|  | /* | 
|  | *  ARM helper routines | 
|  | * | 
|  | *  Copyright (c) 2005-2007 CodeSourcery, LLC | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  | #include "cpu.h" | 
|  | #include "exec/helper-proto.h" | 
|  | #include "internals.h" | 
|  | #include "exec/cpu_ldst.h" | 
|  |  | 
|  | #define SIGNBIT (uint32_t)0x80000000 | 
|  | #define SIGNBIT64 ((uint64_t)1 << 63) | 
|  |  | 
|  | static void raise_exception(CPUARMState *env, uint32_t excp, | 
|  | uint32_t syndrome, uint32_t target_el) | 
|  | { | 
|  | CPUState *cs = CPU(arm_env_get_cpu(env)); | 
|  |  | 
|  | assert(!excp_is_internal(excp)); | 
|  | cs->exception_index = excp; | 
|  | env->exception.syndrome = syndrome; | 
|  | env->exception.target_el = target_el; | 
|  | cpu_loop_exit(cs); | 
|  | } | 
|  |  | 
|  | static int exception_target_el(CPUARMState *env) | 
|  | { | 
|  | int target_el = MAX(1, arm_current_el(env)); | 
|  |  | 
|  | /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL | 
|  | * to EL3 in this case. | 
|  | */ | 
|  | if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) { | 
|  | target_el = 3; | 
|  | } | 
|  |  | 
|  | return target_el; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def, | 
|  | uint32_t rn, uint32_t maxindex) | 
|  | { | 
|  | uint32_t val; | 
|  | uint32_t tmp; | 
|  | int index; | 
|  | int shift; | 
|  | uint64_t *table; | 
|  | table = (uint64_t *)&env->vfp.regs[rn]; | 
|  | val = 0; | 
|  | for (shift = 0; shift < 32; shift += 8) { | 
|  | index = (ireg >> shift) & 0xff; | 
|  | if (index < maxindex) { | 
|  | tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff; | 
|  | val |= tmp << shift; | 
|  | } else { | 
|  | val |= def & (0xff << shift); | 
|  | } | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  |  | 
|  | /* try to fill the TLB and return an exception if error. If retaddr is | 
|  | * NULL, it means that the function was called in C code (i.e. not | 
|  | * from generated code or from helper.c) | 
|  | */ | 
|  | void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx, | 
|  | uintptr_t retaddr) | 
|  | { | 
|  | bool ret; | 
|  | uint32_t fsr = 0; | 
|  | ARMMMUFaultInfo fi = {}; | 
|  |  | 
|  | ret = arm_tlb_fill(cs, addr, is_write, mmu_idx, &fsr, &fi); | 
|  | if (unlikely(ret)) { | 
|  | ARMCPU *cpu = ARM_CPU(cs); | 
|  | CPUARMState *env = &cpu->env; | 
|  | uint32_t syn, exc; | 
|  | unsigned int target_el; | 
|  | bool same_el; | 
|  |  | 
|  | if (retaddr) { | 
|  | /* now we have a real cpu fault */ | 
|  | cpu_restore_state(cs, retaddr); | 
|  | } | 
|  |  | 
|  | target_el = exception_target_el(env); | 
|  | if (fi.stage2) { | 
|  | target_el = 2; | 
|  | env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; | 
|  | } | 
|  | same_el = arm_current_el(env) == target_el; | 
|  | /* AArch64 syndrome does not have an LPAE bit */ | 
|  | syn = fsr & ~(1 << 9); | 
|  |  | 
|  | /* For insn and data aborts we assume there is no instruction syndrome | 
|  | * information; this is always true for exceptions reported to EL1. | 
|  | */ | 
|  | if (is_write == 2) { | 
|  | syn = syn_insn_abort(same_el, 0, fi.s1ptw, syn); | 
|  | exc = EXCP_PREFETCH_ABORT; | 
|  | } else { | 
|  | syn = syn_data_abort(same_el, 0, 0, fi.s1ptw, is_write == 1, syn); | 
|  | if (is_write == 1 && arm_feature(env, ARM_FEATURE_V6)) { | 
|  | fsr |= (1 << 11); | 
|  | } | 
|  | exc = EXCP_DATA_ABORT; | 
|  | } | 
|  |  | 
|  | env->exception.vaddress = addr; | 
|  | env->exception.fsr = fsr; | 
|  | raise_exception(env, exc, syn, target_el); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Raise a data fault alignment exception for the specified virtual address */ | 
|  | void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, int is_write, | 
|  | int is_user, uintptr_t retaddr) | 
|  | { | 
|  | ARMCPU *cpu = ARM_CPU(cs); | 
|  | CPUARMState *env = &cpu->env; | 
|  | int target_el; | 
