| /* |
| * AArch64 specific helpers |
| * |
| * Copyright (c) 2013 Alexander Graf <agraf@suse.de> |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "cpu.h" |
| #include "exec/gdbstub.h" |
| #include "exec/helper-proto.h" |
| #include "qemu/host-utils.h" |
| #include "sysemu/sysemu.h" |
| #include "qemu/bitops.h" |
| #include "internals.h" |
| #include "qemu/crc32c.h" |
| #include <zlib.h> /* For crc32 */ |
| |
| /* C2.4.7 Multiply and divide */ |
| /* special cases for 0 and LLONG_MIN are mandated by the standard */ |
| uint64_t HELPER(udiv64)(uint64_t num, uint64_t den) |
| { |
| if (den == 0) { |
| return 0; |
| } |
| return num / den; |
| } |
| |
| int64_t HELPER(sdiv64)(int64_t num, int64_t den) |
| { |
| if (den == 0) { |
| return 0; |
| } |
| if (num == LLONG_MIN && den == -1) { |
| return LLONG_MIN; |
| } |
| return num / den; |
| } |
| |
| uint64_t HELPER(clz64)(uint64_t x) |
| { |
| return clz64(x); |
| } |
| |
| uint64_t HELPER(cls64)(uint64_t x) |
| { |
| return clrsb64(x); |
| } |
| |
| uint32_t HELPER(cls32)(uint32_t x) |
| { |
| return clrsb32(x); |
| } |
| |
| uint32_t HELPER(clz32)(uint32_t x) |
| { |
| return clz32(x); |
| } |
| |
| uint64_t HELPER(rbit64)(uint64_t x) |
| { |
| /* assign the correct byte position */ |
| x = bswap64(x); |
| |
| /* assign the correct nibble position */ |
| x = ((x & 0xf0f0f0f0f0f0f0f0ULL) >> 4) |
| | ((x & 0x0f0f0f0f0f0f0f0fULL) << 4); |
| |
| /* assign the correct bit position */ |
| x = ((x & 0x8888888888888888ULL) >> 3) |
| | ((x & 0x4444444444444444ULL) >> 1) |
| | ((x & 0x2222222222222222ULL) << 1) |
| | ((x & 0x1111111111111111ULL) << 3); |
| |
| return x; |
| } |
| |
| /* Convert a softfloat float_relation_ (as returned by |
| * the float*_compare functions) to the correct ARM |
| * NZCV flag state. |
| */ |
| static inline uint32_t float_rel_to_flags(int res) |
| { |
| uint64_t flags; |
| switch (res) { |
| case float_relation_equal: |
| flags = PSTATE_Z | PSTATE_C; |
| break; |
| case float_relation_less: |
| flags = PSTATE_N; |
| break; |
| case float_relation_greater: |
| flags = PSTATE_C; |
| break; |
| case float_relation_unordered: |
| default: |
| flags = PSTATE_C | PSTATE_V; |
| break; |
| } |
| return flags; |
| } |
| |
| uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status) |
| { |
| return float_rel_to_flags(float32_compare_quiet(x, y, fp_status)); |
| } |
| |
| uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status) |
| { |
| return float_rel_to_flags(float32_compare(x, y, fp_status)); |
| } |
| |
| uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status) |
| { |
| return float_rel_to_flags(float64_compare_quiet(x, y, fp_status)); |
| } |
| |
| uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status) |
| { |
| return float_rel_to_flags(float64_compare(x, y, fp_status)); |
| } |
| |
| float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| |
| if ((float32_is_zero(a) && float32_is_infinity(b)) || |
| (float32_is_infinity(a) && float32_is_zero(b))) { |
| /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ |
| return make_float32((1U << 30) | |
| ((float32_val(a) ^ float32_val(b)) & (1U << 31))); |
| } |
| return float32_mul(a, b, fpst); |
| } |
| |
| float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| |
| if ((float64_is_zero(a) && float64_is_infinity(b)) || |
| (float64_is_infinity(a) && float64_is_zero(b))) { |
| /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ |
| return make_float64((1ULL << 62) | |
| ((float64_val(a) ^ float64_val(b)) & (1ULL << 63))); |
| } |
