|  | /* | 
|  | * QEMU KVM support | 
|  | * | 
|  | * Copyright (C) 2006-2008 Qumranet Technologies | 
|  | * Copyright IBM, Corp. 2008 | 
|  | * | 
|  | * Authors: | 
|  | *  Anthony Liguori   <aliguori@us.ibm.com> | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2 or later. | 
|  | * See the COPYING file in the top-level directory. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <sys/types.h> | 
|  | #include <sys/ioctl.h> | 
|  | #include <sys/mman.h> | 
|  | #include <sys/utsname.h> | 
|  |  | 
|  | #include <linux/kvm.h> | 
|  |  | 
|  | #include "qemu-common.h" | 
|  | #include "sysemu.h" | 
|  | #include "kvm.h" | 
|  | #include "cpu.h" | 
|  | #include "gdbstub.h" | 
|  | #include "host-utils.h" | 
|  | #include "hw/pc.h" | 
|  | #include "hw/apic.h" | 
|  | #include "ioport.h" | 
|  |  | 
|  | #ifdef CONFIG_KVM_PARA | 
|  | #include <linux/kvm_para.h> | 
|  | #endif | 
|  | // | 
|  | //#define DEBUG_KVM | 
|  |  | 
|  | #ifdef DEBUG_KVM | 
|  | #define DPRINTF(fmt, ...) \ | 
|  | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) | 
|  | #else | 
|  | #define DPRINTF(fmt, ...) \ | 
|  | do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #define MSR_KVM_WALL_CLOCK  0x11 | 
|  | #define MSR_KVM_SYSTEM_TIME 0x12 | 
|  |  | 
|  | #ifndef BUS_MCEERR_AR | 
|  | #define BUS_MCEERR_AR 4 | 
|  | #endif | 
|  | #ifndef BUS_MCEERR_AO | 
|  | #define BUS_MCEERR_AO 5 | 
|  | #endif | 
|  |  | 
|  | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { | 
|  | KVM_CAP_INFO(SET_TSS_ADDR), | 
|  | KVM_CAP_INFO(EXT_CPUID), | 
|  | KVM_CAP_INFO(MP_STATE), | 
|  | KVM_CAP_LAST_INFO | 
|  | }; | 
|  |  | 
|  | static bool has_msr_star; | 
|  | static bool has_msr_hsave_pa; | 
|  | #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF) | 
|  | static bool has_msr_async_pf_en; | 
|  | #endif | 
|  | static int lm_capable_kernel; | 
|  |  | 
|  | static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) | 
|  | { | 
|  | struct kvm_cpuid2 *cpuid; | 
|  | int r, size; | 
|  |  | 
|  | size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); | 
|  | cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size); | 
|  | cpuid->nent = max; | 
|  | r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); | 
|  | if (r == 0 && cpuid->nent >= max) { | 
|  | r = -E2BIG; | 
|  | } | 
|  | if (r < 0) { | 
|  | if (r == -E2BIG) { | 
|  | qemu_free(cpuid); | 
|  | return NULL; | 
|  | } else { | 
|  | fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", | 
|  | strerror(-r)); | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  | return cpuid; | 
|  | } | 
|  |  | 
|  | uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, | 
|  | uint32_t index, int reg) | 
|  | { | 
|  | struct kvm_cpuid2 *cpuid; | 
|  | int i, max; | 
|  | uint32_t ret = 0; | 
|  | uint32_t cpuid_1_edx; | 
|  |  | 
|  | max = 1; | 
|  | while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) { | 
|  | max *= 2; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < cpuid->nent; ++i) { | 
|  | if (cpuid->entries[i].function == function && | 
|  | cpuid->entries[i].index == index) { | 
|  | switch (reg) { | 
|  | case R_EAX: | 
|  | ret = cpuid->entries[i].eax; | 
|  | break; | 
|  | case R_EBX: | 
|  | ret = cpuid->entries[i].ebx; | 
|  | break; | 
|  | case R_ECX: | 
|  | ret = cpuid->entries[i].ecx; | 
|  | break; | 
|  | case R_EDX: | 
|  | ret = cpuid->entries[i].edx; | 
|  | switch (function) { | 
|  | case 1: | 
|  | /* KVM before 2.6.30 misreports the following features */ | 
|  | ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; | 
|  | break; | 
|  | case 0x80000001: | 
|  | /* On Intel, kvm returns cpuid according to the Intel spec, | 
|  | * so add missing bits according to the AMD spec: | 
|  | */ | 
|  | cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX); | 
|  | ret |= cpuid_1_edx & 0x183f7ff; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | qemu_free(cpuid); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KVM_PARA | 
|  | struct kvm_para_features { | 
|  | int cap; | 
|  | int feature; | 
|  | } para_features[] = { | 
|  | { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, | 
|  | { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, | 
|  | { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, | 
|  | #ifdef KVM_CAP_ASYNC_PF | 
|  | { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, | 
|  | #endif | 
|  | { -1, -1 } | 
|  | }; | 
|  |  | 
|  | static int get_para_features(CPUState *env) | 
|  | { | 
|  | int i, features = 0; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) { | 
|  | if (kvm_check_extension(env->kvm_state, para_features[i].cap)) { | 
|  | features |= (1 << para_features[i].feature); | 
|  | } | 
|  | } | 
|  | #ifdef KVM_CAP_ASYNC_PF | 
|  | has_msr_async_pf_en = features & (1 << KVM_FEATURE_ASYNC_PF); | 
|  | #endif | 
|  | return features; | 
|  | } | 
|  | #endif /* CONFIG_KVM_PARA */ | 
|  |  | 
|  | typedef struct HWPoisonPage { | 
|  | ram_addr_t ram_addr; | 
|  | QLIST_ENTRY(HWPoisonPage) list; | 
|  | } HWPoisonPage; | 
|  |  | 
|  | static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = | 
|  | QLIST_HEAD_INITIALIZER(hwpoison_page_list); | 
|  |  | 
|  | static void kvm_unpoison_all(void *param) | 
|  | { | 
|  | HWPoisonPage *page, *next_page; | 
|  |  | 
|  | QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { | 
|  | QLIST_REMOVE(page, list); | 
|  | qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); | 
|  | qemu_free(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef KVM_CAP_MCE | 
|  | static void kvm_hwpoison_page_add(ram_addr_t ram_addr) | 
|  | { | 
|  | HWPoisonPage *page; | 
|  |  | 
|  | QLIST_FOREACH(page, &hwpoison_page_list, list) { | 
|  | if (page->ram_addr == ram_addr) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | page = qemu_malloc(sizeof(HWPoisonPage)); | 
|  | page->ram_addr = ram_addr; | 
|  | QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); | 
|  | } | 
|  |  | 
|  | static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, | 
|  | int *max_banks) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = kvm_check_extension(s, KVM_CAP_MCE); | 
|  | if (r > 0) { | 
|  | *max_banks = r; | 
|  | return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); | 
|  | } | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code) | 
|  | { | 
|  | uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | | 
|  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; | 
|  | uint64_t mcg_status = MCG_STATUS_MCIP; | 
|  |  | 
|  | if (code == BUS_MCEERR_AR) { | 
|  | status |= MCI_STATUS_AR | 0x134; | 
|  | mcg_status |= MCG_STATUS_EIPV; | 
|  | } else { | 
|  | status |= 0xc0; | 
|  | mcg_status |= MCG_STATUS_RIPV; | 
|  | } | 