|  | bool same_el; | 
|  |  | 
|  | if (retaddr) { | 
|  | /* now we have a real cpu fault */ | 
|  | cpu_restore_state(cs, retaddr); | 
|  | } | 
|  |  | 
|  | target_el = exception_target_el(env); | 
|  | same_el = (arm_current_el(env) == target_el); | 
|  |  | 
|  | env->exception.vaddress = vaddr; | 
|  |  | 
|  | /* the DFSR for an alignment fault depends on whether we're using | 
|  | * the LPAE long descriptor format, or the short descriptor format | 
|  | */ | 
|  | if (arm_regime_using_lpae_format(env, cpu_mmu_index(env, false))) { | 
|  | env->exception.fsr = 0x21; | 
|  | } else { | 
|  | env->exception.fsr = 0x1; | 
|  | } | 
|  |  | 
|  | if (is_write == 1 && arm_feature(env, ARM_FEATURE_V6)) { | 
|  | env->exception.fsr |= (1 << 11); | 
|  | } | 
|  |  | 
|  | raise_exception(env, EXCP_DATA_ABORT, | 
|  | syn_data_abort(same_el, 0, 0, 0, is_write == 1, 0x21), | 
|  | target_el); | 
|  | } | 
|  |  | 
|  | #endif /* !defined(CONFIG_USER_ONLY) */ | 
|  |  | 
|  | uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b) | 
|  | { | 
|  | uint32_t res = a + b; | 
|  | if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) | 
|  | env->QF = 1; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b) | 
|  | { | 
|  | uint32_t res = a + b; | 
|  | if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) { | 
|  | env->QF = 1; | 
|  | res = ~(((int32_t)a >> 31) ^ SIGNBIT); | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b) | 
|  | { | 
|  | uint32_t res = a - b; | 
|  | if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) { | 
|  | env->QF = 1; | 
|  | res = ~(((int32_t)a >> 31) ^ SIGNBIT); | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val) | 
|  | { | 
|  | uint32_t res; | 
|  | if (val >= 0x40000000) { | 
|  | res = ~SIGNBIT; | 
|  | env->QF = 1; | 
|  | } else if (val <= (int32_t)0xc0000000) { | 
|  | res = SIGNBIT; | 
|  | env->QF = 1; | 
|  | } else { | 
|  | res = val << 1; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b) | 
|  | { | 
|  | uint32_t res = a + b; | 
|  | if (res < a) { | 
|  | env->QF = 1; | 
|  | res = ~0; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b) | 
|  | { | 
|  | uint32_t res = a - b; | 
|  | if (res > a) { | 
|  | env->QF = 1; | 
|  | res = 0; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* Signed saturation.  */ | 
|  | static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift) | 
|  | { | 
|  | int32_t top; | 
|  | uint32_t mask; | 
|  |  | 
|  | top = val >> shift; | 
|  | mask = (1u << shift) - 1; | 
|  | if (top > 0) { | 
|  | env->QF = 1; | 
|  | return mask; | 
|  | } else if (top < -1) { | 
|  | env->QF = 1; | 
|  | return ~mask; | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* Unsigned saturation.  */ | 
|  | static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift) | 
|  | { | 
|  | uint32_t max; | 
|  |  | 
|  | max = (1u << shift) - 1; | 
|  | if (val < 0) { | 
|  | env->QF = 1; | 
|  | return 0; | 
|  | } else if (val > max) { | 
|  | env->QF = 1; | 
|  | return max; | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* Signed saturate.  */ | 
|  | uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift) | 
|  | { | 
|  | return do_ssat(env, x, shift); | 
|  | } | 
|  |  | 
|  | /* Dual halfword signed saturate.  */ | 
|  | uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift) | 
|  | { | 
|  | uint32_t res; | 
|  |  | 
|  | res = (uint16_t)do_ssat(env, (int16_t)x, shift); | 
|  | res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* Unsigned saturate.  */ | 
|  | uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift) | 
|  | { | 
|  | return do_usat(env, x, shift); | 
|  | } | 
|  |  | 
|  | /* Dual halfword unsigned saturate.  */ | 
|  | uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift) | 
|  | { | 
|  | uint32_t res; | 
|  |  | 
|  | res = (uint16_t)do_usat(env, (int16_t)x, shift); | 