| return float64_mul(a, b, fpst); |
| } |
| |
| uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices, |
| uint32_t rn, uint32_t numregs) |
| { |
| /* Helper function for SIMD TBL and TBX. We have to do the table |
| * lookup part for the 64 bits worth of indices we're passed in. |
| * result is the initial results vector (either zeroes for TBL |
| * or some guest values for TBX), rn the register number where |
| * the table starts, and numregs the number of registers in the table. |
| * We return the results of the lookups. |
| */ |
| int shift; |
| |
| for (shift = 0; shift < 64; shift += 8) { |
| int index = extract64(indices, shift, 8); |
| if (index < 16 * numregs) { |
| /* Convert index (a byte offset into the virtual table |
| * which is a series of 128-bit vectors concatenated) |
| * into the correct vfp.regs[] element plus a bit offset |
| * into that element, bearing in mind that the table |
| * can wrap around from V31 to V0. |
| */ |
| int elt = (rn * 2 + (index >> 3)) % 64; |
| int bitidx = (index & 7) * 8; |
| uint64_t val = extract64(env->vfp.regs[elt], bitidx, 8); |
| |
| result = deposit64(result, shift, 8, val); |
| } |
| } |
| return result; |
| } |
| |
| /* 64bit/double versions of the neon float compare functions */ |
| uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| return -float64_eq_quiet(a, b, fpst); |
| } |
| |
| uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| return -float64_le(b, a, fpst); |
| } |
| |
| uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| return -float64_lt(b, a, fpst); |
| } |
| |
| /* Reciprocal step and sqrt step. Note that unlike the A32/T32 |
| * versions, these do a fully fused multiply-add or |
| * multiply-add-and-halve. |
| */ |
| #define float32_two make_float32(0x40000000) |
| #define float32_three make_float32(0x40400000) |
| #define float32_one_point_five make_float32(0x3fc00000) |
| |
| #define float64_two make_float64(0x4000000000000000ULL) |
| #define float64_three make_float64(0x4008000000000000ULL) |
| #define float64_one_point_five make_float64(0x3FF8000000000000ULL) |
| |
| float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| |
| a = float32_chs(a); |
| if ((float32_is_infinity(a) && float32_is_zero(b)) || |
| (float32_is_infinity(b) && float32_is_zero(a))) { |
| return float32_two; |
| } |
| return float32_muladd(a, b, float32_two, 0, fpst); |
| } |
| |
| float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| |
| a = float64_chs(a); |
| if ((float64_is_infinity(a) && float64_is_zero(b)) || |
| (float64_is_infinity(b) && float64_is_zero(a))) { |
| return float64_two; |
| } |
| return float64_muladd(a, b, float64_two, 0, fpst); |
| } |
| |
| float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| |
| a = float32_chs(a); |
| if ((float32_is_infinity(a) && float32_is_zero(b)) || |
| (float32_is_infinity(b) && float32_is_zero(a))) { |
| return float32_one_point_five; |
| } |
| return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst); |
| } |
| |
| float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| |
| a = float64_chs(a); |
| if ((float64_is_infinity(a) && float64_is_zero(b)) || |
| (float64_is_infinity(b) && float64_is_zero(a))) { |
| return float64_one_point_five; |
| } |
| return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst); |
| } |
| |
| /* Pairwise long add: add pairs of adjacent elements into |
| * double-width elements in the result (eg _s8 is an 8x8->16 op) |
| */ |
| uint64_t HELPER(neon_addlp_s8)(uint64_t a) |
| { |
| uint64_t nsignmask = 0x0080008000800080ULL; |
