|  | /* | 
|  | *  Microblaze helper routines. | 
|  | * | 
|  | *  Copyright (c) 2009 Edgar E. Iglesias <edgar.iglesias@gmail.com>. | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include "exec.h" | 
|  | #include "helper.h" | 
|  | #include "host-utils.h" | 
|  |  | 
|  | #define D(x) | 
|  |  | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | #define MMUSUFFIX _mmu | 
|  | #define SHIFT 0 | 
|  | #include "softmmu_template.h" | 
|  | #define SHIFT 1 | 
|  | #include "softmmu_template.h" | 
|  | #define SHIFT 2 | 
|  | #include "softmmu_template.h" | 
|  | #define SHIFT 3 | 
|  | #include "softmmu_template.h" | 
|  |  | 
|  | /* Try to fill the TLB and return an exception if error. If retaddr is | 
|  | NULL, it means that the function was called in C code (i.e. not | 
|  | from generated code or from helper.c) */ | 
|  | /* XXX: fix it to restore all registers */ | 
|  | void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr) | 
|  | { | 
|  | TranslationBlock *tb; | 
|  | CPUState *saved_env; | 
|  | unsigned long pc; | 
|  | int ret; | 
|  |  | 
|  | /* XXX: hack to restore env in all cases, even if not called from | 
|  | generated code */ | 
|  | saved_env = env; | 
|  | env = cpu_single_env; | 
|  |  | 
|  | ret = cpu_mb_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); | 
|  | if (unlikely(ret)) { | 
|  | if (retaddr) { | 
|  | /* now we have a real cpu fault */ | 
|  | pc = (unsigned long)retaddr; | 
|  | tb = tb_find_pc(pc); | 
|  | if (tb) { | 
|  | /* the PC is inside the translated code. It means that we have | 
|  | a virtual CPU fault */ | 
|  | cpu_restore_state(tb, env, pc, NULL); | 
|  | } | 
|  | } | 
|  | cpu_loop_exit(); | 
|  | } | 
|  | env = saved_env; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void helper_raise_exception(uint32_t index) | 
|  | { | 
|  | env->exception_index = index; | 
|  | cpu_loop_exit(); | 
|  | } | 
|  |  | 
|  | void helper_debug(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | qemu_log("PC=%8.8x\n", env->sregs[SR_PC]); | 
|  | qemu_log("rmsr=%x resr=%x rear=%x debug[%x] imm=%x iflags=%x\n", | 
|  | env->sregs[SR_MSR], env->sregs[SR_ESR], env->sregs[SR_EAR], | 
|  | env->debug, env->imm, env->iflags); | 
|  | qemu_log("btaken=%d btarget=%x mode=%s(saved=%s) eip=%d ie=%d\n", | 
|  | env->btaken, env->btarget, | 
|  | (env->sregs[SR_MSR] & MSR_UM) ? "user" : "kernel", | 
|  | (env->sregs[SR_MSR] & MSR_UMS) ? "user" : "kernel", | 
|  | (env->sregs[SR_MSR] & MSR_EIP), | 
|  | (env->sregs[SR_MSR] & MSR_IE)); | 
|  | for (i = 0; i < 32; i++) { | 
|  | qemu_log("r%2.2d=%8.8x ", i, env->regs[i]); | 
|  | if ((i + 1) % 4 == 0) | 
|  | qemu_log("\n"); | 
|  | } | 
|  | qemu_log("\n\n"); | 
|  | } | 
|  |  | 
|  | static inline uint32_t compute_carry(uint32_t a, uint32_t b, uint32_t cin) | 
|  | { | 
|  | uint32_t cout = 0; | 
|  |  | 
|  | if ((b == ~0) && cin) | 
