|  | /* | 
|  | *  Helpers for vax floating point instructions. | 
|  | * | 
|  | *  Copyright (c) 2007 Jocelyn Mayer | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  |  | 
|  | #include "cpu.h" | 
|  | #include "exec/helper-proto.h" | 
|  | #include "fpu/softfloat.h" | 
|  |  | 
|  | #define FP_STATUS (env->fp_status) | 
|  |  | 
|  |  | 
|  | /* F floating (VAX) */ | 
|  | static uint64_t float32_to_f(float32 fa) | 
|  | { | 
|  | uint64_t r, exp, mant, sig; | 
|  | CPU_FloatU a; | 
|  |  | 
|  | a.f = fa; | 
|  | sig = ((uint64_t)a.l & 0x80000000) << 32; | 
|  | exp = (a.l >> 23) & 0xff; | 
|  | mant = ((uint64_t)a.l & 0x007fffff) << 29; | 
|  |  | 
|  | if (exp == 255) { | 
|  | /* NaN or infinity */ | 
|  | r = 1; /* VAX dirty zero */ | 
|  | } else if (exp == 0) { | 
|  | if (mant == 0) { | 
|  | /* Zero */ | 
|  | r = 0; | 
|  | } else { | 
|  | /* Denormalized */ | 
|  | r = sig | ((exp + 1) << 52) | mant; | 
|  | } | 
|  | } else { | 
|  | if (exp >= 253) { | 
|  | /* Overflow */ | 
|  | r = 1; /* VAX dirty zero */ | 
|  | } else { | 
|  | r = sig | ((exp + 2) << 52); | 
|  | } | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static float32 f_to_float32(CPUAlphaState *env, uintptr_t retaddr, uint64_t a) | 
|  | { | 
|  | uint32_t exp, mant_sig; | 
|  | CPU_FloatU r; | 
|  |  | 
|  | exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f); | 
|  | mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff); | 
|  |  | 
|  | if (unlikely(!exp && mant_sig)) { | 
|  | /* Reserved operands / Dirty zero */ | 
|  | dynamic_excp(env, retaddr, EXCP_OPCDEC, 0); | 
|  | } | 
|  |  | 
|  | if (exp < 3) { | 
|  | /* Underflow */ | 
|  | r.l = 0; | 
|  | } else { | 
|  | r.l = ((exp - 2) << 23) | mant_sig; | 
|  | } | 
|  |  | 
|  | return r.f; | 
|  | } | 
|  |  | 
|  | uint32_t helper_f_to_memory(uint64_t a) | 
|  | { | 
|  | uint32_t r; | 
|  | r =  (a & 0x00001fffe0000000ull) >> 13; | 
|  | r |= (a & 0x07ffe00000000000ull) >> 45; | 
|  | r |= (a & 0xc000000000000000ull) >> 48; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | uint64_t helper_memory_to_f(uint32_t a) | 
|  | { | 
|  | uint64_t r; | 
|  | r =  ((uint64_t)(a & 0x0000c000)) << 48; | 
|  | r |= ((uint64_t)(a & 0x003fffff)) << 45; | 
|  | r |= ((uint64_t)(a & 0xffff0000)) << 13; | 
|  | if (!(a & 0x00004000)) { | 
|  | r |= 0x7ll << 59; | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* ??? Emulating VAX arithmetic with IEEE arithmetic is wrong.  We should | 
|  | either implement VAX arithmetic properly or just signal invalid opcode.  */ | 
|  |  | 
|  | uint64_t helper_addf(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float32 fa, fb, fr; | 
|  |  | 
|  | fa = f_to_float32(env, GETPC(), a); | 
|  | fb = f_to_float32(env, GETPC(), b); | 
|  | fr = float32_add(fa, fb, &FP_STATUS); | 
|  | return float32_to_f(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_subf(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float32 fa, fb, fr; | 
|  |  | 
|  | fa = f_to_float32(env, GETPC(), a); | 
|  | fb = f_to_float32(env, GETPC(), b); | 
|  | fr = float32_sub(fa, fb, &FP_STATUS); | 
