rdma_ack_cm_event(cm_event); | 
|  | rdma_destroy_id(rdma->cm_id); | 
|  | rdma->cm_id = NULL; | 
|  | goto err_rdma_source_connect; | 
|  | } | 
|  |  | 
|  | if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) { | 
|  | perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect"); | 
|  | ERROR(errp, "connecting to destination!"); | 
|  | rdma_ack_cm_event(cm_event); | 
|  | rdma_destroy_id(rdma->cm_id); | 
|  | rdma->cm_id = NULL; | 
|  | goto err_rdma_source_connect; | 
|  | } | 
|  | rdma->connected = true; | 
|  |  | 
|  | memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap)); | 
|  | network_to_caps(&cap); | 
|  |  | 
|  | /* | 
|  | * Verify that the *requested* capabilities are supported by the destination | 
|  | * and disable them otherwise. | 
|  | */ | 
|  | if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) { | 
|  | ERROR(errp, "Server cannot support pinning all memory. " | 
|  | "Will register memory dynamically."); | 
|  | rdma->pin_all = false; | 
|  | } | 
|  |  | 
|  | DPRINTF("Pin all memory: %s\n", rdma->pin_all ? "enabled" : "disabled"); | 
|  |  | 
|  | rdma_ack_cm_event(cm_event); | 
|  |  | 
|  | ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); | 
|  | if (ret) { | 
|  | ERROR(errp, "posting second control recv!"); | 
|  | goto err_rdma_source_connect; | 
|  | } | 
|  |  | 
|  | rdma->control_ready_expected = 1; | 
|  | rdma->nb_sent = 0; | 
|  | return 0; | 
|  |  | 
|  | err_rdma_source_connect: | 
|  | qemu_rdma_cleanup(rdma); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp) | 
|  | { | 
|  | int ret = -EINVAL, idx; | 
|  | struct rdma_cm_id *listen_id; | 
|  | char ip[40] = "unknown"; | 
|  | struct rdma_addrinfo *res; | 
|  | char port_str[16]; | 
|  |  | 
|  | for (idx = 0; idx < RDMA_WRID_MAX; idx++) { | 
|  | rdma->wr_data[idx].control_len = 0; | 
|  | rdma->wr_data[idx].control_curr = NULL; | 
|  | } | 
|  |  | 
|  | if (rdma->host == NULL) { | 
|  | ERROR(errp, "RDMA host is not set!"); | 
|  | rdma->error_state = -EINVAL; | 
|  | return -1; | 
|  | } | 
|  | /* create CM channel */ | 
|  | rdma->channel = rdma_create_event_channel(); | 
|  | if (!rdma->channel) { | 
|  | ERROR(errp, "could not create rdma event channel"); | 
|  | rdma->error_state = -EINVAL; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* create CM id */ | 
|  | ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP); | 
|  | if (ret) { | 
|  | ERROR(errp, "could not create cm_id!"); | 
|  | goto err_dest_init_create_listen_id; | 
|  | } | 
|  |  | 
|  | snprintf(port_str, 16, "%d", rdma->port); | 
|  | port_str[15] = '\0'; | 
|  |  | 
|  | if (rdma->host && strcmp("", rdma->host)) { | 
|  | struct rdma_addrinfo *e; | 
|  |  | 
|  | ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res); | 
|  | if (ret < 0) { | 
|  | ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host); | 
|  | goto err_dest_init_bind_addr; | 
|  | } | 
|  |  | 
|  | for (e = res; e != NULL; e = e->ai_next) { | 
|  | inet_ntop(e->ai_family, | 
|  | &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip); | 
|  | DPRINTF("Trying %s => %s\n", rdma->host, ip); | 
|  | ret = rdma_bind_addr(listen_id, e->ai_dst_addr); | 
|  | if (!ret) { | 
|  | if (e->ai_family == AF_INET6) { | 
|  | ret = qemu_rdma_broken_ipv6_kernel(errp, listen_id->verbs); | 
|  | if (ret) { | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | goto listen; | 
|  | } | 
|  | } | 
|  |  | 
|  | ERROR(errp, "Error: could not rdma_bind_addr!"); | 
|  | goto err_dest_init_bind_addr; | 
|  | } else { | 
|  | ERROR(errp, "migration host and port not specified!"); | 
|  | ret = -EINVAL; | 
|  | goto err_dest_init_bind_addr; | 
|  | } | 
|  | listen: | 
|  |  | 
|  | rdma->listen_id = listen_id; | 
|  | qemu_rdma_dump_gid("dest_init", listen_id); | 
|  | return 0; | 
|  |  | 
|  | err_dest_init_bind_addr: | 
|  | rdma_destroy_id(listen_id); | 
|  | err_dest_init_create_listen_id: | 
|  | rdma_destroy_event_channel(rdma->channel); | 
|  | rdma->channel = NULL; | 
|  | rdma->error_state = ret; | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | static void *qemu_rdma_data_init(const char *host_port, Error **errp) | 
|  | { | 
|  | RDMAContext *rdma = NULL; | 
|  | InetSocketAddress *addr; | 