|  | res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped. | 
|  | * The function returns the target EL (1-3) if the instruction is to be trapped; | 
|  | * otherwise it returns 0 indicating it is not trapped. | 
|  | */ | 
|  | static inline int check_wfx_trap(CPUARMState *env, bool is_wfe) | 
|  | { | 
|  | int cur_el = arm_current_el(env); | 
|  | uint64_t mask; | 
|  |  | 
|  | /* If we are currently in EL0 then we need to check if SCTLR is set up for | 
|  | * WFx instructions being trapped to EL1. These trap bits don't exist in v7. | 
|  | */ | 
|  | if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) { | 
|  | int target_el; | 
|  |  | 
|  | mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI; | 
|  | if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) { | 
|  | /* Secure EL0 and Secure PL1 is at EL3 */ | 
|  | target_el = 3; | 
|  | } else { | 
|  | target_el = 1; | 
|  | } | 
|  |  | 
|  | if (!(env->cp15.sctlr_el[target_el] & mask)) { | 
|  | return target_el; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it | 
|  | * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the | 
|  | * bits will be zero indicating no trap. | 
|  | */ | 
|  | if (cur_el < 2 && !arm_is_secure(env)) { | 
|  | mask = (is_wfe) ? HCR_TWE : HCR_TWI; | 
|  | if (env->cp15.hcr_el2 & mask) { | 
|  | return 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */ | 
|  | if (cur_el < 3) { | 
|  | mask = (is_wfe) ? SCR_TWE : SCR_TWI; | 
|  | if (env->cp15.scr_el3 & mask) { | 
|  | return 3; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void HELPER(wfi)(CPUARMState *env) | 
|  | { | 
|  | CPUState *cs = CPU(arm_env_get_cpu(env)); | 
|  | int target_el = check_wfx_trap(env, false); | 
|  |  | 
|  | if (cpu_has_work(cs)) { | 
|  | /* Don't bother to go into our "low power state" if | 
|  | * we would just wake up immediately. | 
|  | */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (target_el) { | 
|  | env->pc -= 4; | 
|  | raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0), target_el); | 
|  | } | 
|  |  | 
|  | cs->exception_index = EXCP_HLT; | 
|  | cs->halted = 1; | 
|  | cpu_loop_exit(cs); | 
|  | } | 
|  |  | 
|  | void HELPER(wfe)(CPUARMState *env) | 
|  | { | 
|  | /* This is a hint instruction that is semantically different | 
|  | * from YIELD even though we currently implement it identically. | 
|  | * Don't actually halt the CPU, just yield back to top | 
|  | * level loop. This is not going into a "low power state" | 
|  | * (ie halting until some event occurs), so we never take | 
|  | * a configurable trap to a different exception level. | 
|  | */ | 
|  | HELPER(yield)(env); | 
|  | } | 
|  |  | 
|  | void HELPER(yield)(CPUARMState *env) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  | CPUState *cs = CPU(cpu); | 
|  |  | 
|  | /* This is a non-trappable hint instruction that generally indicates | 
|  | * that the guest is currently busy-looping. Yield control back to the | 
|  | * top level loop so that a more deserving VCPU has a chance to run. | 
|  | */ | 
|  | cs->exception_index = EXCP_YIELD; | 
|  | cpu_loop_exit(cs); | 
|  | } | 
|  |  | 
|  | /* Raise an internal-to-QEMU exception. This is limited to only | 
|  | * those EXCP values which are special cases for QEMU to interrupt | 
|  | * execution and not to be used for exceptions which are passed to | 
|  | * the guest (those must all have syndrome information and thus should | 
|  | * use exception_with_syndrome). | 
|  | */ | 
|  | void HELPER(exception_internal)(CPUARMState *env, uint32_t excp) | 
|  | { | 
|  | CPUState *cs = CPU(arm_env_get_cpu(env)); | 
|  |  | 
|  | assert(excp_is_internal(excp)); | 
|  | cs->exception_index = excp; | 
|  | cpu_loop_exit(cs); | 
|  | } | 
|  |  | 
|  | /* Raise an exception with the specified syndrome register value */ | 
|  | void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp, | 