|  | cout = 1; | 
|  | else if ((~0 - a) < (b + cin)) | 
|  | cout = 1; | 
|  | return cout; | 
|  | } | 
|  |  | 
|  | uint32_t helper_cmp(uint32_t a, uint32_t b) | 
|  | { | 
|  | uint32_t t; | 
|  |  | 
|  | t = b + ~a + 1; | 
|  | if ((b & 0x80000000) ^ (a & 0x80000000)) | 
|  | t = (t & 0x7fffffff) | (b & 0x80000000); | 
|  | return t; | 
|  | } | 
|  |  | 
|  | uint32_t helper_cmpu(uint32_t a, uint32_t b) | 
|  | { | 
|  | uint32_t t; | 
|  |  | 
|  | t = b + ~a + 1; | 
|  | if ((b & 0x80000000) ^ (a & 0x80000000)) | 
|  | t = (t & 0x7fffffff) | (a & 0x80000000); | 
|  | return t; | 
|  | } | 
|  |  | 
|  | uint32_t helper_addkc(uint32_t a, uint32_t b, uint32_t k, uint32_t c) | 
|  | { | 
|  | uint32_t d, cf = 0, ncf; | 
|  |  | 
|  | if (c) | 
|  | cf = env->sregs[SR_MSR] >> 31; | 
|  | assert(cf == 0 || cf == 1); | 
|  | d = a + b + cf; | 
|  |  | 
|  | if (!k) { | 
|  | ncf = compute_carry(a, b, cf); | 
|  | assert(ncf == 0 || ncf == 1); | 
|  | if (ncf) | 
|  | env->sregs[SR_MSR] |= MSR_C | MSR_CC; | 
|  | else | 
|  | env->sregs[SR_MSR] &= ~(MSR_C | MSR_CC); | 
|  | } | 
|  | D(qemu_log("%x = %x + %x cf=%d ncf=%d k=%d c=%d\n", | 
|  | d, a, b, cf, ncf, k, c)); | 
|  | return d; | 
|  | } | 
|  |  | 
|  | uint32_t helper_subkc(uint32_t a, uint32_t b, uint32_t k, uint32_t c) | 
|  | { | 
|  | uint32_t d, cf = 1, ncf; | 
|  |  | 
|  | if (c) | 
|  | cf = env->sregs[SR_MSR] >> 31; | 
|  | assert(cf == 0 || cf == 1); | 
|  | d = b + ~a + cf; | 
|  |  | 
|  | if (!k) { | 
|  | ncf = compute_carry(b, ~a, cf); | 
|  | assert(ncf == 0 || ncf == 1); | 
|  | if (ncf) | 
|  | env->sregs[SR_MSR] |= MSR_C | MSR_CC; | 
|  | else | 
|  | env->sregs[SR_MSR] &= ~(MSR_C | MSR_CC); | 
|  | } | 
|  | D(qemu_log("%x = %x + %x cf=%d ncf=%d k=%d c=%d\n", | 
|  | d, a, b, cf, ncf, k, c)); | 
|  | return d; | 
|  | } | 
|  |  | 
|  | static inline int div_prepare(uint32_t a, uint32_t b) | 
|  | { | 
|  | if (b == 0) { | 
|  | env->sregs[SR_MSR] |= MSR_DZ; | 
|  |  | 
|  | if ((env->sregs[SR_MSR] & MSR_EE) | 
|  | && !(env->pvr.regs[2] & PVR2_DIV_ZERO_EXC_MASK)) { | 
|  | env->sregs[SR_ESR] = ESR_EC_DIVZERO; | 
|  | helper_raise_exception(EXCP_HW_EXCP); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | env->sregs[SR_MSR] &= ~MSR_DZ; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | uint32_t helper_divs(uint32_t a, uint32_t b) | 
|  | { | 
|  | if (!div_prepare(a, b)) | 
|  | return 0; | 
|  | return (int32_t)a / (int32_t)b; | 
|  | } | 
|  |  | 
|  | uint32_t helper_divu(uint32_t a, uint32_t b) | 
|  | { | 
|  | if (!div_prepare(a, b)) | 
|  | return 0; | 
|  | return a / b; | 
|  | } | 
|  |  | 
|  | /* raise FPU exception.  */ | 
|  | static void raise_fpu_exception(void) | 
|  | { | 
|  | env->sregs[SR_ESR] = ESR_EC_FPU; | 
|  | helper_raise_exception(EXCP_HW_EXCP); | 
|  | } | 
|  |  | 
|  | static void update_fpu_flags(int flags) | 