|  | cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr, | 
|  | (MCM_ADDR_PHYS << 6) | 0xc, | 
|  | cpu_x86_support_mca_broadcast(env) ? | 
|  | MCE_INJECT_BROADCAST : 0); | 
|  | } | 
|  | #endif /* KVM_CAP_MCE */ | 
|  |  | 
|  | static void hardware_memory_error(void) | 
|  | { | 
|  | fprintf(stderr, "Hardware memory error!\n"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr) | 
|  | { | 
|  | #ifdef KVM_CAP_MCE | 
|  | ram_addr_t ram_addr; | 
|  | target_phys_addr_t paddr; | 
|  |  | 
|  | if ((env->mcg_cap & MCG_SER_P) && addr | 
|  | && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) { | 
|  | if (qemu_ram_addr_from_host(addr, &ram_addr) || | 
|  | !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, | 
|  | &paddr)) { | 
|  | fprintf(stderr, "Hardware memory error for memory used by " | 
|  | "QEMU itself instead of guest system!\n"); | 
|  | /* Hope we are lucky for AO MCE */ | 
|  | if (code == BUS_MCEERR_AO) { | 
|  | return 0; | 
|  | } else { | 
|  | hardware_memory_error(); | 
|  | } | 
|  | } | 
|  | kvm_hwpoison_page_add(ram_addr); | 
|  | kvm_mce_inject(env, paddr, code); | 
|  | } else | 
|  | #endif /* KVM_CAP_MCE */ | 
|  | { | 
|  | if (code == BUS_MCEERR_AO) { | 
|  | return 0; | 
|  | } else if (code == BUS_MCEERR_AR) { | 
|  | hardware_memory_error(); | 
|  | } else { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_arch_on_sigbus(int code, void *addr) | 
|  | { | 
|  | #ifdef KVM_CAP_MCE | 
|  | if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) { | 
|  | ram_addr_t ram_addr; | 
|  | target_phys_addr_t paddr; | 
|  |  | 
|  | /* Hope we are lucky for AO MCE */ | 
|  | if (qemu_ram_addr_from_host(addr, &ram_addr) || | 
|  | !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, | 
|  | &paddr)) { | 
|  | fprintf(stderr, "Hardware memory error for memory used by " | 
|  | "QEMU itself instead of guest system!: %p\n", addr); | 
|  | return 0; | 
|  | } | 
|  | kvm_hwpoison_page_add(ram_addr); | 
|  | kvm_mce_inject(first_cpu, paddr, code); | 
|  | } else | 
|  | #endif /* KVM_CAP_MCE */ | 
|  | { | 
|  | if (code == BUS_MCEERR_AO) { | 
|  | return 0; | 
|  | } else if (code == BUS_MCEERR_AR) { | 
|  | hardware_memory_error(); | 
|  | } else { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_inject_mce_oldstyle(CPUState *env) | 
|  | { | 
|  | #ifdef KVM_CAP_MCE | 
|  | if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) { | 
|  | unsigned int bank, bank_num = env->mcg_cap & 0xff; | 
|  | struct kvm_x86_mce mce; | 
|  |  | 
|  | env->exception_injected = -1; | 
|  |  | 
|  | /* | 
|  | * There must be at least one bank in use if an MCE is pending. | 
|  | * Find it and use its values for the event injection. | 
|  | */ | 
|  | for (bank = 0; bank < bank_num; bank++) { | 
|  | if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | assert(bank < bank_num); | 
|  |  | 
|  | mce.bank = bank; | 
|  | mce.status = env->mce_banks[bank * 4 + 1]; | 
|  | mce.mcg_status = env->mcg_status; | 
|  | mce.addr = env->mce_banks[bank * 4 + 2]; | 
|  | mce.misc = env->mce_banks[bank * 4 + 3]; | 
|  |  | 
|  | return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce); | 
|  | } | 
|  | #endif /* KVM_CAP_MCE */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cpu_update_state(void *opaque, int running, int reason) | 
|  | { | 
|  | CPUState *env = opaque; | 
|  |  | 
|  | if (running) { | 
|  | env->tsc_valid = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | int kvm_arch_init_vcpu(CPUState *env) | 
|  | { | 
|  | struct { | 
|  | struct kvm_cpuid2 cpuid; | 
|  | struct kvm_cpuid_entry2 entries[100]; | 
|  | } __attribute__((packed)) cpuid_data; | 
|  | uint32_t limit, i, j, cpuid_i; | 
|  | uint32_t unused; | 
|  | struct kvm_cpuid_entry2 *c; | 
|  | #ifdef CONFIG_KVM_PARA | 
|  | uint32_t signature[3]; | 
|  | #endif | 
|  |  | 
|  | env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX); | 
|  |  | 
|  | i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR; | 
|  | env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX); | 
|  | env->cpuid_ext_features |= i; | 
|  |  | 
|  | env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001, | 
|  | 0, R_EDX); | 
|  | env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001, | 
|  | 0, R_ECX); | 
|  | env->cpuid_svm_features  &= kvm_arch_get_supported_cpuid(env, 0x8000000A, | 
|  | 0, R_EDX); | 
|  |  | 
|  |  | 
|  | cpuid_i = 0; | 
|  |  | 
|  | #ifdef CONFIG_KVM_PARA | 
|  | /* Paravirtualization CPUIDs */ | 
|  | memcpy(signature, "KVMKVMKVM\0\0\0", 12); | 
|  | c = &cpuid_data.entries[cpuid_i++]; | 
|  | memset(c, 0, sizeof(*c)); | 
|  | c->function = KVM_CPUID_SIGNATURE; | 
|  | c->eax = 0; | 
|  | c->ebx = signature[0]; | 
|  | c->ecx = signature[1]; | 
|  | c->edx = signature[2]; | 
|  |  | 
|  | c = &cpuid_data.entries[cpuid_i++]; | 
|  | memset(c, 0, sizeof(*c)); | 
|  | c->function = KVM_CPUID_FEATURES; | 
|  | c->eax = env->cpuid_kvm_features & get_para_features(env); | 
|  | #endif | 
|  |  | 
|  | cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); | 
|  |  | 
|  | for (i = 0; i <= limit; i++) { | 
|  | c = &cpuid_data.entries[cpuid_i++]; | 
|  |  | 
|  | switch (i) { | 
|  | case 2: { | 
|  | /* Keep reading function 2 till all the input is received */ | 
|  | int times; | 
|  |  | 
|  | c->function = i; | 
|  | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | | 
|  | KVM_CPUID_FLAG_STATE_READ_NEXT; | 
|  | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | 
|  | times = c->eax & 0xff; | 
|  |  | 
|  | for (j = 1; j < times; ++j) { | 
|  | c = &cpuid_data.entries[cpuid_i++]; | 
|  | c->function = i; | 
|  | c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; | 
|  | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case 4: | 
|  | case 0xb: | 
|  | case 0xd: | 
|  | for (j = 0; ; j++) { | 
|  | c->function = i; | 
|  | c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; | 
|  | c->index = j; | 
|  | cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); | 
|  |  | 
|  | if (i == 4 && c->eax == 0) { | 
|  | break; | 
|  | } | 
|  | if (i == 0xb && !(c->ecx & 0xff00)) { | 
|  | break; | 
|  | } | 
|  | if (i == 0xd && c->eax == 0) { | 
|  | break; | 
|  | } | 
|  | c = &cpuid_data.entries[cpuid_i++]; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | c->function = i; | 
|  | c->flags = 0; | 
|  | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | 
|  | break; | 
|  | } | 
|  | } | 
|  | cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); | 
|  |  | 
|  | for (i = 0x80000000; i <= limit; i++) { | 
|  | c = &cpuid_data.entries[cpuid_i++]; | 
|  |  | 
|  | c->function = i; | 
|  | c->flags = 0; | 
|  | cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); | 
|  | } | 
|  |  | 
|  | cpuid_data.cpuid.nent = cpuid_i; | 