|  | uint32_t syndrome, uint32_t target_el) | 
|  | { | 
|  | raise_exception(env, excp, syndrome, target_el); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(cpsr_read)(CPUARMState *env) | 
|  | { | 
|  | return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED); | 
|  | } | 
|  |  | 
|  | void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask) | 
|  | { | 
|  | cpsr_write(env, val, mask); | 
|  | } | 
|  |  | 
|  | /* Access to user mode registers from privileged modes.  */ | 
|  | uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno) | 
|  | { | 
|  | uint32_t val; | 
|  |  | 
|  | if (regno == 13) { | 
|  | val = env->banked_r13[BANK_USRSYS]; | 
|  | } else if (regno == 14) { | 
|  | val = env->banked_r14[BANK_USRSYS]; | 
|  | } else if (regno >= 8 | 
|  | && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { | 
|  | val = env->usr_regs[regno - 8]; | 
|  | } else { | 
|  | val = env->regs[regno]; | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val) | 
|  | { | 
|  | if (regno == 13) { | 
|  | env->banked_r13[BANK_USRSYS] = val; | 
|  | } else if (regno == 14) { | 
|  | env->banked_r14[BANK_USRSYS] = val; | 
|  | } else if (regno >= 8 | 
|  | && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { | 
|  | env->usr_regs[regno - 8] = val; | 
|  | } else { | 
|  | env->regs[regno] = val; | 
|  | } | 
|  | } | 
|  |  | 
|  | void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome) | 
|  | { | 
|  | const ARMCPRegInfo *ri = rip; | 
|  | int target_el; | 
|  |  | 
|  | if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14 | 
|  | && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) { | 
|  | raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env)); | 
|  | } | 
|  |  | 
|  | if (!ri->accessfn) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (ri->accessfn(env, ri)) { | 
|  | case CP_ACCESS_OK: | 
|  | return; | 
|  | case CP_ACCESS_TRAP: | 
|  | target_el = exception_target_el(env); | 
|  | break; | 
|  | case CP_ACCESS_TRAP_EL2: | 
|  | /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is | 
|  | * a bug in the access function. | 
|  | */ | 
|  | assert(!arm_is_secure(env) && arm_current_el(env) != 3); | 
|  | target_el = 2; | 
|  | break; | 
|  | case CP_ACCESS_TRAP_EL3: | 
|  | target_el = 3; | 
|  | break; | 
|  | case CP_ACCESS_TRAP_UNCATEGORIZED: | 
|  | target_el = exception_target_el(env); | 
|  | syndrome = syn_uncategorized(); | 
|  | break; | 
|  | case CP_ACCESS_TRAP_UNCATEGORIZED_EL2: | 
|  | target_el = 2; | 
|  | syndrome = syn_uncategorized(); | 
|  | break; | 
|  | case CP_ACCESS_TRAP_UNCATEGORIZED_EL3: | 
|  | target_el = 3; | 
|  | syndrome = syn_uncategorized(); | 
|  | break; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  |  | 
|  | raise_exception(env, EXCP_UDEF, syndrome, target_el); | 
|  | } | 
|  |  | 
|  | void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value) | 
|  | { | 
|  | const ARMCPRegInfo *ri = rip; | 
|  |  | 
|  | ri->writefn(env, ri, value); | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip) | 
|  | { | 
|  | const ARMCPRegInfo *ri = rip; | 
|  |  | 
|  | return ri->readfn(env, ri); | 
|  | } | 
|  |  | 
|  | void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value) | 
|  | { | 
|  | const ARMCPRegInfo *ri = rip; | 
|  |  | 
|  | ri->writefn(env, ri, value); | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip) | 
|  | { | 
|  | const ARMCPRegInfo *ri = rip; | 
|  |  | 
|  | return ri->readfn(env, ri); | 
|  | } | 
|  |  | 
|  | void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm) | 
|  | { | 
|  | /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set. | 
|  | * Note that SPSel is never OK from EL0; we rely on handle_msr_i() | 
|  | * to catch that case at translate time. | 
|  | */ | 
|  | if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { | 
|  | uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3), | 