| uint64_t wsignmask = 0x8000800080008000ULL; |
| uint64_t elementmask = 0x00ff00ff00ff00ffULL; |
| uint64_t tmp1, tmp2; |
| uint64_t res, signres; |
| |
| /* Extract odd elements, sign extend each to a 16 bit field */ |
| tmp1 = a & elementmask; |
| tmp1 ^= nsignmask; |
| tmp1 |= wsignmask; |
| tmp1 = (tmp1 - nsignmask) ^ wsignmask; |
| /* Ditto for the even elements */ |
| tmp2 = (a >> 8) & elementmask; |
| tmp2 ^= nsignmask; |
| tmp2 |= wsignmask; |
| tmp2 = (tmp2 - nsignmask) ^ wsignmask; |
| |
| /* calculate the result by summing bits 0..14, 16..22, etc, |
| * and then adjusting the sign bits 15, 23, etc manually. |
| * This ensures the addition can't overflow the 16 bit field. |
| */ |
| signres = (tmp1 ^ tmp2) & wsignmask; |
| res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask); |
| res ^= signres; |
| |
| return res; |
| } |
| |
| uint64_t HELPER(neon_addlp_u8)(uint64_t a) |
| { |
| uint64_t tmp; |
| |
| tmp = a & 0x00ff00ff00ff00ffULL; |
| tmp += (a >> 8) & 0x00ff00ff00ff00ffULL; |
| return tmp; |
| } |
| |
| uint64_t HELPER(neon_addlp_s16)(uint64_t a) |
| { |
| int32_t reslo, reshi; |
| |
| reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16); |
| reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48); |
| |
| return (uint32_t)reslo | (((uint64_t)reshi) << 32); |
| } |
| |
| uint64_t HELPER(neon_addlp_u16)(uint64_t a) |
| { |
| uint64_t tmp; |
| |
| tmp = a & 0x0000ffff0000ffffULL; |
| tmp += (a >> 16) & 0x0000ffff0000ffffULL; |
| return tmp; |
| } |
| |
| /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */ |
| float32 HELPER(frecpx_f32)(float32 a, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| uint32_t val32, sbit; |
| int32_t exp; |
| |
| if (float32_is_any_nan(a)) { |
| float32 nan = a; |
| if (float32_is_signaling_nan(a)) { |
| float_raise(float_flag_invalid, fpst); |
| nan = float32_maybe_silence_nan(a); |
| } |
| if (fpst->default_nan_mode) { |
| nan = float32_default_nan; |
| } |
| return nan; |
| } |
| |
| val32 = float32_val(a); |
| sbit = 0x80000000ULL & val32; |
| exp = extract32(val32, 23, 8); |
| |
| if (exp == 0) { |
| return make_float32(sbit | (0xfe << 23)); |
| } else { |
| return make_float32(sbit | (~exp & 0xff) << 23); |
| } |
| } |
| |
| float64 HELPER(frecpx_f64)(float64 a, void *fpstp) |
| { |
| float_status *fpst = fpstp; |
| uint64_t val64, sbit; |
| int64_t exp; |
| |
| if (float64_is_any_nan(a)) { |
| float64 nan = a; |
| if (float64_is_signaling_nan(a)) { |
| float_raise(float_flag_invalid, fpst); |
| nan = float64_maybe_silence_nan(a); |
| } |
| if (fpst->default_nan_mode) { |
| nan = float64_default_nan; |
| } |
| return nan; |
| } |
| |
| val64 = float64_val(a); |
| sbit = 0x8000000000000000ULL & val64; |
| exp = extract64(float64_val(a), 52, 11); |
| |
| if (exp == 0) { |
| return make_float64(sbit | (0x7feULL << 52)); |
| } else { |
| return make_float64(sbit | (~exp & 0x7ffULL) << 52); |
| } |
| } |
| |
| float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env) |
| { |
| /* Von Neumann rounding is implemented by using round-to-zero |
| * and then setting the LSB of the result if Inexact was raised. |
| */ |
| float32 r; |
| float_status *fpst = &env->vfp.fp_status; |
| float_status tstat = *fpst; |
| int exflags; |
| |
| set_float_rounding_mode(float_round_to_zero, &tstat); |
| set_float_exception_flags(0, &tstat); |
| r = float64_to_float32(a, &tstat); |
| r = float32_maybe_silence_nan(r); |
| exflags = get_float_exception_flags(&tstat); |
| if (exflags & float_flag_inexact) { |