|  |  | 
|  | #ifdef KVM_CAP_MCE | 
|  | if (((env->cpuid_version >> 8)&0xF) >= 6 | 
|  | && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA) | 
|  | && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) { | 
|  | uint64_t mcg_cap; | 
|  | int banks; | 
|  | int ret; | 
|  |  | 
|  | ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks); | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (banks > MCE_BANKS_DEF) { | 
|  | banks = MCE_BANKS_DEF; | 
|  | } | 
|  | mcg_cap &= MCE_CAP_DEF; | 
|  | mcg_cap |= banks; | 
|  | ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap); | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | env->mcg_cap = mcg_cap; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | qemu_add_vm_change_state_handler(cpu_update_state, env); | 
|  |  | 
|  | return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data); | 
|  | } | 
|  |  | 
|  | void kvm_arch_reset_vcpu(CPUState *env) | 
|  | { | 
|  | env->exception_injected = -1; | 
|  | env->interrupt_injected = -1; | 
|  | env->xcr0 = 1; | 
|  | if (kvm_irqchip_in_kernel()) { | 
|  | env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE : | 
|  | KVM_MP_STATE_UNINITIALIZED; | 
|  | } else { | 
|  | env->mp_state = KVM_MP_STATE_RUNNABLE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int kvm_get_supported_msrs(KVMState *s) | 
|  | { | 
|  | static int kvm_supported_msrs; | 
|  | int ret = 0; | 
|  |  | 
|  | /* first time */ | 
|  | if (kvm_supported_msrs == 0) { | 
|  | struct kvm_msr_list msr_list, *kvm_msr_list; | 
|  |  | 
|  | kvm_supported_msrs = -1; | 
|  |  | 
|  | /* Obtain MSR list from KVM.  These are the MSRs that we must | 
|  | * save/restore */ | 
|  | msr_list.nmsrs = 0; | 
|  | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); | 
|  | if (ret < 0 && ret != -E2BIG) { | 
|  | return ret; | 
|  | } | 
|  | /* Old kernel modules had a bug and could write beyond the provided | 
|  | memory. Allocate at least a safe amount of 1K. */ | 
|  | kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) + | 
|  | msr_list.nmsrs * | 
|  | sizeof(msr_list.indices[0]))); | 
|  |  | 
|  | kvm_msr_list->nmsrs = msr_list.nmsrs; | 
|  | ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); | 
|  | if (ret >= 0) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < kvm_msr_list->nmsrs; i++) { | 
|  | if (kvm_msr_list->indices[i] == MSR_STAR) { | 
|  | has_msr_star = true; | 
|  | continue; | 
|  | } | 
|  | if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) { | 
|  | has_msr_hsave_pa = true; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | free(kvm_msr_list); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int kvm_arch_init(KVMState *s) | 
|  | { | 
|  | uint64_t identity_base = 0xfffbc000; | 
|  | int ret; | 
|  | struct utsname utsname; | 
|  |  | 
|  | ret = kvm_get_supported_msrs(s); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uname(&utsname); | 
|  | lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; | 
|  |  | 
|  | /* | 
|  | * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. | 
|  | * In order to use vm86 mode, an EPT identity map and a TSS  are needed. | 
|  | * Since these must be part of guest physical memory, we need to allocate | 
|  | * them, both by setting their start addresses in the kernel and by | 
|  | * creating a corresponding e820 entry. We need 4 pages before the BIOS. | 
|  | * | 
|  | * Older KVM versions may not support setting the identity map base. In | 
|  | * that case we need to stick with the default, i.e. a 256K maximum BIOS | 
|  | * size. | 
|  | */ | 
|  | #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR | 
|  | if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { | 
|  | /* Allows up to 16M BIOSes. */ | 
|  | identity_base = 0xfeffc000; | 
|  |  | 
|  | ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | /* Set TSS base one page after EPT identity map. */ | 
|  | ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Tell fw_cfg to notify the BIOS to reserve the range. */ | 
|  | ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "e820_add_entry() table is full\n"); | 
|  | return ret; | 
|  | } | 
|  | qemu_register_reset(kvm_unpoison_all, NULL); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | 
|  | { | 
|  | lhs->selector = rhs->selector; | 
|  | lhs->base = rhs->base; | 
|  | lhs->limit = rhs->limit; | 
|  | lhs->type = 3; | 
|  | lhs->present = 1; | 
|  | lhs->dpl = 3; | 
|  | lhs->db = 0; | 
|  | lhs->s = 1; | 
|  | lhs->l = 0; | 
|  | lhs->g = 0; | 
|  | lhs->avl = 0; | 
|  | lhs->unusable = 0; | 
|  | } | 
|  |  | 
|  | static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) | 
|  | { | 
|  | unsigned flags = rhs->flags; | 
|  | lhs->selector = rhs->selector; | 
|  | lhs->base = rhs->base; | 
|  | lhs->limit = rhs->limit; | 
|  | lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; | 
|  | lhs->present = (flags & DESC_P_MASK) != 0; | 
|  | lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; | 
|  | lhs->db = (flags >> DESC_B_SHIFT) & 1; | 
|  | lhs->s = (flags & DESC_S_MASK) != 0; | 
|  | lhs->l = (flags >> DESC_L_SHIFT) & 1; | 
|  | lhs->g = (flags & DESC_G_MASK) != 0; | 
|  | lhs->avl = (flags & DESC_AVL_MASK) != 0; | 
|  | lhs->unusable = 0; | 
|  | } | 
|  |  | 
|  | static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) | 
|  | { | 
|  | lhs->selector = rhs->selector; | 
|  | lhs->base = rhs->base; | 
|  | lhs->limit = rhs->limit; | 
|  | lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | | 
|  | (rhs->present * DESC_P_MASK) | | 
|  | (rhs->dpl << DESC_DPL_SHIFT) | | 
|  | (rhs->db << DESC_B_SHIFT) | | 
|  | (rhs->s * DESC_S_MASK) | | 
|  | (rhs->l << DESC_L_SHIFT) | | 
|  | (rhs->g * DESC_G_MASK) | | 
|  | (rhs->avl * DESC_AVL_MASK); | 
|  | } | 
|  |  | 
|  | static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) | 
|  | { | 
|  | if (set) { | 
|  | *kvm_reg = *qemu_reg; | 
|  | } else { | 
|  | *qemu_reg = *kvm_reg; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int kvm_getput_regs(CPUState *env, int set) | 
|  | { | 
|  | struct kvm_regs regs; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!set) { | 
|  | ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); | 
|  | kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); | 
|  | kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); | 
|  | kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); | 
|  | kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); | 
|  | kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); | 
|  | kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); | 
|  | kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); | 
|  | #ifdef TARGET_X86_64 | 
|  | kvm_getput_reg(®s.r8, &env->regs[8], set); | 