|  | extract32(op, 3, 3), 4, | 
|  | imm, 0x1f, 0); | 
|  | raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env)); | 
|  | } | 
|  |  | 
|  | switch (op) { | 
|  | case 0x05: /* SPSel */ | 
|  | update_spsel(env, imm); | 
|  | break; | 
|  | case 0x1e: /* DAIFSet */ | 
|  | env->daif |= (imm << 6) & PSTATE_DAIF; | 
|  | break; | 
|  | case 0x1f: /* DAIFClear */ | 
|  | env->daif &= ~((imm << 6) & PSTATE_DAIF); | 
|  | break; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void HELPER(clear_pstate_ss)(CPUARMState *env) | 
|  | { | 
|  | env->pstate &= ~PSTATE_SS; | 
|  | } | 
|  |  | 
|  | void HELPER(pre_hvc)(CPUARMState *env) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  | int cur_el = arm_current_el(env); | 
|  | /* FIXME: Use actual secure state.  */ | 
|  | bool secure = false; | 
|  | bool undef; | 
|  |  | 
|  | if (arm_is_psci_call(cpu, EXCP_HVC)) { | 
|  | /* If PSCI is enabled and this looks like a valid PSCI call then | 
|  | * that overrides the architecturally mandated HVC behaviour. | 
|  | */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!arm_feature(env, ARM_FEATURE_EL2)) { | 
|  | /* If EL2 doesn't exist, HVC always UNDEFs */ | 
|  | undef = true; | 
|  | } else if (arm_feature(env, ARM_FEATURE_EL3)) { | 
|  | /* EL3.HCE has priority over EL2.HCD. */ | 
|  | undef = !(env->cp15.scr_el3 & SCR_HCE); | 
|  | } else { | 
|  | undef = env->cp15.hcr_el2 & HCR_HCD; | 
|  | } | 
|  |  | 
|  | /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state. | 
|  | * For ARMv8/AArch64, HVC is allowed in EL3. | 
|  | * Note that we've already trapped HVC from EL0 at translation | 
|  | * time. | 
|  | */ | 
|  | if (secure && (!is_a64(env) || cur_el == 1)) { | 
|  | undef = true; | 
|  | } | 
|  |  | 
|  | if (undef) { | 
|  | raise_exception(env, EXCP_UDEF, syn_uncategorized(), | 
|  | exception_target_el(env)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  | int cur_el = arm_current_el(env); | 
|  | bool secure = arm_is_secure(env); | 
|  | bool smd = env->cp15.scr_el3 & SCR_SMD; | 
|  | /* On ARMv8 AArch32, SMD only applies to NS state. | 
|  | * On ARMv7 SMD only applies to NS state and only if EL2 is available. | 
|  | * For ARMv7 non EL2, we force SMD to zero so we don't need to re-check | 
|  | * the EL2 condition here. | 
|  | */ | 
|  | bool undef = is_a64(env) ? smd : (!secure && smd); | 
|  |  | 
|  | if (arm_is_psci_call(cpu, EXCP_SMC)) { | 
|  | /* If PSCI is enabled and this looks like a valid PSCI call then | 
|  | * that overrides the architecturally mandated SMC behaviour. | 
|  | */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!arm_feature(env, ARM_FEATURE_EL3)) { | 
|  | /* If we have no EL3 then SMC always UNDEFs */ | 
|  | undef = true; | 
|  | } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) { | 
|  | /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */ | 
|  | raise_exception(env, EXCP_HYP_TRAP, syndrome, 2); | 
|  | } | 
|  |  | 
|  | if (undef) { | 
|  | raise_exception(env, EXCP_UDEF, syn_uncategorized(), | 
|  | exception_target_el(env)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void HELPER(exception_return)(CPUARMState *env) | 
|  | { | 
|  | int cur_el = arm_current_el(env); | 
|  | unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el); | 
|  | uint32_t spsr = env->banked_spsr[spsr_idx]; | 
|  | int new_el; | 
|  |  | 
|  | aarch64_save_sp(env, cur_el); | 
|  |  | 
|  | env->exclusive_addr = -1; | 
|  |  | 
|  | /* We must squash the PSTATE.SS bit to zero unless both of the | 
|  | * following hold: | 
|  | *  1. debug exceptions are currently disabled | 
|  | *  2. singlestep will be active in the EL we return to | 
|  | * We check 1 here and 2 after we've done the pstate/cpsr write() to | 
|  | * transition to the EL we're going to. | 
|  | */ | 
|  | if (arm_generate_debug_exceptions(env)) { | 