|  |  | 
|  | if (host_port) { | 
|  | rdma = g_malloc0(sizeof(RDMAContext)); | 
|  | memset(rdma, 0, sizeof(RDMAContext)); | 
|  | rdma->current_index = -1; | 
|  | rdma->current_chunk = -1; | 
|  |  | 
|  | addr = inet_parse(host_port, NULL); | 
|  | if (addr != NULL) { | 
|  | rdma->port = atoi(addr->port); | 
|  | rdma->host = g_strdup(addr->host); | 
|  | } else { | 
|  | ERROR(errp, "bad RDMA migration address '%s'", host_port); | 
|  | g_free(rdma); | 
|  | rdma = NULL; | 
|  | } | 
|  |  | 
|  | qapi_free_InetSocketAddress(addr); | 
|  | } | 
|  |  | 
|  | return rdma; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * QEMUFile interface to the control channel. | 
|  | * SEND messages for control only. | 
|  | * VM's ram is handled with regular RDMA messages. | 
|  | */ | 
|  | static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf, | 
|  | int64_t pos, int size) | 
|  | { | 
|  | QEMUFileRDMA *r = opaque; | 
|  | QEMUFile *f = r->file; | 
|  | RDMAContext *rdma = r->rdma; | 
|  | size_t remaining = size; | 
|  | uint8_t * data = (void *) buf; | 
|  | int ret; | 
|  |  | 
|  | CHECK_ERROR_STATE(); | 
|  |  | 
|  | /* | 
|  | * Push out any writes that | 
|  | * we're queued up for VM's ram. | 
|  | */ | 
|  | ret = qemu_rdma_write_flush(f, rdma); | 
|  | if (ret < 0) { | 
|  | rdma->error_state = ret; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | while (remaining) { | 
|  | RDMAControlHeader head; | 
|  |  | 
|  | r->len = MIN(remaining, RDMA_SEND_INCREMENT); | 
|  | remaining -= r->len; | 
|  |  | 
|  | head.len = r->len; | 
|  | head.type = RDMA_CONTROL_QEMU_FILE; | 
|  |  | 
|  | ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL); | 
|  |  | 
|  | if (ret < 0) { | 
|  | rdma->error_state = ret; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | data += r->len; | 
|  | } | 
|  |  | 
|  | return size; | 
|  | } | 
|  |  | 
|  | static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf, | 
|  | int size, int idx) | 
|  | { | 
|  | size_t len = 0; | 
|  |  | 
|  | if (rdma->wr_data[idx].control_len) { | 
|  | DDDPRINTF("RDMA %" PRId64 " of %d bytes already in buffer\n", | 
|  | rdma->wr_data[idx].control_len, size); | 
|  |  | 
|  | len = MIN(size, rdma->wr_data[idx].control_len); | 
|  | memcpy(buf, rdma->wr_data[idx].control_curr, len); | 
|  | rdma->wr_data[idx].control_curr += len; | 
|  | rdma->wr_data[idx].control_len -= len; | 
|  | } | 
|  |  | 
|  | return len; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * QEMUFile interface to the control channel. | 
|  | * RDMA links don't use bytestreams, so we have to | 
|  | * return bytes to QEMUFile opportunistically. | 
|  | */ | 
|  | static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf, | 
|  | int64_t pos, int size) | 
|  | { | 
|  | QEMUFileRDMA *r = opaque; | 
|  | RDMAContext *rdma = r->rdma; | 
|  | RDMAControlHeader head; | 
|  | int ret = 0; | 
|  |  | 
|  | CHECK_ERROR_STATE(); | 
|  |  | 
|  | /* | 
|  | * First, we hold on to the last SEND message we | 
|  | * were given and dish out the bytes until we run | 
|  | * out of bytes. | 
|  | */ | 
|  | r->len = qemu_rdma_fill(r->rdma, buf, size, 0); | 
|  | if (r->len) { | 
|  | return r->len; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Once we run out, we block and wait for another | 
|  | * SEND message to arrive. | 
|  | */ | 
|  | ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE); | 
|  |  | 
|  | if (ret < 0) { | 
|  | rdma->error_state = ret; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SEND was received with new bytes, now try again. | 
|  | */ | 
|  | return qemu_rdma_fill(r->rdma, buf, size, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Block until all the outstanding chunks have been delivered by the hardware. | 
|  | */ | 
|  | static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (qemu_rdma_write_flush(f, rdma) < 0) { | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | while (rdma->nb_sent) { | 
|  | ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "rdma migration: complete polling error!\n"); | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | qemu_rdma_unregister_waiting(rdma); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int qemu_rdma_close(void *opaque) | 