|  | kvm_getput_reg(®s.r9, &env->regs[9], set); | 
|  | kvm_getput_reg(®s.r10, &env->regs[10], set); | 
|  | kvm_getput_reg(®s.r11, &env->regs[11], set); | 
|  | kvm_getput_reg(®s.r12, &env->regs[12], set); | 
|  | kvm_getput_reg(®s.r13, &env->regs[13], set); | 
|  | kvm_getput_reg(®s.r14, &env->regs[14], set); | 
|  | kvm_getput_reg(®s.r15, &env->regs[15], set); | 
|  | #endif | 
|  |  | 
|  | kvm_getput_reg(®s.rflags, &env->eflags, set); | 
|  | kvm_getput_reg(®s.rip, &env->eip, set); | 
|  |  | 
|  | if (set) { | 
|  | ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int kvm_put_fpu(CPUState *env) | 
|  | { | 
|  | struct kvm_fpu fpu; | 
|  | int i; | 
|  |  | 
|  | memset(&fpu, 0, sizeof fpu); | 
|  | fpu.fsw = env->fpus & ~(7 << 11); | 
|  | fpu.fsw |= (env->fpstt & 7) << 11; | 
|  | fpu.fcw = env->fpuc; | 
|  | for (i = 0; i < 8; ++i) { | 
|  | fpu.ftwx |= (!env->fptags[i]) << i; | 
|  | } | 
|  | memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); | 
|  | memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs); | 
|  | fpu.mxcsr = env->mxcsr; | 
|  |  | 
|  | return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu); | 
|  | } | 
|  |  | 
|  | #ifdef KVM_CAP_XSAVE | 
|  | #define XSAVE_CWD_RIP     2 | 
|  | #define XSAVE_CWD_RDP     4 | 
|  | #define XSAVE_MXCSR       6 | 
|  | #define XSAVE_ST_SPACE    8 | 
|  | #define XSAVE_XMM_SPACE   40 | 
|  | #define XSAVE_XSTATE_BV   128 | 
|  | #define XSAVE_YMMH_SPACE  144 | 
|  | #endif | 
|  |  | 
|  | static int kvm_put_xsave(CPUState *env) | 
|  | { | 
|  | #ifdef KVM_CAP_XSAVE | 
|  | int i, r; | 
|  | struct kvm_xsave* xsave; | 
|  | uint16_t cwd, swd, twd, fop; | 
|  |  | 
|  | if (!kvm_has_xsave()) { | 
|  | return kvm_put_fpu(env); | 
|  | } | 
|  |  | 
|  | xsave = qemu_memalign(4096, sizeof(struct kvm_xsave)); | 
|  | memset(xsave, 0, sizeof(struct kvm_xsave)); | 
|  | cwd = swd = twd = fop = 0; | 
|  | swd = env->fpus & ~(7 << 11); | 
|  | swd |= (env->fpstt & 7) << 11; | 
|  | cwd = env->fpuc; | 
|  | for (i = 0; i < 8; ++i) { | 
|  | twd |= (!env->fptags[i]) << i; | 
|  | } | 
|  | xsave->region[0] = (uint32_t)(swd << 16) + cwd; | 
|  | xsave->region[1] = (uint32_t)(fop << 16) + twd; | 
|  | memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs, | 
|  | sizeof env->fpregs); | 
|  | memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs, | 
|  | sizeof env->xmm_regs); | 
|  | xsave->region[XSAVE_MXCSR] = env->mxcsr; | 
|  | *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv; | 
|  | memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs, | 
|  | sizeof env->ymmh_regs); | 
|  | r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave); | 
|  | qemu_free(xsave); | 
|  | return r; | 
|  | #else | 
|  | return kvm_put_fpu(env); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int kvm_put_xcrs(CPUState *env) | 
|  | { | 
|  | #ifdef KVM_CAP_XCRS | 
|  | struct kvm_xcrs xcrs; | 
|  |  | 
|  | if (!kvm_has_xcrs()) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | xcrs.nr_xcrs = 1; | 
|  | xcrs.flags = 0; | 
|  | xcrs.xcrs[0].xcr = 0; | 
|  | xcrs.xcrs[0].value = env->xcr0; | 
|  | return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs); | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int kvm_put_sregs(CPUState *env) | 
|  | { | 
|  | struct kvm_sregs sregs; | 
|  |  | 
|  | memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); | 
|  | if (env->interrupt_injected >= 0) { | 
|  | sregs.interrupt_bitmap[env->interrupt_injected / 64] |= | 
|  | (uint64_t)1 << (env->interrupt_injected % 64); | 
|  | } | 
|  |  | 
|  | if ((env->eflags & VM_MASK)) { | 
|  | set_v8086_seg(&sregs.cs, &env->segs[R_CS]); | 
|  | set_v8086_seg(&sregs.ds, &env->segs[R_DS]); | 
|  | set_v8086_seg(&sregs.es, &env->segs[R_ES]); | 
|  | set_v8086_seg(&sregs.fs, &env->segs[R_FS]); | 
|  | set_v8086_seg(&sregs.gs, &env->segs[R_GS]); | 
|  | set_v8086_seg(&sregs.ss, &env->segs[R_SS]); | 
|  | } else { | 
|  | set_seg(&sregs.cs, &env->segs[R_CS]); | 
|  | set_seg(&sregs.ds, &env->segs[R_DS]); | 
|  | set_seg(&sregs.es, &env->segs[R_ES]); | 
|  | set_seg(&sregs.fs, &env->segs[R_FS]); | 
|  | set_seg(&sregs.gs, &env->segs[R_GS]); | 
|  | set_seg(&sregs.ss, &env->segs[R_SS]); | 
|  | } | 
|  |  | 
|  | set_seg(&sregs.tr, &env->tr); | 
|  | set_seg(&sregs.ldt, &env->ldt); | 
|  |  | 
|  | sregs.idt.limit = env->idt.limit; | 
|  | sregs.idt.base = env->idt.base; | 
|  | sregs.gdt.limit = env->gdt.limit; | 
|  | sregs.gdt.base = env->gdt.base; | 
|  |  | 
|  | sregs.cr0 = env->cr[0]; | 
|  | sregs.cr2 = env->cr[2]; | 
|  | sregs.cr3 = env->cr[3]; | 
|  | sregs.cr4 = env->cr[4]; | 
|  |  | 
|  | sregs.cr8 = cpu_get_apic_tpr(env->apic_state); | 
|  | sregs.apic_base = cpu_get_apic_base(env->apic_state); | 
|  |  | 
|  | sregs.efer = env->efer; | 
|  |  | 
|  | return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs); | 
|  | } | 
|  |  | 
|  | static void kvm_msr_entry_set(struct kvm_msr_entry *entry, | 
|  | uint32_t index, uint64_t value) | 
|  | { | 
|  | entry->index = index; | 
|  | entry->data = value; | 
|  | } | 
|  |  | 
|  | static int kvm_put_msrs(CPUState *env, int level) | 
|  | { | 
|  | struct { | 
|  | struct kvm_msrs info; | 
|  | struct kvm_msr_entry entries[100]; | 
|  | } msr_data; | 
|  | struct kvm_msr_entry *msrs = msr_data.entries; | 
|  | int n = 0; | 
|  |  | 
|  | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs); | 
|  | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp); | 
|  | kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip); | 
|  | kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat); | 
|  | if (has_msr_star) { | 
|  | kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star); | 
|  | } | 
|  | if (has_msr_hsave_pa) { | 
|  | kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave); | 
|  | } | 
|  | #ifdef TARGET_X86_64 | 
|  | if (lm_capable_kernel) { | 
|  | kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar); | 
|  | kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase); | 
|  | kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask); | 
|  | kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar); | 
|  | } | 
|  | #endif | 
|  | if (level == KVM_PUT_FULL_STATE) { | 
|  | /* | 
|  | * KVM is yet unable to synchronize TSC values of multiple VCPUs on | 
|  | * writeback. Until this is fixed, we only write the offset to SMP | 
|  | * guests after migration, desynchronizing the VCPUs, but avoiding | 
|  | * huge jump-backs that would occur without any writeback at all. | 
|  | */ | 
|  | if (smp_cpus == 1 || env->tsc != 0) { | 
|  | kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * The following paravirtual MSRs have side effects on the guest or are | 
|  | * too heavy for normal writeback. Limit them to reset or full state | 
