|  | /* | 
|  | * QEMU float support | 
|  | * | 
|  | * Derived from SoftFloat. | 
|  | */ | 
|  |  | 
|  | /*============================================================================ | 
|  |  | 
|  | This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic | 
|  | Package, Release 2b. | 
|  |  | 
|  | Written by John R. Hauser.  This work was made possible in part by the | 
|  | International Computer Science Institute, located at Suite 600, 1947 Center | 
|  | Street, Berkeley, California 94704.  Funding was partially provided by the | 
|  | National Science Foundation under grant MIP-9311980.  The original version | 
|  | of this code was written as part of a project to build a fixed-point vector | 
|  | processor in collaboration with the University of California at Berkeley, | 
|  | overseen by Profs. Nelson Morgan and John Wawrzynek.  More information | 
|  | is available through the Web page `http://www.cs.berkeley.edu/~jhauser/ | 
|  | arithmetic/SoftFloat.html'. | 
|  |  | 
|  | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has | 
|  | been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES | 
|  | RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS | 
|  | AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES, | 
|  | COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE | 
|  | EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE | 
|  | INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR | 
|  | OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE. | 
|  |  | 
|  | Derivative works are acceptable, even for commercial purposes, so long as | 
|  | (1) the source code for the derivative work includes prominent notice that | 
|  | the work is derivative, and (2) the source code includes prominent notice with | 
|  | these four paragraphs for those parts of this code that are retained. | 
|  |  | 
|  | =============================================================================*/ | 
|  |  | 
|  | #ifndef SOFTFLOAT_H | 
|  | #define SOFTFLOAT_H | 
|  |  | 
|  | #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH) | 
|  | #include <sunmath.h> | 
|  | #endif | 
|  |  | 
|  | #include <inttypes.h> | 
|  | #include "config-host.h" | 
|  | #include "qemu/osdep.h" | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Each of the following `typedef's defines the most convenient type that holds | 
|  | | integers of at least as many bits as specified.  For example, `uint8' should | 
|  | | be the most convenient type that can hold unsigned integers of as many as | 
|  | | 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most | 
|  | | implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed | 
|  | | to the same as `int'. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | typedef uint8_t flag; | 
|  | typedef uint8_t uint8; | 
|  | typedef int8_t int8; | 
|  | typedef unsigned int uint32; | 
|  | typedef signed int int32; | 
|  | typedef uint64_t uint64; | 
|  | typedef int64_t int64; | 
|  |  | 
|  | #define LIT64( a ) a##LL | 
|  | #define INLINE static inline | 
|  |  | 
|  | #define STATUS_PARAM , float_status *status | 
|  | #define STATUS(field) status->field | 
|  | #define STATUS_VAR , status | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Software IEC/IEEE floating-point ordering relations | 
|  | *----------------------------------------------------------------------------*/ | 
|  | enum { | 
|  | float_relation_less      = -1, | 
|  | float_relation_equal     =  0, | 
|  | float_relation_greater   =  1, | 
|  | float_relation_unordered =  2 | 
|  | }; | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Software IEC/IEEE floating-point types. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | /* Use structures for soft-float types.  This prevents accidentally mixing | 
|  | them with native int/float types.  A sufficiently clever compiler and | 
|  | sane ABI should be able to see though these structs.  However | 
|  | x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */ | 
|  | //#define USE_SOFTFLOAT_STRUCT_TYPES | 
|  | #ifdef USE_SOFTFLOAT_STRUCT_TYPES | 
|  | typedef struct { | 
|  | uint16_t v; | 
|  | } float16; | 
|  | #define float16_val(x) (((float16)(x)).v) | 
|  | #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; }) | 
|  | #define const_float16(x) { x } | 