|  | { | 
|  | DPRINTF("Shutting down connection.\n"); | 
|  | QEMUFileRDMA *r = opaque; | 
|  | if (r->rdma) { | 
|  | qemu_rdma_cleanup(r->rdma); | 
|  | g_free(r->rdma); | 
|  | } | 
|  | g_free(r); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Parameters: | 
|  | *    @offset == 0 : | 
|  | *        This means that 'block_offset' is a full virtual address that does not | 
|  | *        belong to a RAMBlock of the virtual machine and instead | 
|  | *        represents a private malloc'd memory area that the caller wishes to | 
|  | *        transfer. | 
|  | * | 
|  | *    @offset != 0 : | 
|  | *        Offset is an offset to be added to block_offset and used | 
|  | *        to also lookup the corresponding RAMBlock. | 
|  | * | 
|  | *    @size > 0 : | 
|  | *        Initiate an transfer this size. | 
|  | * | 
|  | *    @size == 0 : | 
|  | *        A 'hint' or 'advice' that means that we wish to speculatively | 
|  | *        and asynchronously unregister this memory. In this case, there is no | 
|  | *        guarantee that the unregister will actually happen, for example, | 
|  | *        if the memory is being actively transmitted. Additionally, the memory | 
|  | *        may be re-registered at any future time if a write within the same | 
|  | *        chunk was requested again, even if you attempted to unregister it | 
|  | *        here. | 
|  | * | 
|  | *    @size < 0 : TODO, not yet supported | 
|  | *        Unregister the memory NOW. This means that the caller does not | 
|  | *        expect there to be any future RDMA transfers and we just want to clean | 
|  | *        things up. This is used in case the upper layer owns the memory and | 
|  | *        cannot wait for qemu_fclose() to occur. | 
|  | * | 
|  | *    @bytes_sent : User-specificed pointer to indicate how many bytes were | 
|  | *                  sent. Usually, this will not be more than a few bytes of | 
|  | *                  the protocol because most transfers are sent asynchronously. | 
|  | */ | 
|  | static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque, | 
|  | ram_addr_t block_offset, ram_addr_t offset, | 
|  | size_t size, int *bytes_sent) | 
|  | { | 
|  | QEMUFileRDMA *rfile = opaque; | 
|  | RDMAContext *rdma = rfile->rdma; | 
|  | int ret; | 
|  |  | 
|  | CHECK_ERROR_STATE(); | 
|  |  | 
|  | qemu_fflush(f); | 
|  |  | 
|  | if (size > 0) { | 
|  | /* | 
|  | * Add this page to the current 'chunk'. If the chunk | 
|  | * is full, or the page doen't belong to the current chunk, | 
|  | * an actual RDMA write will occur and a new chunk will be formed. | 
|  | */ | 
|  | ret = qemu_rdma_write(f, rdma, block_offset, offset, size); | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "rdma migration: write error! %d\n", ret); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We always return 1 bytes because the RDMA | 
|  | * protocol is completely asynchronous. We do not yet know | 
|  | * whether an  identified chunk is zero or not because we're | 
|  | * waiting for other pages to potentially be merged with | 
|  | * the current chunk. So, we have to call qemu_update_position() | 
|  | * later on when the actual write occurs. | 
|  | */ | 
|  | if (bytes_sent) { | 
|  | *bytes_sent = 1; | 
|  | } | 
|  | } else { | 
|  | uint64_t index, chunk; | 
|  |  | 
|  | /* TODO: Change QEMUFileOps prototype to be signed: size_t => long | 
|  | if (size < 0) { | 
|  | ret = qemu_rdma_drain_cq(f, rdma); | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "rdma: failed to synchronously drain" | 
|  | " completion queue before unregistration.\n"); | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | */ | 
|  |  | 
|  | ret = qemu_rdma_search_ram_block(rdma, block_offset, | 
|  | offset, size, &index, &chunk); | 
|  |  | 
|  | if (ret) { | 
|  | fprintf(stderr, "ram block search failed\n"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | qemu_rdma_signal_unregister(rdma, index, chunk, 0); | 
|  |  | 
|  | /* | 
|  | * TODO: Synchronous, guaranteed unregistration (should not occur during | 
|  | * fast-path). Otherwise, unregisters will process on the next call to | 
|  | * qemu_rdma_drain_cq() | 
|  | if (size < 0) { | 