|  | * updates. | 
|  | */ | 
|  | if (level >= KVM_PUT_RESET_STATE) { | 
|  | kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, | 
|  | env->system_time_msr); | 
|  | kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr); | 
|  | #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF) | 
|  | if (has_msr_async_pf_en) { | 
|  | kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, | 
|  | env->async_pf_en_msr); | 
|  | } | 
|  | #endif | 
|  | } | 
|  | #ifdef KVM_CAP_MCE | 
|  | if (env->mcg_cap) { | 
|  | int i; | 
|  |  | 
|  | kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status); | 
|  | kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl); | 
|  | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { | 
|  | kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | msr_data.info.nmsrs = n; | 
|  |  | 
|  | return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data); | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | static int kvm_get_fpu(CPUState *env) | 
|  | { | 
|  | struct kvm_fpu fpu; | 
|  | int i, ret; | 
|  |  | 
|  | ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | env->fpstt = (fpu.fsw >> 11) & 7; | 
|  | env->fpus = fpu.fsw; | 
|  | env->fpuc = fpu.fcw; | 
|  | for (i = 0; i < 8; ++i) { | 
|  | env->fptags[i] = !((fpu.ftwx >> i) & 1); | 
|  | } | 
|  | memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); | 
|  | memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs); | 
|  | env->mxcsr = fpu.mxcsr; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_get_xsave(CPUState *env) | 
|  | { | 
|  | #ifdef KVM_CAP_XSAVE | 
|  | struct kvm_xsave* xsave; | 
|  | int ret, i; | 
|  | uint16_t cwd, swd, twd, fop; | 
|  |  | 
|  | if (!kvm_has_xsave()) { | 
|  | return kvm_get_fpu(env); | 
|  | } | 
|  |  | 
|  | xsave = qemu_memalign(4096, sizeof(struct kvm_xsave)); | 
|  | ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave); | 
|  | if (ret < 0) { | 
|  | qemu_free(xsave); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | cwd = (uint16_t)xsave->region[0]; | 
|  | swd = (uint16_t)(xsave->region[0] >> 16); | 
|  | twd = (uint16_t)xsave->region[1]; | 
|  | fop = (uint16_t)(xsave->region[1] >> 16); | 
|  | env->fpstt = (swd >> 11) & 7; | 
|  | env->fpus = swd; | 
|  | env->fpuc = cwd; | 
|  | for (i = 0; i < 8; ++i) { | 
|  | env->fptags[i] = !((twd >> i) & 1); | 
|  | } | 
|  | env->mxcsr = xsave->region[XSAVE_MXCSR]; | 
|  | memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE], | 
|  | sizeof env->fpregs); | 
|  | memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE], | 
|  | sizeof env->xmm_regs); | 
|  | env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV]; | 
|  | memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE], | 
|  | sizeof env->ymmh_regs); | 
|  | qemu_free(xsave); | 
|  | return 0; | 
|  | #else | 
|  | return kvm_get_fpu(env); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int kvm_get_xcrs(CPUState *env) | 
|  | { | 
|  | #ifdef KVM_CAP_XCRS | 
|  | int i, ret; | 
|  | struct kvm_xcrs xcrs; | 
|  |  | 
|  | if (!kvm_has_xcrs()) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < xcrs.nr_xcrs; i++) { | 
|  | /* Only support xcr0 now */ | 
|  | if (xcrs.xcrs[0].xcr == 0) { | 
|  | env->xcr0 = xcrs.xcrs[0].value; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int kvm_get_sregs(CPUState *env) | 
|  | { | 
|  | struct kvm_sregs sregs; | 
|  | uint32_t hflags; | 
|  | int bit, i, ret; | 
|  |  | 
|  | ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* There can only be one pending IRQ set in the bitmap at a time, so try | 
|  | to find it and save its number instead (-1 for none). */ | 
|  | env->interrupt_injected = -1; | 
|  | for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { | 
|  | if (sregs.interrupt_bitmap[i]) { | 
|  | bit = ctz64(sregs.interrupt_bitmap[i]); | 
|  | env->interrupt_injected = i * 64 + bit; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | get_seg(&env->segs[R_CS], &sregs.cs); | 
|  | get_seg(&env->segs[R_DS], &sregs.ds); | 
|  | get_seg(&env->segs[R_ES], &sregs.es); | 
|  | get_seg(&env->segs[R_FS], &sregs.fs); | 
|  | get_seg(&env->segs[R_GS], &sregs.gs); | 
|  | get_seg(&env->segs[R_SS], &sregs.ss); | 
|  |  | 
|  | get_seg(&env->tr, &sregs.tr); | 
|  | get_seg(&env->ldt, &sregs.ldt); | 
|  |  | 
|  | env->idt.limit = sregs.idt.limit; | 
|  | env->idt.base = sregs.idt.base; | 
|  | env->gdt.limit = sregs.gdt.limit; | 
|  | env->gdt.base = sregs.gdt.base; | 
|  |  | 
|  | env->cr[0] = sregs.cr0; | 
|  | env->cr[2] = sregs.cr2; | 
|  | env->cr[3] = sregs.cr3; | 
|  | env->cr[4] = sregs.cr4; | 
|  |  | 
|  | cpu_set_apic_base(env->apic_state, sregs.apic_base); | 
|  |  | 
|  | env->efer = sregs.efer; | 
|  | //cpu_set_apic_tpr(env->apic_state, sregs.cr8); | 
|  |  | 
|  | #define HFLAG_COPY_MASK \ | 
|  | ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ | 
|  | HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ | 
|  | HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ | 
|  | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) | 
|  |  | 
|  | hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; | 
|  | hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); | 
|  | hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & | 
|  | (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); | 
|  | hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); | 
|  | hflags |= (env->cr[4] & CR4_OSFXSR_MASK) << | 
|  | (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT); | 
|  |  | 
|  | if (env->efer & MSR_EFER_LMA) { | 
|  | hflags |= HF_LMA_MASK; | 
|  | } | 
|  |  | 
|  | if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { | 
|  | hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; | 
|  | } else { | 
|  | hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> | 
|  | (DESC_B_SHIFT - HF_CS32_SHIFT); | 
|  | hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> | 
|  | (DESC_B_SHIFT - HF_SS32_SHIFT); | 
|  | if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) || | 
|  | !(hflags & HF_CS32_MASK)) { | 
|  | hflags |= HF_ADDSEG_MASK; | 
|  | } else { | 
|  | hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base | | 
|  | env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT; | 
|  | } | 
|  | } | 
|  | env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_get_msrs(CPUState *env) | 
|  | { | 
|  | struct { | 
|  | struct kvm_msrs info; | 
|  | struct kvm_msr_entry entries[100]; | 
|  | } msr_data; | 
|  | struct kvm_msr_entry *msrs = msr_data.entries; | 
|  | int ret, i, n; | 
|  |  | 
|  | n = 0; | 
|  | msrs[n++].index = MSR_IA32_SYSENTER_CS; | 
|  | msrs[n++].index = MSR_IA32_SYSENTER_ESP; | 
|  | msrs[n++].index = MSR_IA32_SYSENTER_EIP; | 