|  | typedef struct { | 
|  | uint32_t v; | 
|  | } float32; | 
|  | /* The cast ensures an error if the wrong type is passed.  */ | 
|  | #define float32_val(x) (((float32)(x)).v) | 
|  | #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; }) | 
|  | #define const_float32(x) { x } | 
|  | typedef struct { | 
|  | uint64_t v; | 
|  | } float64; | 
|  | #define float64_val(x) (((float64)(x)).v) | 
|  | #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; }) | 
|  | #define const_float64(x) { x } | 
|  | #else | 
|  | typedef uint16_t float16; | 
|  | typedef uint32_t float32; | 
|  | typedef uint64_t float64; | 
|  | #define float16_val(x) (x) | 
|  | #define float32_val(x) (x) | 
|  | #define float64_val(x) (x) | 
|  | #define make_float16(x) (x) | 
|  | #define make_float32(x) (x) | 
|  | #define make_float64(x) (x) | 
|  | #define const_float16(x) (x) | 
|  | #define const_float32(x) (x) | 
|  | #define const_float64(x) (x) | 
|  | #endif | 
|  | typedef struct { | 
|  | uint64_t low; | 
|  | uint16_t high; | 
|  | } floatx80; | 
|  | #define make_floatx80(exp, mant) ((floatx80) { mant, exp }) | 
|  | #define make_floatx80_init(exp, mant) { .low = mant, .high = exp } | 
|  | typedef struct { | 
|  | #ifdef HOST_WORDS_BIGENDIAN | 
|  | uint64_t high, low; | 
|  | #else | 
|  | uint64_t low, high; | 
|  | #endif | 
|  | } float128; | 
|  | #define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ }) | 
|  | #define make_float128_init(high_, low_) { .high = high_, .low = low_ } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Software IEC/IEEE floating-point underflow tininess-detection mode. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | enum { | 
|  | float_tininess_after_rounding  = 0, | 
|  | float_tininess_before_rounding = 1 | 
|  | }; | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Software IEC/IEEE floating-point rounding mode. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | enum { | 
|  | float_round_nearest_even = 0, | 
|  | float_round_down         = 1, | 
|  | float_round_up           = 2, | 
|  | float_round_to_zero      = 3 | 
|  | }; | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Software IEC/IEEE floating-point exception flags. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | enum { | 
|  | float_flag_invalid   =  1, | 
|  | float_flag_divbyzero =  4, | 
|  | float_flag_overflow  =  8, | 
|  | float_flag_underflow = 16, | 
|  | float_flag_inexact   = 32, | 
|  | float_flag_input_denormal = 64, | 
|  | float_flag_output_denormal = 128 | 
|  | }; | 
|  |  | 
|  | typedef struct float_status { | 
|  | signed char float_detect_tininess; | 
|  | signed char float_rounding_mode; | 
|  | signed char float_exception_flags; | 
|  | signed char floatx80_rounding_precision; | 
|  | /* should denormalised results go to zero and set the inexact flag? */ | 
|  | flag flush_to_zero; | 
|  | /* should denormalised inputs go to zero and set the input_denormal flag? */ | 
|  | flag flush_inputs_to_zero; | 
|  | flag default_nan_mode; | 
|  | } float_status; | 
|  |  | 
|  | void set_float_rounding_mode(int val STATUS_PARAM); | 
|  | void set_float_exception_flags(int val STATUS_PARAM); | 
|  | INLINE void set_float_detect_tininess(int val STATUS_PARAM) | 
|  | { | 
|  | STATUS(float_detect_tininess) = val; | 
|  | } | 
|  | INLINE void set_flush_to_zero(flag val STATUS_PARAM) | 
|  | { | 
|  | STATUS(flush_to_zero) = val; | 
|  | } | 
|  | INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM) | 
|  | { | 
|  | STATUS(flush_inputs_to_zero) = val; | 
|  | } | 
|  | INLINE void set_default_nan_mode(flag val STATUS_PARAM) | 
|  | { | 
|  | STATUS(default_nan_mode) = val; | 
|  | } | 
|  | INLINE int get_float_exception_flags(float_status *status) | 
|  | { | 
|  | return STATUS(float_exception_flags); | 
|  | } | 
|  | void set_floatx80_rounding_precision(int val STATUS_PARAM); | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Routine to raise any or all of the software IEC/IEEE floating-point | 
|  | | exception flags. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | void float_raise( int8 flags STATUS_PARAM); | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Options to indicate which negations to perform in float*_muladd() | 
|  | | Using these differs from negating an input or output before calling | 