|  | { | 
|  | int raise = 0; | 
|  |  | 
|  | if (flags & float_flag_invalid) { | 
|  | env->sregs[SR_FSR] |= FSR_IO; | 
|  | raise = 1; | 
|  | } | 
|  | if (flags & float_flag_divbyzero) { | 
|  | env->sregs[SR_FSR] |= FSR_DZ; | 
|  | raise = 1; | 
|  | } | 
|  | if (flags & float_flag_overflow) { | 
|  | env->sregs[SR_FSR] |= FSR_OF; | 
|  | raise = 1; | 
|  | } | 
|  | if (flags & float_flag_underflow) { | 
|  | env->sregs[SR_FSR] |= FSR_UF; | 
|  | raise = 1; | 
|  | } | 
|  | if (raise | 
|  | && (env->pvr.regs[2] & PVR2_FPU_EXC_MASK) | 
|  | && (env->sregs[SR_MSR] & MSR_EE)) { | 
|  | raise_fpu_exception(); | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t helper_fadd(uint32_t a, uint32_t b) | 
|  | { | 
|  | CPU_FloatU fd, fa, fb; | 
|  | int flags; | 
|  |  | 
|  | set_float_exception_flags(0, &env->fp_status); | 
|  | fa.l = a; | 
|  | fb.l = b; | 
|  | fd.f = float32_add(fa.f, fb.f, &env->fp_status); | 
|  |  | 
|  | flags = get_float_exception_flags(&env->fp_status); | 
|  | update_fpu_flags(flags); | 
|  | return fd.l; | 
|  | } | 
|  |  | 
|  | uint32_t helper_frsub(uint32_t a, uint32_t b) | 
|  | { | 
|  | CPU_FloatU fd, fa, fb; | 
|  | int flags; | 
|  |  | 
|  | set_float_exception_flags(0, &env->fp_status); | 
|  | fa.l = a; | 
|  | fb.l = b; | 
|  | fd.f = float32_sub(fb.f, fa.f, &env->fp_status); | 
|  | flags = get_float_exception_flags(&env->fp_status); | 
|  | update_fpu_flags(flags); | 
|  | return fd.l; | 
|  | } | 
|  |  | 
|  | uint32_t helper_fmul(uint32_t a, uint32_t b) | 
|  | { | 
|  | CPU_FloatU fd, fa, fb; | 
|  | int flags; | 
|  |  | 
|  | set_float_exception_flags(0, &env->fp_status); | 
|  | fa.l = a; | 
|  | fb.l = b; | 
|  | fd.f = float32_mul(fa.f, fb.f, &env->fp_status); | 
|  | flags = get_float_exception_flags(&env->fp_status); | 
|  | update_fpu_flags(flags); | 
|  |  | 
|  | return fd.l; | 
|  | } | 
|  |  | 
|  | uint32_t helper_fdiv(uint32_t a, uint32_t b) | 
|  | { | 
|  | CPU_FloatU fd, fa, fb; | 
|  | int flags; | 
|  |  | 
|  | set_float_exception_flags(0, &env->fp_status); | 
|  | fa.l = a; | 
|  | fb.l = b; | 
|  | fd.f = float32_div(fb.f, fa.f, &env->fp_status); | 
|  | flags = get_float_exception_flags(&env->fp_status); | 
|  | update_fpu_flags(flags); | 
|  |  | 
|  | return fd.l; | 
|  | } | 
|  |  | 
|  | uint32_t helper_fcmp_un(uint32_t a, uint32_t b) | 
|  | { | 
|  | CPU_FloatU fa, fb; | 
|  | uint32_t r = 0; | 
|  |  | 
|  | fa.l = a; | 
|  | fb.l = b; | 
|  |  | 
|  | if (float32_is_signaling_nan(fa.f) || float32_is_signaling_nan(fb.f)) { | 
|  | update_fpu_flags(float_flag_invalid); | 
|  | r = 1; | 
|  | } | 
|  |  | 
|  | if (float32_is_quiet_nan(fa.f) || float32_is_quiet_nan(fb.f)) { | 
|  | r = 1; | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | uint32_t helper_fcmp_lt(uint32_t a, uint32_t b) | 
|  | { | 
|  | CPU_FloatU fa, fb; | 