|  | spsr &= ~PSTATE_SS; | 
|  | } | 
|  |  | 
|  | if (spsr & PSTATE_nRW) { | 
|  | /* TODO: We currently assume EL1/2/3 are running in AArch64.  */ | 
|  | env->aarch64 = 0; | 
|  | new_el = 0; | 
|  | env->uncached_cpsr = 0x10; | 
|  | cpsr_write(env, spsr, ~0); | 
|  | if (!arm_singlestep_active(env)) { | 
|  | env->uncached_cpsr &= ~PSTATE_SS; | 
|  | } | 
|  | aarch64_sync_64_to_32(env); | 
|  |  | 
|  | env->regs[15] = env->elr_el[1] & ~0x1; | 
|  | } else { | 
|  | new_el = extract32(spsr, 2, 2); | 
|  | if (new_el > cur_el | 
|  | || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) { | 
|  | /* Disallow return to an EL which is unimplemented or higher | 
|  | * than the current one. | 
|  | */ | 
|  | goto illegal_return; | 
|  | } | 
|  | if (extract32(spsr, 1, 1)) { | 
|  | /* Return with reserved M[1] bit set */ | 
|  | goto illegal_return; | 
|  | } | 
|  | if (new_el == 0 && (spsr & PSTATE_SP)) { | 
|  | /* Return to EL0 with M[0] bit set */ | 
|  | goto illegal_return; | 
|  | } | 
|  | env->aarch64 = 1; | 
|  | pstate_write(env, spsr); | 
|  | if (!arm_singlestep_active(env)) { | 
|  | env->pstate &= ~PSTATE_SS; | 
|  | } | 
|  | aarch64_restore_sp(env, new_el); | 
|  | env->pc = env->elr_el[cur_el]; | 
|  | } | 
|  |  | 
|  | return; | 
|  |  | 
|  | illegal_return: | 
|  | /* Illegal return events of various kinds have architecturally | 
|  | * mandated behaviour: | 
|  | * restore NZCV and DAIF from SPSR_ELx | 
|  | * set PSTATE.IL | 
|  | * restore PC from ELR_ELx | 
|  | * no change to exception level, execution state or stack pointer | 
|  | */ | 
|  | env->pstate |= PSTATE_IL; | 
|  | env->pc = env->elr_el[cur_el]; | 
|  | spsr &= PSTATE_NZCV | PSTATE_DAIF; | 
|  | spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF); | 
|  | pstate_write(env, spsr); | 
|  | if (!arm_singlestep_active(env)) { | 
|  | env->pstate &= ~PSTATE_SS; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Return true if the linked breakpoint entry lbn passes its checks */ | 
|  | static bool linked_bp_matches(ARMCPU *cpu, int lbn) | 
|  | { | 
|  | CPUARMState *env = &cpu->env; | 
|  | uint64_t bcr = env->cp15.dbgbcr[lbn]; | 
|  | int brps = extract32(cpu->dbgdidr, 24, 4); | 
|  | int ctx_cmps = extract32(cpu->dbgdidr, 20, 4); | 
|  | int bt; | 
|  | uint32_t contextidr; | 
|  |  | 
|  | /* Links to unimplemented or non-context aware breakpoints are | 
|  | * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or | 
|  | * as if linked to an UNKNOWN context-aware breakpoint (in which | 
|  | * case DBGWCR<n>_EL1.LBN must indicate that breakpoint). | 
|  | * We choose the former. | 
|  | */ | 
|  | if (lbn > brps || lbn < (brps - ctx_cmps)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bcr = env->cp15.dbgbcr[lbn]; | 
|  |  | 
|  | if (extract64(bcr, 0, 1) == 0) { | 
|  | /* Linked breakpoint disabled : generate no events */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bt = extract64(bcr, 20, 4); | 
|  |  | 
|  | /* We match the whole register even if this is AArch32 using the | 
|  | * short descriptor format (in which case it holds both PROCID and ASID), | 
|  | * since we don't implement the optional v7 context ID masking. | 
|  | */ | 
|  | contextidr = extract64(env->cp15.contextidr_el[1], 0, 32); | 
|  |  | 
|  | switch (bt) { | 
|  | case 3: /* linked context ID match */ | 
|  | if (arm_current_el(env) > 1) { | 
|  | /* Context matches never fire in EL2 or (AArch64) EL3 */ | 
|  | return false; | 
|  | } | 
|  | return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32)); | 
|  | case 5: /* linked address mismatch (reserved in AArch64) */ | 
|  | case 9: /* linked VMID match (reserved if no EL2) */ | 
|  | case 11: /* linked context ID and VMID match (reserved if no EL2) */ | 
|  | default: | 
|  | /* Links to Unlinked context breakpoints must generate no | 
|  | * events; we choose to do the same for reserved values too. | 