|  | qemu_rdma_unregister_waiting(rdma); | 
|  | } | 
|  | */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Drain the Completion Queue if possible, but do not block, | 
|  | * just poll. | 
|  | * | 
|  | * If nothing to poll, the end of the iteration will do this | 
|  | * again to make sure we don't overflow the request queue. | 
|  | */ | 
|  | while (1) { | 
|  | uint64_t wr_id, wr_id_in; | 
|  | int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL); | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "rdma migration: polling error! %d\n", ret); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; | 
|  |  | 
|  | if (wr_id == RDMA_WRID_NONE) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return RAM_SAVE_CONTROL_DELAYED; | 
|  | err: | 
|  | rdma->error_state = ret; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int qemu_rdma_accept(RDMAContext *rdma) | 
|  | { | 
|  | RDMACapabilities cap; | 
|  | struct rdma_conn_param conn_param = { | 
|  | .responder_resources = 2, | 
|  | .private_data = &cap, | 
|  | .private_data_len = sizeof(cap), | 
|  | }; | 
|  | struct rdma_cm_event *cm_event; | 
|  | struct ibv_context *verbs; | 
|  | int ret = -EINVAL; | 
|  | int idx; | 
|  |  | 
|  | ret = rdma_get_cm_event(rdma->channel, &cm_event); | 
|  | if (ret) { | 
|  | goto err_rdma_dest_wait; | 
|  | } | 
|  |  | 
|  | if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) { | 
|  | rdma_ack_cm_event(cm_event); | 
|  | goto err_rdma_dest_wait; | 
|  | } | 
|  |  | 
|  | memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap)); | 
|  |  | 
|  | network_to_caps(&cap); | 
|  |  | 
|  | if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) { | 
|  | fprintf(stderr, "Unknown source RDMA version: %d, bailing...\n", | 
|  | cap.version); | 
|  | rdma_ack_cm_event(cm_event); | 
|  | goto err_rdma_dest_wait; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Respond with only the capabilities this version of QEMU knows about. | 
|  | */ | 
|  | cap.flags &= known_capabilities; | 
|  |  | 
|  | /* | 
|  | * Enable the ones that we do know about. | 
|  | * Add other checks here as new ones are introduced. | 
|  | */ | 
|  | if (cap.flags & RDMA_CAPABILITY_PIN_ALL) { | 
|  | rdma->pin_all = true; | 
|  | } | 
|  |  | 
|  | rdma->cm_id = cm_event->id; | 
|  | verbs = cm_event->id->verbs; | 
|  |  | 
|  | rdma_ack_cm_event(cm_event); | 
|  |  | 
|  | DPRINTF("Memory pin all: %s\n", rdma->pin_all ? "enabled" : "disabled"); | 
|  |  | 
|  | caps_to_network(&cap); | 
|  |  | 
|  | DPRINTF("verbs context after listen: %p\n", verbs); | 
|  |  | 
|  | if (!rdma->verbs) { | 
|  | rdma->verbs = verbs; | 
|  | } else if (rdma->verbs != verbs) { | 
|  | fprintf(stderr, "ibv context not matching %p, %p!\n", | 
|  | rdma->verbs, verbs); | 
|  | goto err_rdma_dest_wait; | 
|  | } | 
|  |  | 
|  | qemu_rdma_dump_id("dest_init", verbs); | 
|  |  | 
|  | ret = qemu_rdma_alloc_pd_cq(rdma); | 
|  | if (ret) { | 
|  | fprintf(stderr, "rdma migration: error allocating pd and cq!\n"); | 
|  | goto err_rdma_dest_wait; | 
|  | } | 
|  |  | 
|  | ret = qemu_rdma_alloc_qp(rdma); | 
|  | if (ret) { | 
|  | fprintf(stderr, "rdma migration: error allocating qp!\n"); | 
|  | goto err_rdma_dest_wait; | 
|  | } | 
|  |  | 
|  | ret = qemu_rdma_init_ram_blocks(rdma); | 
|  | if (ret) { | 
|  | fprintf(stderr, "rdma migration: error initializing ram blocks!\n"); | 
|  | goto err_rdma_dest_wait; | 
|  | } | 
|  |  | 
|  | for (idx = 0; idx < RDMA_WRID_MAX; idx++) { | 
|  | ret = qemu_rdma_reg_control(rdma, idx); | 
|  | if (ret) { | 
|  | fprintf(stderr, "rdma: error registering %d control!\n", idx); | 
|  | goto err_rdma_dest_wait; | 
|  | } | 
|  | } | 
|  |  | 
|  | qemu_set_fd_handler2(rdma->channel->fd, NULL, NULL, NULL, NULL); | 
|  |  | 
|  | ret = rdma_accept(rdma->cm_id, &conn_param); | 
|  | if (ret) { | 
|  | fprintf(stderr, "rdma_accept returns %d!\n", ret); | 
|  | goto err_rdma_dest_wait; | 
|  | } | 
|  |  | 
|  | ret = rdma_get_cm_event(rdma->channel, &cm_event); | 
|  | if (ret) { | 
|  | fprintf(stderr, "rdma_accept get_cm_event failed %d!\n", ret); | 
|  | goto err_rdma_dest_wait; | 
|  | } | 
|  |  | 
|  | if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) { | 