| r = make_float32(float32_val(r) | 1); |
| } |
| exflags |= get_float_exception_flags(fpst); |
| set_float_exception_flags(exflags, fpst); |
| return r; |
| } |
| |
| /* 64-bit versions of the CRC helpers. Note that although the operation |
| * (and the prototypes of crc32c() and crc32() mean that only the bottom |
| * 32 bits of the accumulator and result are used, we pass and return |
| * uint64_t for convenience of the generated code. Unlike the 32-bit |
| * instruction set versions, val may genuinely have 64 bits of data in it. |
| * The upper bytes of val (above the number specified by 'bytes') must have |
| * been zeroed out by the caller. |
| */ |
| uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes) |
| { |
| uint8_t buf[8]; |
| |
| stq_le_p(buf, val); |
| |
| /* zlib crc32 converts the accumulator and output to one's complement. */ |
| return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; |
| } |
| |
| uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes) |
| { |
| uint8_t buf[8]; |
| |
| stq_le_p(buf, val); |
| |
| /* Linux crc32c converts the output to one's complement. */ |
| return crc32c(acc, buf, bytes) ^ 0xffffffff; |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| /* Handle a CPU exception. */ |
| void aarch64_cpu_do_interrupt(CPUState *cs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| unsigned int new_el = arm_excp_target_el(cs, cs->exception_index); |
| target_ulong addr = env->cp15.vbar_el[new_el]; |
| unsigned int new_mode = aarch64_pstate_mode(new_el, true); |
| int i; |
| |
| if (arm_current_el(env) < new_el) { |
| if (env->aarch64) { |
| addr += 0x400; |
| } else { |
| addr += 0x600; |
| } |
| } else if (pstate_read(env) & PSTATE_SP) { |
| addr += 0x200; |
| } |
| |
| arm_log_exception(cs->exception_index); |
| qemu_log_mask(CPU_LOG_INT, "...from EL%d\n", arm_current_el(env)); |
| if (qemu_loglevel_mask(CPU_LOG_INT) |
| && !excp_is_internal(cs->exception_index)) { |
| qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%" PRIx32 "\n", |
| env->exception.syndrome); |
| } |
| |
| if (arm_is_psci_call(cpu, cs->exception_index)) { |
| arm_handle_psci_call(cpu); |
| qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); |
| return; |
| } |
| |
| switch (cs->exception_index) { |
| case EXCP_PREFETCH_ABORT: |
| case EXCP_DATA_ABORT: |
| env->cp15.far_el[new_el] = env->exception.vaddress; |
| qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", |
| env->cp15.far_el[new_el]); |
| /* fall through */ |
| case EXCP_BKPT: |
| case EXCP_UDEF: |
| case EXCP_SWI: |
| case EXCP_HVC: |
| case EXCP_HYP_TRAP: |
| case EXCP_SMC: |
| env->cp15.esr_el[new_el] = env->exception.syndrome; |
| break; |
| case EXCP_IRQ: |
| case EXCP_VIRQ: |
| addr += 0x80; |
| break; |
| case EXCP_FIQ: |
| case EXCP_VFIQ: |
| addr += 0x100; |
| break; |
| default: |
| cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); |
| } |
| |
| if (is_a64(env)) { |
| env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); |
| aarch64_save_sp(env, arm_current_el(env)); |
| env->elr_el[new_el] = env->pc; |
| } else { |
| env->banked_spsr[0] = cpsr_read(env); |
| if (!env->thumb) { |
| env->cp15.esr_el[new_el] |= 1 << 25; |
| } |
| env->elr_el[new_el] = env->regs[15]; |
| |
| for (i = 0; i < 15; i++) { |
| env->xregs[i] = env->regs[i]; |
| } |
| |
| env->condexec_bits = 0; |
| } |
| |
| pstate_write(env, PSTATE_DAIF | new_mode); |
| env->aarch64 = 1; |
| aarch64_restore_sp(env, new_el); |
| |
| env->pc = addr; |
| cs->interrupt_request |= CPU_INTERRUPT_EXITTB; |
| } |
| #endif |