|  | */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp) | 
|  | { | 
|  | CPUARMState *env = &cpu->env; | 
|  | uint64_t cr; | 
|  | int pac, hmc, ssc, wt, lbn; | 
|  | /* Note that for watchpoints the check is against the CPU security | 
|  | * state, not the S/NS attribute on the offending data access. | 
|  | */ | 
|  | bool is_secure = arm_is_secure(env); | 
|  | int access_el = arm_current_el(env); | 
|  |  | 
|  | if (is_wp) { | 
|  | CPUWatchpoint *wp = env->cpu_watchpoint[n]; | 
|  |  | 
|  | if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) { | 
|  | return false; | 
|  | } | 
|  | cr = env->cp15.dbgwcr[n]; | 
|  | if (wp->hitattrs.user) { | 
|  | /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should | 
|  | * match watchpoints as if they were accesses done at EL0, even if | 
|  | * the CPU is at EL1 or higher. | 
|  | */ | 
|  | access_el = 0; | 
|  | } | 
|  | } else { | 
|  | uint64_t pc = is_a64(env) ? env->pc : env->regs[15]; | 
|  |  | 
|  | if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) { | 
|  | return false; | 
|  | } | 
|  | cr = env->cp15.dbgbcr[n]; | 
|  | } | 
|  | /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is | 
|  | * enabled and that the address and access type match; for breakpoints | 
|  | * we know the address matched; check the remaining fields, including | 
|  | * linked breakpoints. We rely on WCR and BCR having the same layout | 
|  | * for the LBN, SSC, HMC, PAC/PMC and is-linked fields. | 
|  | * Note that some combinations of {PAC, HMC, SSC} are reserved and | 
|  | * must act either like some valid combination or as if the watchpoint | 
|  | * were disabled. We choose the former, and use this together with | 
|  | * the fact that EL3 must always be Secure and EL2 must always be | 
|  | * Non-Secure to simplify the code slightly compared to the full | 
|  | * table in the ARM ARM. | 
|  | */ | 
|  | pac = extract64(cr, 1, 2); | 
|  | hmc = extract64(cr, 13, 1); | 
|  | ssc = extract64(cr, 14, 2); | 
|  |  | 
|  | switch (ssc) { | 
|  | case 0: | 
|  | break; | 
|  | case 1: | 
|  | case 3: | 
|  | if (is_secure) { | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | case 2: | 
|  | if (!is_secure) { | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (access_el) { | 
|  | case 3: | 
|  | case 2: | 
|  | if (!hmc) { | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | case 1: | 
|  | if (extract32(pac, 0, 1) == 0) { | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | case 0: | 
|  | if (extract32(pac, 1, 1) == 0) { | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  |  | 
|  | wt = extract64(cr, 20, 1); | 
|  | lbn = extract64(cr, 16, 4); | 
|  |  | 
|  | if (wt && !linked_bp_matches(cpu, lbn)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool check_watchpoints(ARMCPU *cpu) | 
|  | { | 
|  | CPUARMState *env = &cpu->env; | 
|  | int n; | 
|  |  | 
|  | /* If watchpoints are disabled globally or we can't take debug | 
|  | * exceptions here then watchpoint firings are ignored. | 
|  | */ | 
|  | if (extract32(env->cp15.mdscr_el1, 15, 1) == 0 | 
|  | || !arm_generate_debug_exceptions(env)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) { | 
|  | if (bp_wp_matches(cpu, n, true)) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool check_breakpoints(ARMCPU *cpu) | 
|  | { | 
|  | CPUARMState *env = &cpu->env; | 
|  | int n; | 
|  |  | 
|  | /* If breakpoints are disabled globally or we can't take debug | 
|  | * exceptions here then breakpoint firings are ignored. | 
|  | */ | 
|  | if (extract32(env->cp15.mdscr_el1, 15, 1) == 0 | 
|  | || !arm_generate_debug_exceptions(env)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) { | 
|  | if (bp_wp_matches(cpu, n, false)) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void HELPER(check_breakpoints)(CPUARMState *env) | 
|  | { | 