|  | msrs[n++].index = MSR_PAT; | 
|  | if (has_msr_star) { | 
|  | msrs[n++].index = MSR_STAR; | 
|  | } | 
|  | if (has_msr_hsave_pa) { | 
|  | msrs[n++].index = MSR_VM_HSAVE_PA; | 
|  | } | 
|  |  | 
|  | if (!env->tsc_valid) { | 
|  | msrs[n++].index = MSR_IA32_TSC; | 
|  | env->tsc_valid = !vm_running; | 
|  | } | 
|  |  | 
|  | #ifdef TARGET_X86_64 | 
|  | if (lm_capable_kernel) { | 
|  | msrs[n++].index = MSR_CSTAR; | 
|  | msrs[n++].index = MSR_KERNELGSBASE; | 
|  | msrs[n++].index = MSR_FMASK; | 
|  | msrs[n++].index = MSR_LSTAR; | 
|  | } | 
|  | #endif | 
|  | msrs[n++].index = MSR_KVM_SYSTEM_TIME; | 
|  | msrs[n++].index = MSR_KVM_WALL_CLOCK; | 
|  | #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF) | 
|  | if (has_msr_async_pf_en) { | 
|  | msrs[n++].index = MSR_KVM_ASYNC_PF_EN; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef KVM_CAP_MCE | 
|  | if (env->mcg_cap) { | 
|  | msrs[n++].index = MSR_MCG_STATUS; | 
|  | msrs[n++].index = MSR_MCG_CTL; | 
|  | for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { | 
|  | msrs[n++].index = MSR_MC0_CTL + i; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | msr_data.info.nmsrs = n; | 
|  | ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ret; i++) { | 
|  | switch (msrs[i].index) { | 
|  | case MSR_IA32_SYSENTER_CS: | 
|  | env->sysenter_cs = msrs[i].data; | 
|  | break; | 
|  | case MSR_IA32_SYSENTER_ESP: | 
|  | env->sysenter_esp = msrs[i].data; | 
|  | break; | 
|  | case MSR_IA32_SYSENTER_EIP: | 
|  | env->sysenter_eip = msrs[i].data; | 
|  | break; | 
|  | case MSR_PAT: | 
|  | env->pat = msrs[i].data; | 
|  | break; | 
|  | case MSR_STAR: | 
|  | env->star = msrs[i].data; | 
|  | break; | 
|  | #ifdef TARGET_X86_64 | 
|  | case MSR_CSTAR: | 
|  | env->cstar = msrs[i].data; | 
|  | break; | 
|  | case MSR_KERNELGSBASE: | 
|  | env->kernelgsbase = msrs[i].data; | 
|  | break; | 
|  | case MSR_FMASK: | 
|  | env->fmask = msrs[i].data; | 
|  | break; | 
|  | case MSR_LSTAR: | 
|  | env->lstar = msrs[i].data; | 
|  | break; | 
|  | #endif | 
|  | case MSR_IA32_TSC: | 
|  | env->tsc = msrs[i].data; | 
|  | break; | 
|  | case MSR_VM_HSAVE_PA: | 
|  | env->vm_hsave = msrs[i].data; | 
|  | break; | 
|  | case MSR_KVM_SYSTEM_TIME: | 
|  | env->system_time_msr = msrs[i].data; | 
|  | break; | 
|  | case MSR_KVM_WALL_CLOCK: | 
|  | env->wall_clock_msr = msrs[i].data; | 
|  | break; | 
|  | #ifdef KVM_CAP_MCE | 
|  | case MSR_MCG_STATUS: | 
|  | env->mcg_status = msrs[i].data; | 
|  | break; | 
|  | case MSR_MCG_CTL: | 
|  | env->mcg_ctl = msrs[i].data; | 
|  | break; | 
|  | #endif | 
|  | default: | 
|  | #ifdef KVM_CAP_MCE | 
|  | if (msrs[i].index >= MSR_MC0_CTL && | 
|  | msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { | 
|  | env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; | 
|  | } | 
|  | #endif | 
|  | break; | 
|  | #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF) | 
|  | case MSR_KVM_ASYNC_PF_EN: | 
|  | env->async_pf_en_msr = msrs[i].data; | 
|  | break; | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_put_mp_state(CPUState *env) | 
|  | { | 
|  | struct kvm_mp_state mp_state = { .mp_state = env->mp_state }; | 
|  |  | 
|  | return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state); | 
|  | } | 
|  |  | 
|  | static int kvm_get_mp_state(CPUState *env) | 
|  | { | 
|  | struct kvm_mp_state mp_state; | 
|  | int ret; | 
|  |  | 
|  | ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | env->mp_state = mp_state.mp_state; | 
|  | if (kvm_irqchip_in_kernel()) { | 
|  | env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_put_vcpu_events(CPUState *env, int level) | 
|  | { | 
|  | #ifdef KVM_CAP_VCPU_EVENTS | 
|  | struct kvm_vcpu_events events; | 
|  |  | 
|  | if (!kvm_has_vcpu_events()) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | events.exception.injected = (env->exception_injected >= 0); | 
|  | events.exception.nr = env->exception_injected; | 
|  | events.exception.has_error_code = env->has_error_code; | 
|  | events.exception.error_code = env->error_code; | 
|  |  | 
|  | events.interrupt.injected = (env->interrupt_injected >= 0); | 
|  | events.interrupt.nr = env->interrupt_injected; | 
|  | events.interrupt.soft = env->soft_interrupt; | 
|  |  | 
|  | events.nmi.injected = env->nmi_injected; | 
|  | events.nmi.pending = env->nmi_pending; | 
|  | events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); | 
|  |  | 
|  | events.sipi_vector = env->sipi_vector; | 
|  |  | 
|  | events.flags = 0; | 
|  | if (level >= KVM_PUT_RESET_STATE) { | 
|  | events.flags |= | 
|  | KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR; | 
|  | } | 
|  |  | 
|  | return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events); | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int kvm_get_vcpu_events(CPUState *env) | 
|  | { | 
|  | #ifdef KVM_CAP_VCPU_EVENTS | 
|  | struct kvm_vcpu_events events; | 
|  | int ret; | 
|  |  | 
|  | if (!kvm_has_vcpu_events()) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | env->exception_injected = | 
|  | events.exception.injected ? events.exception.nr : -1; | 
|  | env->has_error_code = events.exception.has_error_code; | 
|  | env->error_code = events.exception.error_code; | 
|  |  | 
|  | env->interrupt_injected = | 
|  | events.interrupt.injected ? events.interrupt.nr : -1; | 
|  | env->soft_interrupt = events.interrupt.soft; | 
|  |  | 
|  | env->nmi_injected = events.nmi.injected; | 
|  | env->nmi_pending = events.nmi.pending; | 
|  | if (events.nmi.masked) { | 
|  | env->hflags2 |= HF2_NMI_MASK; | 
|  | } else { | 
|  | env->hflags2 &= ~HF2_NMI_MASK; | 
|  | } | 
|  |  | 
|  | env->sipi_vector = events.sipi_vector; | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_guest_debug_workarounds(CPUState *env) | 
|  | { | 
|  | int ret = 0; | 
|  | #ifdef KVM_CAP_SET_GUEST_DEBUG | 
|  | unsigned long reinject_trap = 0; | 
|  |  | 
|  | if (!kvm_has_vcpu_events()) { | 
|  | if (env->exception_injected == 1) { | 
|  | reinject_trap = KVM_GUESTDBG_INJECT_DB; | 
|  | } else if (env->exception_injected == 3) { | 
|  | reinject_trap = KVM_GUESTDBG_INJECT_BP; | 
|  | } | 
|  | env->exception_injected = -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF | 
|  | * injected via SET_GUEST_DEBUG while updating GP regs. Work around this | 
|  | * by updating the debug state once again if single-stepping is on. | 
|  | * Another reason to call kvm_update_guest_debug here is a pending debug | 
|  | * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to | 
|  | * reinject them via SET_GUEST_DEBUG. | 
|  | */ | 
|  | if (reinject_trap || | 
|  | (!kvm_has_robust_singlestep() && env->singlestep_enabled)) { | 
|  | ret = kvm_update_guest_debug(env, reinject_trap); | 