|  | | the muladd function in that this means that a NaN doesn't have its | 
|  | | sign bit inverted before it is propagated. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | enum { | 
|  | float_muladd_negate_c = 1, | 
|  | float_muladd_negate_product = 2, | 
|  | float_muladd_negate_result = 4, | 
|  | }; | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Software IEC/IEEE integer-to-floating-point conversion routines. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | float32 int32_to_float32( int32 STATUS_PARAM ); | 
|  | float64 int32_to_float64( int32 STATUS_PARAM ); | 
|  | float32 uint32_to_float32( uint32 STATUS_PARAM ); | 
|  | float64 uint32_to_float64( uint32 STATUS_PARAM ); | 
|  | floatx80 int32_to_floatx80( int32 STATUS_PARAM ); | 
|  | float128 int32_to_float128( int32 STATUS_PARAM ); | 
|  | float32 int64_to_float32( int64 STATUS_PARAM ); | 
|  | float32 uint64_to_float32( uint64 STATUS_PARAM ); | 
|  | float64 int64_to_float64( int64 STATUS_PARAM ); | 
|  | float64 uint64_to_float64( uint64 STATUS_PARAM ); | 
|  | floatx80 int64_to_floatx80( int64 STATUS_PARAM ); | 
|  | float128 int64_to_float128( int64 STATUS_PARAM ); | 
|  | float128 uint64_to_float128( uint64 STATUS_PARAM ); | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Software half-precision conversion routines. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | float16 float32_to_float16( float32, flag STATUS_PARAM ); | 
|  | float32 float16_to_float32( float16, flag STATUS_PARAM ); | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Software half-precision operations. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | int float16_is_quiet_nan( float16 ); | 
|  | int float16_is_signaling_nan( float16 ); | 
|  | float16 float16_maybe_silence_nan( float16 ); | 
|  |  | 
|  | INLINE int float16_is_any_nan(float16 a) | 
|  | { | 
|  | return ((float16_val(a) & ~0x8000) > 0x7c00); | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | The pattern for a default generated half-precision NaN. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | extern const float16 float16_default_nan; | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Software IEC/IEEE single-precision conversion routines. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | int_fast16_t float32_to_int16_round_to_zero(float32 STATUS_PARAM); | 
|  | uint_fast16_t float32_to_uint16_round_to_zero(float32 STATUS_PARAM); | 
|  | int32 float32_to_int32( float32 STATUS_PARAM ); | 
|  | int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM ); | 
|  | uint32 float32_to_uint32( float32 STATUS_PARAM ); | 
|  | uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM ); | 
|  | int64 float32_to_int64( float32 STATUS_PARAM ); | 
|  | int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM ); | 
|  | float64 float32_to_float64( float32 STATUS_PARAM ); | 
|  | floatx80 float32_to_floatx80( float32 STATUS_PARAM ); | 
|  | float128 float32_to_float128( float32 STATUS_PARAM ); | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Software IEC/IEEE single-precision operations. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | float32 float32_round_to_int( float32 STATUS_PARAM ); | 
|  | float32 float32_add( float32, float32 STATUS_PARAM ); | 
|  | float32 float32_sub( float32, float32 STATUS_PARAM ); | 
|  | float32 float32_mul( float32, float32 STATUS_PARAM ); | 
|  | float32 float32_div( float32, float32 STATUS_PARAM ); | 
|  | float32 float32_rem( float32, float32 STATUS_PARAM ); | 
|  | float32 float32_muladd(float32, float32, float32, int STATUS_PARAM); | 
|  | float32 float32_sqrt( float32 STATUS_PARAM ); | 
|  | float32 float32_exp2( float32 STATUS_PARAM ); | 
|  | float32 float32_log2( float32 STATUS_PARAM ); | 
|  | int float32_eq( float32, float32 STATUS_PARAM ); | 
|  | int float32_le( float32, float32 STATUS_PARAM ); | 
|  | int float32_lt( float32, float32 STATUS_PARAM ); | 
|  | int float32_unordered( float32, float32 STATUS_PARAM ); | 
|  | int float32_eq_quiet( float32, float32 STATUS_PARAM ); | 
|  | int float32_le_quiet( float32, float32 STATUS_PARAM ); | 
|  | int float32_lt_quiet( float32, float32 STATUS_PARAM ); | 
|  | int float32_unordered_quiet( float32, float32 STATUS_PARAM ); | 
|  | int float32_compare( float32, float32 STATUS_PARAM ); | 