|  | int r; | 
|  | int flags; | 
|  |  | 
|  | set_float_exception_flags(0, &env->fp_status); | 
|  | fa.l = a; | 
|  | fb.l = b; | 
|  | r = float32_lt(fb.f, fa.f, &env->fp_status); | 
|  | flags = get_float_exception_flags(&env->fp_status); | 
|  | update_fpu_flags(flags & float_flag_invalid); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | uint32_t helper_fcmp_eq(uint32_t a, uint32_t b) | 
|  | { | 
|  | CPU_FloatU fa, fb; | 
|  | int flags; | 
|  | int r; | 
|  |  | 
|  | set_float_exception_flags(0, &env->fp_status); | 
|  | fa.l = a; | 
|  | fb.l = b; | 
|  | r = float32_eq(fa.f, fb.f, &env->fp_status); | 
|  | flags = get_float_exception_flags(&env->fp_status); | 
|  | update_fpu_flags(flags & float_flag_invalid); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | uint32_t helper_fcmp_le(uint32_t a, uint32_t b) | 
|  | { | 
|  | CPU_FloatU fa, fb; | 
|  | int flags; | 
|  | int r; | 
|  |  | 
|  | fa.l = a; | 
|  | fb.l = b; | 
|  | set_float_exception_flags(0, &env->fp_status); | 
|  | r = float32_le(fa.f, fb.f, &env->fp_status); | 
|  | flags = get_float_exception_flags(&env->fp_status); | 
|  | update_fpu_flags(flags & float_flag_invalid); | 
|  |  | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | uint32_t helper_fcmp_gt(uint32_t a, uint32_t b) | 
|  | { | 
|  | CPU_FloatU fa, fb; | 
|  | int flags, r; | 
|  |  | 
|  | fa.l = a; | 
|  | fb.l = b; | 
|  | set_float_exception_flags(0, &env->fp_status); | 
|  | r = float32_lt(fa.f, fb.f, &env->fp_status); | 
|  | flags = get_float_exception_flags(&env->fp_status); | 
|  | update_fpu_flags(flags & float_flag_invalid); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | uint32_t helper_fcmp_ne(uint32_t a, uint32_t b) | 
|  | { | 
|  | CPU_FloatU fa, fb; | 
|  | int flags, r; | 
|  |  | 
|  | fa.l = a; | 
|  | fb.l = b; | 
|  | set_float_exception_flags(0, &env->fp_status); | 
|  | r = !float32_eq(fa.f, fb.f, &env->fp_status); | 
|  | flags = get_float_exception_flags(&env->fp_status); | 
|  | update_fpu_flags(flags & float_flag_invalid); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | uint32_t helper_fcmp_ge(uint32_t a, uint32_t b) | 
|  | { | 
|  | CPU_FloatU fa, fb; | 
|  | int flags, r; | 
|  |  | 
|  | fa.l = a; | 
|  | fb.l = b; | 
|  | set_float_exception_flags(0, &env->fp_status); | 
|  | r = !float32_lt(fa.f, fb.f, &env->fp_status); | 
|  | flags = get_float_exception_flags(&env->fp_status); | 
|  | update_fpu_flags(flags & float_flag_invalid); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | uint32_t helper_flt(uint32_t a) | 
|  | { | 
|  | CPU_FloatU fd, fa; | 
|  |  | 
|  | fa.l = a; | 
|  | fd.f = int32_to_float32(fa.l, &env->fp_status); | 
|  | return fd.l; | 
|  | } | 
|  |  | 
|  | uint32_t helper_fint(uint32_t a) | 
|  | { | 
|  | CPU_FloatU fa; | 
|  | uint32_t r; | 
|  | int flags; | 
|  |  | 
|  | set_float_exception_flags(0, &env->fp_status); | 