|  | } | 
|  | #endif /* KVM_CAP_SET_GUEST_DEBUG */ | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int kvm_put_debugregs(CPUState *env) | 
|  | { | 
|  | #ifdef KVM_CAP_DEBUGREGS | 
|  | struct kvm_debugregs dbgregs; | 
|  | int i; | 
|  |  | 
|  | if (!kvm_has_debugregs()) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | dbgregs.db[i] = env->dr[i]; | 
|  | } | 
|  | dbgregs.dr6 = env->dr[6]; | 
|  | dbgregs.dr7 = env->dr[7]; | 
|  | dbgregs.flags = 0; | 
|  |  | 
|  | return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs); | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int kvm_get_debugregs(CPUState *env) | 
|  | { | 
|  | #ifdef KVM_CAP_DEBUGREGS | 
|  | struct kvm_debugregs dbgregs; | 
|  | int i, ret; | 
|  |  | 
|  | if (!kvm_has_debugregs()) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | for (i = 0; i < 4; i++) { | 
|  | env->dr[i] = dbgregs.db[i]; | 
|  | } | 
|  | env->dr[4] = env->dr[6] = dbgregs.dr6; | 
|  | env->dr[5] = env->dr[7] = dbgregs.dr7; | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_arch_put_registers(CPUState *env, int level) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | assert(cpu_is_stopped(env) || qemu_cpu_is_self(env)); | 
|  |  | 
|  | ret = kvm_getput_regs(env, 1); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | ret = kvm_put_xsave(env); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | ret = kvm_put_xcrs(env); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | ret = kvm_put_sregs(env); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | /* must be before kvm_put_msrs */ | 
|  | ret = kvm_inject_mce_oldstyle(env); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | ret = kvm_put_msrs(env, level); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | if (level >= KVM_PUT_RESET_STATE) { | 
|  | ret = kvm_put_mp_state(env); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | ret = kvm_put_vcpu_events(env, level); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | ret = kvm_put_debugregs(env); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | /* must be last */ | 
|  | ret = kvm_guest_debug_workarounds(env); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_arch_get_registers(CPUState *env) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | assert(cpu_is_stopped(env) || qemu_cpu_is_self(env)); | 
|  |  | 
|  | ret = kvm_getput_regs(env, 0); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | ret = kvm_get_xsave(env); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | ret = kvm_get_xcrs(env); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | ret = kvm_get_sregs(env); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | ret = kvm_get_msrs(env); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | ret = kvm_get_mp_state(env); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | ret = kvm_get_vcpu_events(env); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | ret = kvm_get_debugregs(env); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvm_arch_pre_run(CPUState *env, struct kvm_run *run) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* Inject NMI */ | 
|  | if (env->interrupt_request & CPU_INTERRUPT_NMI) { | 
|  | env->interrupt_request &= ~CPU_INTERRUPT_NMI; | 
|  | DPRINTF("injected NMI\n"); | 
|  | ret = kvm_vcpu_ioctl(env, KVM_NMI); | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", | 
|  | strerror(-ret)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!kvm_irqchip_in_kernel()) { | 
|  | /* Force the VCPU out of its inner loop to process the INIT request */ | 
|  | if (env->interrupt_request & CPU_INTERRUPT_INIT) { | 
|  | env->exit_request = 1; | 
|  | } | 
|  |  | 
|  | /* Try to inject an interrupt if the guest can accept it */ | 
|  | if (run->ready_for_interrupt_injection && | 
|  | (env->interrupt_request & CPU_INTERRUPT_HARD) && | 
|  | (env->eflags & IF_MASK)) { | 
|  | int irq; | 
|  |  | 
|  | env->interrupt_request &= ~CPU_INTERRUPT_HARD; | 
|  | irq = cpu_get_pic_interrupt(env); | 
|  | if (irq >= 0) { | 
|  | struct kvm_interrupt intr; | 
|  |  | 
|  | intr.irq = irq; | 
|  | DPRINTF("injected interrupt %d\n", irq); | 
|  | ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr); | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, | 
|  | "KVM: injection failed, interrupt lost (%s)\n", | 
|  | strerror(-ret)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If we have an interrupt but the guest is not ready to receive an | 
|  | * interrupt, request an interrupt window exit.  This will | 
|  | * cause a return to userspace as soon as the guest is ready to | 
|  | * receive interrupts. */ | 
|  | if ((env->interrupt_request & CPU_INTERRUPT_HARD)) { | 
|  | run->request_interrupt_window = 1; | 
|  | } else { | 
|  | run->request_interrupt_window = 0; | 
|  | } | 
|  |  | 
|  | DPRINTF("setting tpr\n"); | 
|  | run->cr8 = cpu_get_apic_tpr(env->apic_state); | 
|  | } | 
|  | } | 
|  |  | 
|  | void kvm_arch_post_run(CPUState *env, struct kvm_run *run) | 
|  | { | 
|  | if (run->if_flag) { | 
|  | env->eflags |= IF_MASK; | 
|  | } else { | 
|  | env->eflags &= ~IF_MASK; | 
|  | } | 
|  | cpu_set_apic_tpr(env->apic_state, run->cr8); | 
|  | cpu_set_apic_base(env->apic_state, run->apic_base); | 
|  | } | 
|  |  | 
|  | int kvm_arch_process_async_events(CPUState *env) | 
|  | { | 
|  | if (env->interrupt_request & CPU_INTERRUPT_MCE) { | 
|  | /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ | 
|  | assert(env->mcg_cap); | 
|  |  | 
|  | env->interrupt_request &= ~CPU_INTERRUPT_MCE; | 
|  |  | 
|  | kvm_cpu_synchronize_state(env); | 
|  |  | 
|  | if (env->exception_injected == EXCP08_DBLE) { | 
|  | /* this means triple fault */ | 
|  | qemu_system_reset_request(); | 
|  | env->exit_request = 1; | 
|  | return 0; | 
|  | } | 
|  | env->exception_injected = EXCP12_MCHK; | 
|  | env->has_error_code = 0; | 
|  |  | 
|  | env->halted = 0; | 
|  | if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { | 
|  | env->mp_state = KVM_MP_STATE_RUNNABLE; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (kvm_irqchip_in_kernel()) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (((env->interrupt_request & CPU_INTERRUPT_HARD) && | 
|  | (env->eflags & IF_MASK)) || | 
|  | (env->interrupt_request & CPU_INTERRUPT_NMI)) { | 
|  | env->halted = 0; | 
|  | } | 
|  | if (env->interrupt_request & CPU_INTERRUPT_INIT) { | 
|  | kvm_cpu_synchronize_state(env); | 
|  | do_cpu_init(env); | 
|  | } | 
|  | if (env->interrupt_request & CPU_INTERRUPT_SIPI) { | 
|  | kvm_cpu_synchronize_state(env); | 
|  | do_cpu_sipi(env); | 
|  | } | 
|  |  | 
|  | return env->halted; | 
|  | } | 
|  |  | 
|  | static int kvm_handle_halt(CPUState *env) | 
|  | { | 
|  | if (!((env->interrupt_request & CPU_INTERRUPT_HARD) && | 