|  | fprintf(stderr, "rdma_accept not event established!\n"); | 
|  | rdma_ack_cm_event(cm_event); | 
|  | goto err_rdma_dest_wait; | 
|  | } | 
|  |  | 
|  | rdma_ack_cm_event(cm_event); | 
|  | rdma->connected = true; | 
|  |  | 
|  | ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); | 
|  | if (ret) { | 
|  | fprintf(stderr, "rdma migration: error posting second control recv!\n"); | 
|  | goto err_rdma_dest_wait; | 
|  | } | 
|  |  | 
|  | qemu_rdma_dump_gid("dest_connect", rdma->cm_id); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_rdma_dest_wait: | 
|  | rdma->error_state = ret; | 
|  | qemu_rdma_cleanup(rdma); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * During each iteration of the migration, we listen for instructions | 
|  | * by the source VM to perform dynamic page registrations before they | 
|  | * can perform RDMA operations. | 
|  | * | 
|  | * We respond with the 'rkey'. | 
|  | * | 
|  | * Keep doing this until the source tells us to stop. | 
|  | */ | 
|  | static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque, | 
|  | uint64_t flags) | 
|  | { | 
|  | RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult), | 
|  | .type = RDMA_CONTROL_REGISTER_RESULT, | 
|  | .repeat = 0, | 
|  | }; | 
|  | RDMAControlHeader unreg_resp = { .len = 0, | 
|  | .type = RDMA_CONTROL_UNREGISTER_FINISHED, | 
|  | .repeat = 0, | 
|  | }; | 
|  | RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT, | 
|  | .repeat = 1 }; | 
|  | QEMUFileRDMA *rfile = opaque; | 
|  | RDMAContext *rdma = rfile->rdma; | 
|  | RDMALocalBlocks *local = &rdma->local_ram_blocks; | 
|  | RDMAControlHeader head; | 
|  | RDMARegister *reg, *registers; | 
|  | RDMACompress *comp; | 
|  | RDMARegisterResult *reg_result; | 
|  | static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE]; | 
|  | RDMALocalBlock *block; | 
|  | void *host_addr; | 
|  | int ret = 0; | 
|  | int idx = 0; | 
|  | int count = 0; | 
|  | int i = 0; | 
|  |  | 
|  | CHECK_ERROR_STATE(); | 
|  |  | 
|  | do { | 
|  | DDDPRINTF("Waiting for next request %" PRIu64 "...\n", flags); | 
|  |  | 
|  | ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE); | 
|  |  | 
|  | if (ret < 0) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) { | 
|  | fprintf(stderr, "rdma: Too many requests in this message (%d)." | 
|  | "Bailing.\n", head.repeat); | 
|  | ret = -EIO; | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (head.type) { | 
|  | case RDMA_CONTROL_COMPRESS: | 
|  | comp = (RDMACompress *) rdma->wr_data[idx].control_curr; | 
|  | network_to_compress(comp); | 
|  |  | 
|  | DDPRINTF("Zapping zero chunk: %" PRId64 | 
|  | " bytes, index %d, offset %" PRId64 "\n", | 
|  | comp->length, comp->block_idx, comp->offset); | 
|  | block = &(rdma->local_ram_blocks.block[comp->block_idx]); | 
|  |  | 
|  | host_addr = block->local_host_addr + | 
|  | (comp->offset - block->offset); | 
|  |  | 
|  | ram_handle_compressed(host_addr, comp->value, comp->length); | 
|  | break; | 
|  |  | 
|  | case RDMA_CONTROL_REGISTER_FINISHED: | 
|  | DDDPRINTF("Current registrations complete.\n"); | 
|  | goto out; | 
|  |  | 
|  | case RDMA_CONTROL_RAM_BLOCKS_REQUEST: | 
|  | DPRINTF("Initial setup info requested.\n"); | 
|  |  | 
|  | if (rdma->pin_all) { | 
|  | ret = qemu_rdma_reg_whole_ram_blocks(rdma); | 
|  | if (ret) { | 
|  | fprintf(stderr, "rdma migration: error dest " | 
|  | "registering ram blocks!\n"); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dest uses this to prepare to transmit the RAMBlock descriptions | 
|  | * to the source VM after connection setup. | 
|  | * Both sides use the "remote" structure to communicate and update | 
|  | * their "local" descriptions with what was sent. | 
|  | */ | 
|  | for (i = 0; i < local->nb_blocks; i++) { | 
|  | rdma->block[i].remote_host_addr = | 
|  | (uint64_t)(local->block[i].local_host_addr); | 
|  |  | 
|  | if (rdma->pin_all) { | 
|  | rdma->block[i].remote_rkey = local->block[i].mr->rkey; | 
|  | } | 
|  |  | 
|  | rdma->block[i].offset = local->block[i].offset; | 
|  | rdma->block[i].length = local->block[i].length; | 
|  |  | 
|  | remote_block_to_network(&rdma->block[i]); | 
|  | } | 
|  |  | 