|  | fa.l = a; | 
|  | r = float32_to_int32(fa.f, &env->fp_status); | 
|  | flags = get_float_exception_flags(&env->fp_status); | 
|  | update_fpu_flags(flags); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | uint32_t helper_fsqrt(uint32_t a) | 
|  | { | 
|  | CPU_FloatU fd, fa; | 
|  | int flags; | 
|  |  | 
|  | set_float_exception_flags(0, &env->fp_status); | 
|  | fa.l = a; | 
|  | fd.l = float32_sqrt(fa.f, &env->fp_status); | 
|  | flags = get_float_exception_flags(&env->fp_status); | 
|  | update_fpu_flags(flags); | 
|  |  | 
|  | return fd.l; | 
|  | } | 
|  |  | 
|  | uint32_t helper_pcmpbf(uint32_t a, uint32_t b) | 
|  | { | 
|  | unsigned int i; | 
|  | uint32_t mask = 0xff000000; | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | if ((a & mask) == (b & mask)) | 
|  | return i + 1; | 
|  | mask >>= 8; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void helper_memalign(uint32_t addr, uint32_t dr, uint32_t wr, uint32_t mask) | 
|  | { | 
|  | if (addr & mask) { | 
|  | qemu_log_mask(CPU_LOG_INT, | 
|  | "unaligned access addr=%x mask=%x, wr=%d dr=r%d\n", | 
|  | addr, mask, wr, dr); | 
|  | env->sregs[SR_EAR] = addr; | 
|  | env->sregs[SR_ESR] = ESR_EC_UNALIGNED_DATA | (wr << 10) \ | 
|  | | (dr & 31) << 5; | 
|  | if (mask == 3) { | 
|  | env->sregs[SR_ESR] |= 1 << 11; | 
|  | } | 
|  | if (!(env->sregs[SR_MSR] & MSR_EE)) { | 
|  | return; | 
|  | } | 
|  | helper_raise_exception(EXCP_HW_EXCP); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | /* Writes/reads to the MMU's special regs end up here.  */ | 
|  | uint32_t helper_mmu_read(uint32_t rn) | 
|  | { | 
|  | return mmu_read(env, rn); | 
|  | } | 
|  |  | 
|  | void helper_mmu_write(uint32_t rn, uint32_t v) | 
|  | { | 
|  | mmu_write(env, rn, v); | 
|  | } | 
|  |  | 
|  | void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec, | 
|  | int is_asi, int size) | 
|  | { | 
|  | CPUState *saved_env; | 
|  |  | 
|  | if (!cpu_single_env) { | 
|  | /* XXX: ???   */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* XXX: hack to restore env in all cases, even if not called from | 
|  | generated code */ | 
|  | saved_env = env; | 
|  | env = cpu_single_env; | 
|  | qemu_log_mask(CPU_LOG_INT, "Unassigned " TARGET_FMT_plx " wr=%d exe=%d\n", | 
|  | addr, is_write, is_exec); | 
|  | if (!(env->sregs[SR_MSR] & MSR_EE)) { | 
|  | env = saved_env; | 
|  | return; | 
|  | } | 
|  |  | 
|  | env->sregs[SR_EAR] = addr; | 
|  | if (is_exec) { | 
|  | if ((env->pvr.regs[2] & PVR2_IOPB_BUS_EXC_MASK)) { | 
|  | env->sregs[SR_ESR] = ESR_EC_INSN_BUS; | 
|  | helper_raise_exception(EXCP_HW_EXCP); | 
|  | } | 
|  | } else { | 
|  | if ((env->pvr.regs[2] & PVR2_DOPB_BUS_EXC_MASK)) { | 
|  | env->sregs[SR_ESR] = ESR_EC_DATA_BUS; | 
|  | helper_raise_exception(EXCP_HW_EXCP); | 
|  | } | 
|  | } | 
|  | env = saved_env; | 
|  | } | 
|  | #endif |