|  | return float32_to_f(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_mulf(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float32 fa, fb, fr; | 
|  |  | 
|  | fa = f_to_float32(env, GETPC(), a); | 
|  | fb = f_to_float32(env, GETPC(), b); | 
|  | fr = float32_mul(fa, fb, &FP_STATUS); | 
|  | return float32_to_f(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_divf(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float32 fa, fb, fr; | 
|  |  | 
|  | fa = f_to_float32(env, GETPC(), a); | 
|  | fb = f_to_float32(env, GETPC(), b); | 
|  | fr = float32_div(fa, fb, &FP_STATUS); | 
|  | return float32_to_f(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_sqrtf(CPUAlphaState *env, uint64_t t) | 
|  | { | 
|  | float32 ft, fr; | 
|  |  | 
|  | ft = f_to_float32(env, GETPC(), t); | 
|  | fr = float32_sqrt(ft, &FP_STATUS); | 
|  | return float32_to_f(fr); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* G floating (VAX) */ | 
|  | static uint64_t float64_to_g(float64 fa) | 
|  | { | 
|  | uint64_t r, exp, mant, sig; | 
|  | CPU_DoubleU a; | 
|  |  | 
|  | a.d = fa; | 
|  | sig = a.ll & 0x8000000000000000ull; | 
|  | exp = (a.ll >> 52) & 0x7ff; | 
|  | mant = a.ll & 0x000fffffffffffffull; | 
|  |  | 
|  | if (exp == 2047) { | 
|  | /* NaN or infinity */ | 
|  | r = 1; /* VAX dirty zero */ | 
|  | } else if (exp == 0) { | 
|  | if (mant == 0) { | 
|  | /* Zero */ | 
|  | r = 0; | 
|  | } else { | 
|  | /* Denormalized */ | 
|  | r = sig | ((exp + 1) << 52) | mant; | 
|  | } | 
|  | } else { | 
|  | if (exp >= 2045) { | 
|  | /* Overflow */ | 
|  | r = 1; /* VAX dirty zero */ | 
|  | } else { | 
|  | r = sig | ((exp + 2) << 52); | 
|  | } | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static float64 g_to_float64(CPUAlphaState *env, uintptr_t retaddr, uint64_t a) | 
|  | { | 
|  | uint64_t exp, mant_sig; | 
|  | CPU_DoubleU r; | 
|  |  | 
|  | exp = (a >> 52) & 0x7ff; | 
|  | mant_sig = a & 0x800fffffffffffffull; | 
|  |  | 
|  | if (!exp && mant_sig) { | 
|  | /* Reserved operands / Dirty zero */ | 
|  | dynamic_excp(env, retaddr, EXCP_OPCDEC, 0); | 
|  | } | 
|  |  | 
|  | if (exp < 3) { | 
|  | /* Underflow */ | 
|  | r.ll = 0; | 
|  | } else { | 
|  | r.ll = ((exp - 2) << 52) | mant_sig; | 
|  | } | 
|  |  | 
|  | return r.d; | 
|  | } | 
|  |  | 
|  | uint64_t helper_g_to_memory(uint64_t a) | 
|  | { | 
|  | uint64_t r; | 
|  | r =  (a & 0x000000000000ffffull) << 48; | 
|  | r |= (a & 0x00000000ffff0000ull) << 16; | 
|  | r |= (a & 0x0000ffff00000000ull) >> 16; | 
|  | r |= (a & 0xffff000000000000ull) >> 48; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | uint64_t helper_memory_to_g(uint64_t a) | 
|  | { | 
|  | uint64_t r; | 
|  | r =  (a & 0x000000000000ffffull) << 48; | 
|  | r |= (a & 0x00000000ffff0000ull) << 16; | 
|  | r |= (a & 0x0000ffff00000000ull) >> 16; | 
|  | r |= (a & 0xffff000000000000ull) >> 48; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | uint64_t helper_addg(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float64 fa, fb, fr; | 
|  |  | 
|  | fa = g_to_float64(env, GETPC(), a); | 