|  | blocks.len = rdma->local_ram_blocks.nb_blocks | 
|  | * sizeof(RDMARemoteBlock); | 
|  |  | 
|  |  | 
|  | ret = qemu_rdma_post_send_control(rdma, | 
|  | (uint8_t *) rdma->block, &blocks); | 
|  |  | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "rdma migration: error sending remote info!\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | break; | 
|  | case RDMA_CONTROL_REGISTER_REQUEST: | 
|  | DDPRINTF("There are %d registration requests\n", head.repeat); | 
|  |  | 
|  | reg_resp.repeat = head.repeat; | 
|  | registers = (RDMARegister *) rdma->wr_data[idx].control_curr; | 
|  |  | 
|  | for (count = 0; count < head.repeat; count++) { | 
|  | uint64_t chunk; | 
|  | uint8_t *chunk_start, *chunk_end; | 
|  |  | 
|  | reg = ®isters[count]; | 
|  | network_to_register(reg); | 
|  |  | 
|  | reg_result = &results[count]; | 
|  |  | 
|  | DDPRINTF("Registration request (%d): index %d, current_addr %" | 
|  | PRIu64 " chunks: %" PRIu64 "\n", count, | 
|  | reg->current_index, reg->key.current_addr, reg->chunks); | 
|  |  | 
|  | block = &(rdma->local_ram_blocks.block[reg->current_index]); | 
|  | if (block->is_ram_block) { | 
|  | host_addr = (block->local_host_addr + | 
|  | (reg->key.current_addr - block->offset)); | 
|  | chunk = ram_chunk_index(block->local_host_addr, | 
|  | (uint8_t *) host_addr); | 
|  | } else { | 
|  | chunk = reg->key.chunk; | 
|  | host_addr = block->local_host_addr + | 
|  | (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT)); | 
|  | } | 
|  | chunk_start = ram_chunk_start(block, chunk); | 
|  | chunk_end = ram_chunk_end(block, chunk + reg->chunks); | 
|  | if (qemu_rdma_register_and_get_keys(rdma, block, | 
|  | (uint8_t *)host_addr, NULL, ®_result->rkey, | 
|  | chunk, chunk_start, chunk_end)) { | 
|  | fprintf(stderr, "cannot get rkey!\n"); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | reg_result->host_addr = (uint64_t) block->local_host_addr; | 
|  |  | 
|  | DDPRINTF("Registered rkey for this request: %x\n", | 
|  | reg_result->rkey); | 
|  |  | 
|  | result_to_network(reg_result); | 
|  | } | 
|  |  | 
|  | ret = qemu_rdma_post_send_control(rdma, | 
|  | (uint8_t *) results, ®_resp); | 
|  |  | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "Failed to send control buffer!\n"); | 
|  | goto out; | 
|  | } | 
|  | break; | 
|  | case RDMA_CONTROL_UNREGISTER_REQUEST: | 
|  | DDPRINTF("There are %d unregistration requests\n", head.repeat); | 
|  | unreg_resp.repeat = head.repeat; | 
|  | registers = (RDMARegister *) rdma->wr_data[idx].control_curr; | 
|  |  | 
|  | for (count = 0; count < head.repeat; count++) { | 
|  | reg = ®isters[count]; | 
|  | network_to_register(reg); | 
|  |  | 
|  | DDPRINTF("Unregistration request (%d): " | 
|  | " index %d, chunk %" PRIu64 "\n", | 
|  | count, reg->current_index, reg->key.chunk); | 
|  |  | 
|  | block = &(rdma->local_ram_blocks.block[reg->current_index]); | 
|  |  | 
|  | ret = ibv_dereg_mr(block->pmr[reg->key.chunk]); | 
|  | block->pmr[reg->key.chunk] = NULL; | 
|  |  | 
|  | if (ret != 0) { | 
|  | perror("rdma unregistration chunk failed"); | 
|  | ret = -ret; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | rdma->total_registrations--; | 
|  |  | 
|  | DDPRINTF("Unregistered chunk %" PRIu64 " successfully.\n", | 
|  | reg->key.chunk); | 
|  | } | 
|  |  | 
|  | ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp); | 
|  |  | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "Failed to send control buffer!\n"); | 
|  | goto out; | 
|  | } | 
|  | break; | 
|  | case RDMA_CONTROL_REGISTER_RESULT: | 
|  | fprintf(stderr, "Invalid RESULT message at dest.\n"); | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | default: | 
|  | fprintf(stderr, "Unknown control message %s\n", | 
|  | control_desc[head.type]); | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  | } while (1); | 
|  | out: | 
|  | if (ret < 0) { | 
|  | rdma->error_state = ret; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int qemu_rdma_registration_start(QEMUFile *f, void *opaque, | 
|  | uint64_t flags) | 
|  | { | 
|  | QEMUFileRDMA *rfile = opaque; | 
|  | RDMAContext *rdma = rfile->rdma; | 
|  |  | 
|  | CHECK_ERROR_STATE(); | 
|  |  | 
|  | DDDPRINTF("start section: %" PRIu64 "\n", flags); | 