|  | int float32_compare_quiet( float32, float32 STATUS_PARAM ); | 
|  | float32 float32_min(float32, float32 STATUS_PARAM); | 
|  | float32 float32_max(float32, float32 STATUS_PARAM); | 
|  | int float32_is_quiet_nan( float32 ); | 
|  | int float32_is_signaling_nan( float32 ); | 
|  | float32 float32_maybe_silence_nan( float32 ); | 
|  | float32 float32_scalbn( float32, int STATUS_PARAM ); | 
|  |  | 
|  | INLINE float32 float32_abs(float32 a) | 
|  | { | 
|  | /* Note that abs does *not* handle NaN specially, nor does | 
|  | * it flush denormal inputs to zero. | 
|  | */ | 
|  | return make_float32(float32_val(a) & 0x7fffffff); | 
|  | } | 
|  |  | 
|  | INLINE float32 float32_chs(float32 a) | 
|  | { | 
|  | /* Note that chs does *not* handle NaN specially, nor does | 
|  | * it flush denormal inputs to zero. | 
|  | */ | 
|  | return make_float32(float32_val(a) ^ 0x80000000); | 
|  | } | 
|  |  | 
|  | INLINE int float32_is_infinity(float32 a) | 
|  | { | 
|  | return (float32_val(a) & 0x7fffffff) == 0x7f800000; | 
|  | } | 
|  |  | 
|  | INLINE int float32_is_neg(float32 a) | 
|  | { | 
|  | return float32_val(a) >> 31; | 
|  | } | 
|  |  | 
|  | INLINE int float32_is_zero(float32 a) | 
|  | { | 
|  | return (float32_val(a) & 0x7fffffff) == 0; | 
|  | } | 
|  |  | 
|  | INLINE int float32_is_any_nan(float32 a) | 
|  | { | 
|  | return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL); | 
|  | } | 
|  |  | 
|  | INLINE int float32_is_zero_or_denormal(float32 a) | 
|  | { | 
|  | return (float32_val(a) & 0x7f800000) == 0; | 
|  | } | 
|  |  | 
|  | INLINE float32 float32_set_sign(float32 a, int sign) | 
|  | { | 
|  | return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31)); | 
|  | } | 
|  |  | 
|  | #define float32_zero make_float32(0) | 
|  | #define float32_one make_float32(0x3f800000) | 
|  | #define float32_ln2 make_float32(0x3f317218) | 
|  | #define float32_pi make_float32(0x40490fdb) | 
|  | #define float32_half make_float32(0x3f000000) | 
|  | #define float32_infinity make_float32(0x7f800000) | 
|  |  | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | The pattern for a default generated single-precision NaN. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | extern const float32 float32_default_nan; | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Software IEC/IEEE double-precision conversion routines. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | int_fast16_t float64_to_int16_round_to_zero(float64 STATUS_PARAM); | 
|  | uint_fast16_t float64_to_uint16_round_to_zero(float64 STATUS_PARAM); | 
|  | int32 float64_to_int32( float64 STATUS_PARAM ); | 
|  | int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM ); | 
|  | uint32 float64_to_uint32( float64 STATUS_PARAM ); | 
|  | uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM ); | 
|  | int64 float64_to_int64( float64 STATUS_PARAM ); | 
|  | int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM ); | 
|  | uint64 float64_to_uint64 (float64 a STATUS_PARAM); | 
|  | uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM); | 
|  | float32 float64_to_float32( float64 STATUS_PARAM ); | 
|  | floatx80 float64_to_floatx80( float64 STATUS_PARAM ); | 
|  | float128 float64_to_float128( float64 STATUS_PARAM ); | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Software IEC/IEEE double-precision operations. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | float64 float64_round_to_int( float64 STATUS_PARAM ); | 
|  | float64 float64_trunc_to_int( float64 STATUS_PARAM ); | 
|  | float64 float64_add( float64, float64 STATUS_PARAM ); | 
|  | float64 float64_sub( float64, float64 STATUS_PARAM ); | 
|  | float64 float64_mul( float64, float64 STATUS_PARAM ); | 
|  | float64 float64_div( float64, float64 STATUS_PARAM ); | 
|  | float64 float64_rem( float64, float64 STATUS_PARAM ); | 
|  | float64 float64_muladd(float64, float64, float64, int STATUS_PARAM); | 
|  | float64 float64_sqrt( float64 STATUS_PARAM ); | 
|  | float64 float64_log2( float64 STATUS_PARAM ); | 
|  | int float64_eq( float64, float64 STATUS_PARAM ); | 
|  | int float64_le( float64, float64 STATUS_PARAM ); | 
|  | int float64_lt( float64, float64 STATUS_PARAM ); | 
|  | int float64_unordered( float64, float64 STATUS_PARAM ); | 
|  | int float64_eq_quiet( float64, float64 STATUS_PARAM ); | 