|  | fb = g_to_float64(env, GETPC(), b); | 
|  | fr = float64_add(fa, fb, &FP_STATUS); | 
|  | return float64_to_g(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_subg(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float64 fa, fb, fr; | 
|  |  | 
|  | fa = g_to_float64(env, GETPC(), a); | 
|  | fb = g_to_float64(env, GETPC(), b); | 
|  | fr = float64_sub(fa, fb, &FP_STATUS); | 
|  | return float64_to_g(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_mulg(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float64 fa, fb, fr; | 
|  |  | 
|  | fa = g_to_float64(env, GETPC(), a); | 
|  | fb = g_to_float64(env, GETPC(), b); | 
|  | fr = float64_mul(fa, fb, &FP_STATUS); | 
|  | return float64_to_g(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_divg(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float64 fa, fb, fr; | 
|  |  | 
|  | fa = g_to_float64(env, GETPC(), a); | 
|  | fb = g_to_float64(env, GETPC(), b); | 
|  | fr = float64_div(fa, fb, &FP_STATUS); | 
|  | return float64_to_g(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_sqrtg(CPUAlphaState *env, uint64_t a) | 
|  | { | 
|  | float64 fa, fr; | 
|  |  | 
|  | fa = g_to_float64(env, GETPC(), a); | 
|  | fr = float64_sqrt(fa, &FP_STATUS); | 
|  | return float64_to_g(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_cmpgeq(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float64 fa, fb; | 
|  |  | 
|  | fa = g_to_float64(env, GETPC(), a); | 
|  | fb = g_to_float64(env, GETPC(), b); | 
|  |  | 
|  | if (float64_eq_quiet(fa, fb, &FP_STATUS)) { | 
|  | return 0x4000000000000000ULL; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t helper_cmpgle(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float64 fa, fb; | 
|  |  | 
|  | fa = g_to_float64(env, GETPC(), a); | 
|  | fb = g_to_float64(env, GETPC(), b); | 
|  |  | 
|  | if (float64_le(fa, fb, &FP_STATUS)) { | 
|  | return 0x4000000000000000ULL; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t helper_cmpglt(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float64 fa, fb; | 
|  |  | 
|  | fa = g_to_float64(env, GETPC(), a); | 
|  | fb = g_to_float64(env, GETPC(), b); | 
|  |  | 
|  | if (float64_lt(fa, fb, &FP_STATUS)) { | 
|  | return 0x4000000000000000ULL; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t helper_cvtqf(CPUAlphaState *env, uint64_t a) | 
|  | { | 
|  | float32 fr = int64_to_float32(a, &FP_STATUS); | 
|  | return float32_to_f(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_cvtgf(CPUAlphaState *env, uint64_t a) | 
|  | { | 
|  | float64 fa; | 
|  | float32 fr; | 
|  |  | 
|  | fa = g_to_float64(env, GETPC(), a); | 
|  | fr = float64_to_float32(fa, &FP_STATUS); | 
|  | return float32_to_f(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_cvtgq(CPUAlphaState *env, uint64_t a) | 
|  | { | 
|  | float64 fa = g_to_float64(env, GETPC(), a); | 
|  | return float64_to_int64_round_to_zero(fa, &FP_STATUS); | 
|  | } | 
|  |  | 
|  | uint64_t helper_cvtqg(CPUAlphaState *env, uint64_t a) | 
|  | { | 
|  | float64 fr; | 
|  | fr = int64_to_float64(a, &FP_STATUS); | 
|  | return float64_to_g(fr); | 
|  | } |