|  | qemu_put_be64(f, RAM_SAVE_FLAG_HOOK); | 
|  | qemu_fflush(f); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Inform dest that dynamic registrations are done for now. | 
|  | * First, flush writes, if any. | 
|  | */ | 
|  | static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque, | 
|  | uint64_t flags) | 
|  | { | 
|  | Error *local_err = NULL, **errp = &local_err; | 
|  | QEMUFileRDMA *rfile = opaque; | 
|  | RDMAContext *rdma = rfile->rdma; | 
|  | RDMAControlHeader head = { .len = 0, .repeat = 1 }; | 
|  | int ret = 0; | 
|  |  | 
|  | CHECK_ERROR_STATE(); | 
|  |  | 
|  | qemu_fflush(f); | 
|  | ret = qemu_rdma_drain_cq(f, rdma); | 
|  |  | 
|  | if (ret < 0) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (flags == RAM_CONTROL_SETUP) { | 
|  | RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT }; | 
|  | RDMALocalBlocks *local = &rdma->local_ram_blocks; | 
|  | int reg_result_idx, i, j, nb_remote_blocks; | 
|  |  | 
|  | head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST; | 
|  | DPRINTF("Sending registration setup for ram blocks...\n"); | 
|  |  | 
|  | /* | 
|  | * Make sure that we parallelize the pinning on both sides. | 
|  | * For very large guests, doing this serially takes a really | 
|  | * long time, so we have to 'interleave' the pinning locally | 
|  | * with the control messages by performing the pinning on this | 
|  | * side before we receive the control response from the other | 
|  | * side that the pinning has completed. | 
|  | */ | 
|  | ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp, | 
|  | ®_result_idx, rdma->pin_all ? | 
|  | qemu_rdma_reg_whole_ram_blocks : NULL); | 
|  | if (ret < 0) { | 
|  | ERROR(errp, "receiving remote info!"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | nb_remote_blocks = resp.len / sizeof(RDMARemoteBlock); | 
|  |  | 
|  | /* | 
|  | * The protocol uses two different sets of rkeys (mutually exclusive): | 
|  | * 1. One key to represent the virtual address of the entire ram block. | 
|  | *    (dynamic chunk registration disabled - pin everything with one rkey.) | 
|  | * 2. One to represent individual chunks within a ram block. | 
|  | *    (dynamic chunk registration enabled - pin individual chunks.) | 
|  | * | 
|  | * Once the capability is successfully negotiated, the destination transmits | 
|  | * the keys to use (or sends them later) including the virtual addresses | 
|  | * and then propagates the remote ram block descriptions to his local copy. | 
|  | */ | 
|  |  | 
|  | if (local->nb_blocks != nb_remote_blocks) { | 
|  | ERROR(errp, "ram blocks mismatch #1! " | 
|  | "Your QEMU command line parameters are probably " | 
|  | "not identical on both the source and destination."); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | qemu_rdma_move_header(rdma, reg_result_idx, &resp); | 
|  | memcpy(rdma->block, | 
|  | rdma->wr_data[reg_result_idx].control_curr, resp.len); | 
|  | for (i = 0; i < nb_remote_blocks; i++) { | 
|  | network_to_remote_block(&rdma->block[i]); | 
|  |  | 
|  | /* search local ram blocks */ | 
|  | for (j = 0; j < local->nb_blocks; j++) { | 
|  | if (rdma->block[i].offset != local->block[j].offset) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (rdma->block[i].length != local->block[j].length) { | 
|  | ERROR(errp, "ram blocks mismatch #2! " | 
|  | "Your QEMU command line parameters are probably " | 
|  | "not identical on both the source and destination."); | 
|  | return -EINVAL; | 
|  | } | 
|  | local->block[j].remote_host_addr = | 
|  | rdma->block[i].remote_host_addr; | 
|  | local->block[j].remote_rkey = rdma->block[i].remote_rkey; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (j >= local->nb_blocks) { | 
|  | ERROR(errp, "ram blocks mismatch #3! " | 
|  | "Your QEMU command line parameters are probably " | 
|  | "not identical on both the source and destination."); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | DDDPRINTF("Sending registration finish %" PRIu64 "...\n", flags); | 
|  |  | 
|  | head.type = RDMA_CONTROL_REGISTER_FINISHED; | 
|  | ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL); | 
|  |  | 
|  | if (ret < 0) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | err: | 