|  | (env->eflags & IF_MASK)) && | 
|  | !(env->interrupt_request & CPU_INTERRUPT_NMI)) { | 
|  | env->halted = 1; | 
|  | return EXCP_HLT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef KVM_CAP_SET_GUEST_DEBUG | 
|  | int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp) | 
|  | { | 
|  | static const uint8_t int3 = 0xcc; | 
|  |  | 
|  | if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || | 
|  | cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) { | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp) | 
|  | { | 
|  | uint8_t int3; | 
|  |  | 
|  | if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc || | 
|  | cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct { | 
|  | target_ulong addr; | 
|  | int len; | 
|  | int type; | 
|  | } hw_breakpoint[4]; | 
|  |  | 
|  | static int nb_hw_breakpoint; | 
|  |  | 
|  | static int find_hw_breakpoint(target_ulong addr, int len, int type) | 
|  | { | 
|  | int n; | 
|  |  | 
|  | for (n = 0; n < nb_hw_breakpoint; n++) { | 
|  | if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && | 
|  | (hw_breakpoint[n].len == len || len == -1)) { | 
|  | return n; | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | int kvm_arch_insert_hw_breakpoint(target_ulong addr, | 
|  | target_ulong len, int type) | 
|  | { | 
|  | switch (type) { | 
|  | case GDB_BREAKPOINT_HW: | 
|  | len = 1; | 
|  | break; | 
|  | case GDB_WATCHPOINT_WRITE: | 
|  | case GDB_WATCHPOINT_ACCESS: | 
|  | switch (len) { | 
|  | case 1: | 
|  | break; | 
|  | case 2: | 
|  | case 4: | 
|  | case 8: | 
|  | if (addr & (len - 1)) { | 
|  | return -EINVAL; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | if (nb_hw_breakpoint == 4) { | 
|  | return -ENOBUFS; | 
|  | } | 
|  | if (find_hw_breakpoint(addr, len, type) >= 0) { | 
|  | return -EEXIST; | 
|  | } | 
|  | hw_breakpoint[nb_hw_breakpoint].addr = addr; | 
|  | hw_breakpoint[nb_hw_breakpoint].len = len; | 
|  | hw_breakpoint[nb_hw_breakpoint].type = type; | 
|  | nb_hw_breakpoint++; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_arch_remove_hw_breakpoint(target_ulong addr, | 
|  | target_ulong len, int type) | 
|  | { | 
|  | int n; | 
|  |  | 
|  | n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); | 
|  | if (n < 0) { | 
|  | return -ENOENT; | 
|  | } | 
|  | nb_hw_breakpoint--; | 
|  | hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvm_arch_remove_all_hw_breakpoints(void) | 
|  | { | 
|  | nb_hw_breakpoint = 0; | 
|  | } | 
|  |  | 
|  | static CPUWatchpoint hw_watchpoint; | 
|  |  | 
|  | static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info) | 
|  | { | 
|  | int ret = 0; | 
|  | int n; | 
|  |  | 
|  | if (arch_info->exception == 1) { | 
|  | if (arch_info->dr6 & (1 << 14)) { | 
|  | if (cpu_single_env->singlestep_enabled) { | 
|  | ret = EXCP_DEBUG; | 
|  | } | 
|  | } else { | 
|  | for (n = 0; n < 4; n++) { | 
|  | if (arch_info->dr6 & (1 << n)) { | 
|  | switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { | 
|  | case 0x0: | 
|  | ret = EXCP_DEBUG; | 
|  | break; | 
|  | case 0x1: | 
|  | ret = EXCP_DEBUG; | 
|  | cpu_single_env->watchpoint_hit = &hw_watchpoint; | 
|  | hw_watchpoint.vaddr = hw_breakpoint[n].addr; | 
|  | hw_watchpoint.flags = BP_MEM_WRITE; | 
|  | break; | 
|  | case 0x3: | 
|  | ret = EXCP_DEBUG; | 
|  | cpu_single_env->watchpoint_hit = &hw_watchpoint; | 
|  | hw_watchpoint.vaddr = hw_breakpoint[n].addr; | 
|  | hw_watchpoint.flags = BP_MEM_ACCESS; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) { | 
|  | ret = EXCP_DEBUG; | 
|  | } | 
|  | if (ret == 0) { | 
|  | cpu_synchronize_state(cpu_single_env); | 
|  | assert(cpu_single_env->exception_injected == -1); | 
|  |  | 
|  | /* pass to guest */ | 
|  | cpu_single_env->exception_injected = arch_info->exception; | 
|  | cpu_single_env->has_error_code = 0; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg) | 
|  | { | 
|  | const uint8_t type_code[] = { | 
|  | [GDB_BREAKPOINT_HW] = 0x0, | 
|  | [GDB_WATCHPOINT_WRITE] = 0x1, | 
|  | [GDB_WATCHPOINT_ACCESS] = 0x3 | 
|  | }; | 
|  | const uint8_t len_code[] = { | 
|  | [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 | 
|  | }; | 
|  | int n; | 
|  |  | 
|  | if (kvm_sw_breakpoints_active(env)) { | 
|  | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; | 
|  | } | 
|  | if (nb_hw_breakpoint > 0) { | 
|  | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; | 
|  | dbg->arch.debugreg[7] = 0x0600; | 
|  | for (n = 0; n < nb_hw_breakpoint; n++) { | 
|  | dbg->arch.debugreg[n] = hw_breakpoint[n].addr; | 
|  | dbg->arch.debugreg[7] |= (2 << (n * 2)) | | 
|  | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | | 
|  | ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif /* KVM_CAP_SET_GUEST_DEBUG */ | 
|  |  | 
|  | static bool host_supports_vmx(void) | 
|  | { | 
|  | uint32_t ecx, unused; | 
|  |  | 
|  | host_cpuid(1, 0, &unused, &unused, &ecx, &unused); | 
|  | return ecx & CPUID_EXT_VMX; | 
|  | } | 
|  |  | 
|  | #define VMX_INVALID_GUEST_STATE 0x80000021 | 
|  |  | 
|  | int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run) | 
|  | { | 
|  | uint64_t code; | 
|  | int ret; | 
|  |  | 
|  | switch (run->exit_reason) { | 
|  | case KVM_EXIT_HLT: | 
|  | DPRINTF("handle_hlt\n"); | 
|  | ret = kvm_handle_halt(env); | 
|  | break; | 
|  | case KVM_EXIT_SET_TPR: | 
|  | ret = 0; | 
|  | break; | 
|  | case KVM_EXIT_FAIL_ENTRY: | 
|  | code = run->fail_entry.hardware_entry_failure_reason; | 
|  | fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", | 
|  | code); | 
|  | if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { | 
|  | fprintf(stderr, | 
|  | "\nIf you're runnning a guest on an Intel machine without " | 
|  | "unrestricted mode\n" | 
|  | "support, the failure can be most likely due to the guest " | 
|  | "entering an invalid\n" | 
|  | "state for Intel VT. For example, the guest maybe running " | 
|  | "in big real mode\n" | 
|  | "which is not supported on less recent Intel processors." | 
|  | "\n\n"); | 
|  | } | 
|  | ret = -1; | 
|  | break; | 
|  | case KVM_EXIT_EXCEPTION: | 
|  | fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", | 
|  | run->ex.exception, run->ex.error_code); | 
|  | ret = -1; | 
|  | break; | 
|  | #ifdef KVM_CAP_SET_GUEST_DEBUG | 
|  | case KVM_EXIT_DEBUG: | 
|  | DPRINTF("kvm_exit_debug\n"); | 
|  | ret = kvm_handle_debug(&run->debug.arch); | 
|  | break; | 
|  | #endif /* KVM_CAP_SET_GUEST_DEBUG */ | 
|  | default: | 
|  | fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); | 
|  | ret = -1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bool kvm_arch_stop_on_emulation_error(CPUState *env) | 
|  | { | 
|  | return !(env->cr[0] & CR0_PE_MASK) || | 
|  | ((env->segs[R_CS].selector  & 3) != 3); | 
|  | } |