|  | ARMCPU *cpu = arm_env_get_cpu(env); | 
|  |  | 
|  | if (check_breakpoints(cpu)) { | 
|  | HELPER(exception_internal(env, EXCP_DEBUG)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void arm_debug_excp_handler(CPUState *cs) | 
|  | { | 
|  | /* Called by core code when a watchpoint or breakpoint fires; | 
|  | * need to check which one and raise the appropriate exception. | 
|  | */ | 
|  | ARMCPU *cpu = ARM_CPU(cs); | 
|  | CPUARMState *env = &cpu->env; | 
|  | CPUWatchpoint *wp_hit = cs->watchpoint_hit; | 
|  |  | 
|  | if (wp_hit) { | 
|  | if (wp_hit->flags & BP_CPU) { | 
|  | cs->watchpoint_hit = NULL; | 
|  | if (check_watchpoints(cpu)) { | 
|  | bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0; | 
|  | bool same_el = arm_debug_target_el(env) == arm_current_el(env); | 
|  |  | 
|  | if (extended_addresses_enabled(env)) { | 
|  | env->exception.fsr = (1 << 9) | 0x22; | 
|  | } else { | 
|  | env->exception.fsr = 0x2; | 
|  | } | 
|  | env->exception.vaddress = wp_hit->hitaddr; | 
|  | raise_exception(env, EXCP_DATA_ABORT, | 
|  | syn_watchpoint(same_el, 0, wnr), | 
|  | arm_debug_target_el(env)); | 
|  | } else { | 
|  | cpu_resume_from_signal(cs, NULL); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | uint64_t pc = is_a64(env) ? env->pc : env->regs[15]; | 
|  | bool same_el = (arm_debug_target_el(env) == arm_current_el(env)); | 
|  |  | 
|  | /* (1) GDB breakpoints should be handled first. | 
|  | * (2) Do not raise a CPU exception if no CPU breakpoint has fired, | 
|  | * since singlestep is also done by generating a debug internal | 
|  | * exception. | 
|  | */ | 
|  | if (cpu_breakpoint_test(cs, pc, BP_GDB) | 
|  | || !cpu_breakpoint_test(cs, pc, BP_CPU)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (extended_addresses_enabled(env)) { | 
|  | env->exception.fsr = (1 << 9) | 0x22; | 
|  | } else { | 
|  | env->exception.fsr = 0x2; | 
|  | } | 
|  | /* FAR is UNKNOWN, so doesn't need setting */ | 
|  | raise_exception(env, EXCP_PREFETCH_ABORT, | 
|  | syn_breakpoint(same_el), | 
|  | arm_debug_target_el(env)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* ??? Flag setting arithmetic is awkward because we need to do comparisons. | 
|  | The only way to do that in TCG is a conditional branch, which clobbers | 
|  | all our temporaries.  For now implement these as helper functions.  */ | 
|  |  | 
|  | /* Similarly for variable shift instructions.  */ | 
|  |  | 
|  | uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i) | 
|  | { | 
|  | int shift = i & 0xff; | 
|  | if (shift >= 32) { | 
|  | if (shift == 32) | 
|  | env->CF = x & 1; | 
|  | else | 
|  | env->CF = 0; | 
|  | return 0; | 
|  | } else if (shift != 0) { | 
|  | env->CF = (x >> (32 - shift)) & 1; | 
|  | return x << shift; | 
|  | } | 
|  | return x; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i) | 
|  | { | 
|  | int shift = i & 0xff; | 
|  | if (shift >= 32) { | 
|  | if (shift == 32) | 
|  | env->CF = (x >> 31) & 1; | 
|  | else | 
|  | env->CF = 0; | 
|  | return 0; | 
|  | } else if (shift != 0) { | 
|  | env->CF = (x >> (shift - 1)) & 1; | 
|  | return x >> shift; | 
|  | } | 
|  | return x; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i) | 
|  | { | 
|  | int shift = i & 0xff; | 
|  | if (shift >= 32) { | 
|  | env->CF = (x >> 31) & 1; | 
|  | return (int32_t)x >> 31; | 
|  | } else if (shift != 0) { | 
|  | env->CF = (x >> (shift - 1)) & 1; | 
|  | return (int32_t)x >> shift; | 
|  | } | 
|  | return x; | 
|  | } | 
|  |  | 
|  | uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i) | 
|  | { | 
|  | int shift1, shift; | 
|  | shift1 = i & 0xff; | 
|  | shift = shift1 & 0x1f; | 
|  | if (shift == 0) { | 
|  | if (shift1 != 0) | 
|  | env->CF = (x >> 31) & 1; | 
|  | return x; | 
|  | } else { | 
|  | env->CF = (x >> (shift - 1)) & 1; | 
|  | return ((uint32_t)x >> shift) | (x << (32 - shift)); | 
|  | } | 
|  | } |