|  | rdma->error_state = ret; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int qemu_rdma_get_fd(void *opaque) | 
|  | { | 
|  | QEMUFileRDMA *rfile = opaque; | 
|  | RDMAContext *rdma = rfile->rdma; | 
|  |  | 
|  | return rdma->comp_channel->fd; | 
|  | } | 
|  |  | 
|  | const QEMUFileOps rdma_read_ops = { | 
|  | .get_buffer    = qemu_rdma_get_buffer, | 
|  | .get_fd        = qemu_rdma_get_fd, | 
|  | .close         = qemu_rdma_close, | 
|  | .hook_ram_load = qemu_rdma_registration_handle, | 
|  | }; | 
|  |  | 
|  | const QEMUFileOps rdma_write_ops = { | 
|  | .put_buffer         = qemu_rdma_put_buffer, | 
|  | .close              = qemu_rdma_close, | 
|  | .before_ram_iterate = qemu_rdma_registration_start, | 
|  | .after_ram_iterate  = qemu_rdma_registration_stop, | 
|  | .save_page          = qemu_rdma_save_page, | 
|  | }; | 
|  |  | 
|  | static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode) | 
|  | { | 
|  | QEMUFileRDMA *r = g_malloc0(sizeof(QEMUFileRDMA)); | 
|  |  | 
|  | if (qemu_file_mode_is_not_valid(mode)) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | r->rdma = rdma; | 
|  |  | 
|  | if (mode[0] == 'w') { | 
|  | r->file = qemu_fopen_ops(r, &rdma_write_ops); | 
|  | } else { | 
|  | r->file = qemu_fopen_ops(r, &rdma_read_ops); | 
|  | } | 
|  |  | 
|  | return r->file; | 
|  | } | 
|  |  | 
|  | static void rdma_accept_incoming_migration(void *opaque) | 
|  | { | 
|  | RDMAContext *rdma = opaque; | 
|  | int ret; | 
|  | QEMUFile *f; | 
|  | Error *local_err = NULL, **errp = &local_err; | 
|  |  | 
|  | DPRINTF("Accepting rdma connection...\n"); | 
|  | ret = qemu_rdma_accept(rdma); | 
|  |  | 
|  | if (ret) { | 
|  | ERROR(errp, "RDMA Migration initialization failed!"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | DPRINTF("Accepted migration\n"); | 
|  |  | 
|  | f = qemu_fopen_rdma(rdma, "rb"); | 
|  | if (f == NULL) { | 
|  | ERROR(errp, "could not qemu_fopen_rdma!"); | 
|  | qemu_rdma_cleanup(rdma); | 
|  | return; | 
|  | } | 
|  |  | 
|  | rdma->migration_started_on_destination = 1; | 
|  | process_incoming_migration(f); | 
|  | } | 
|  |  | 
|  | void rdma_start_incoming_migration(const char *host_port, Error **errp) | 
|  | { | 
|  | int ret; | 
|  | RDMAContext *rdma; | 
|  | Error *local_err = NULL; | 
|  |  | 
|  | DPRINTF("Starting RDMA-based incoming migration\n"); | 
|  | rdma = qemu_rdma_data_init(host_port, &local_err); | 
|  |  | 
|  | if (rdma == NULL) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = qemu_rdma_dest_init(rdma, &local_err); | 
|  |  | 
|  | if (ret) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | DPRINTF("qemu_rdma_dest_init success\n"); | 
|  |  | 
|  | ret = rdma_listen(rdma->listen_id, 5); | 
|  |  | 
|  | if (ret) { | 
|  | ERROR(errp, "listening on socket!"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | DPRINTF("rdma_listen success\n"); | 
|  |  | 
|  | qemu_set_fd_handler2(rdma->channel->fd, NULL, | 
|  | rdma_accept_incoming_migration, NULL, | 
|  | (void *)(intptr_t) rdma); | 
|  | return; | 
|  | err: | 
|  | error_propagate(errp, local_err); | 
|  | g_free(rdma); | 
|  | } | 
|  |  | 
|  | void rdma_start_outgoing_migration(void *opaque, | 
|  | const char *host_port, Error **errp) | 
|  | { | 
|  | MigrationState *s = opaque; | 
|  | Error *local_err = NULL, **temp = &local_err; | 
|  | RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err); | 
|  | int ret = 0; | 
|  |  | 
|  | if (rdma == NULL) { | 
|  | ERROR(temp, "Failed to initialize RDMA data structures! %d", ret); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = qemu_rdma_source_init(rdma, &local_err, | 
|  | s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL]); | 
|  |  | 
|  | if (ret) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | DPRINTF("qemu_rdma_source_init success\n"); | 
|  | ret = qemu_rdma_connect(rdma, &local_err); | 
|  |  | 
|  | if (ret) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | DPRINTF("qemu_rdma_source_connect success\n"); | 
|  |  | 
|  | s->file = qemu_fopen_rdma(rdma, "wb"); | 
|  | migrate_fd_connect(s); | 
|  | return; | 
|  | err: | 
|  | error_propagate(errp, local_err); | 
|  | g_free(rdma); | 
|  | migrate_fd_error(s); | 
|  | } |