|  | int float64_le_quiet( float64, float64 STATUS_PARAM ); | 
|  | int float64_lt_quiet( float64, float64 STATUS_PARAM ); | 
|  | int float64_unordered_quiet( float64, float64 STATUS_PARAM ); | 
|  | int float64_compare( float64, float64 STATUS_PARAM ); | 
|  | int float64_compare_quiet( float64, float64 STATUS_PARAM ); | 
|  | float64 float64_min(float64, float64 STATUS_PARAM); | 
|  | float64 float64_max(float64, float64 STATUS_PARAM); | 
|  | int float64_is_quiet_nan( float64 a ); | 
|  | int float64_is_signaling_nan( float64 ); | 
|  | float64 float64_maybe_silence_nan( float64 ); | 
|  | float64 float64_scalbn( float64, int STATUS_PARAM ); | 
|  |  | 
|  | INLINE float64 float64_abs(float64 a) | 
|  | { | 
|  | /* Note that abs does *not* handle NaN specially, nor does | 
|  | * it flush denormal inputs to zero. | 
|  | */ | 
|  | return make_float64(float64_val(a) & 0x7fffffffffffffffLL); | 
|  | } | 
|  |  | 
|  | INLINE float64 float64_chs(float64 a) | 
|  | { | 
|  | /* Note that chs does *not* handle NaN specially, nor does | 
|  | * it flush denormal inputs to zero. | 
|  | */ | 
|  | return make_float64(float64_val(a) ^ 0x8000000000000000LL); | 
|  | } | 
|  |  | 
|  | INLINE int float64_is_infinity(float64 a) | 
|  | { | 
|  | return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL; | 
|  | } | 
|  |  | 
|  | INLINE int float64_is_neg(float64 a) | 
|  | { | 
|  | return float64_val(a) >> 63; | 
|  | } | 
|  |  | 
|  | INLINE int float64_is_zero(float64 a) | 
|  | { | 
|  | return (float64_val(a) & 0x7fffffffffffffffLL) == 0; | 
|  | } | 
|  |  | 
|  | INLINE int float64_is_any_nan(float64 a) | 
|  | { | 
|  | return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL); | 
|  | } | 
|  |  | 
|  | INLINE int float64_is_zero_or_denormal(float64 a) | 
|  | { | 
|  | return (float64_val(a) & 0x7ff0000000000000LL) == 0; | 
|  | } | 
|  |  | 
|  | INLINE float64 float64_set_sign(float64 a, int sign) | 
|  | { | 
|  | return make_float64((float64_val(a) & 0x7fffffffffffffffULL) | 
|  | | ((int64_t)sign << 63)); | 
|  | } | 
|  |  | 
|  | #define float64_zero make_float64(0) | 
|  | #define float64_one make_float64(0x3ff0000000000000LL) | 
|  | #define float64_ln2 make_float64(0x3fe62e42fefa39efLL) | 
|  | #define float64_pi make_float64(0x400921fb54442d18LL) | 
|  | #define float64_half make_float64(0x3fe0000000000000LL) | 
|  | #define float64_infinity make_float64(0x7ff0000000000000LL) | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | The pattern for a default generated double-precision NaN. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | extern const float64 float64_default_nan; | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Software IEC/IEEE extended double-precision conversion routines. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | int32 floatx80_to_int32( floatx80 STATUS_PARAM ); | 
|  | int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM ); | 
|  | int64 floatx80_to_int64( floatx80 STATUS_PARAM ); | 
|  | int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM ); | 
|  | float32 floatx80_to_float32( floatx80 STATUS_PARAM ); | 
|  | float64 floatx80_to_float64( floatx80 STATUS_PARAM ); | 
|  | float128 floatx80_to_float128( floatx80 STATUS_PARAM ); | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Software IEC/IEEE extended double-precision operations. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM ); | 
|  | floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM ); | 
|  | floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM ); | 
|  | floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM ); | 
|  | floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM ); | 
|  | floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM ); | 
|  | floatx80 floatx80_sqrt( floatx80 STATUS_PARAM ); | 
|  | int floatx80_eq( floatx80, floatx80 STATUS_PARAM ); | 
|  | int floatx80_le( floatx80, floatx80 STATUS_PARAM ); | 
|  | int floatx80_lt( floatx80, floatx80 STATUS_PARAM ); | 
|  | int floatx80_unordered( floatx80, floatx80 STATUS_PARAM ); | 
|  | int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM ); | 
|  | int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM ); | 
|  | int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM ); | 
|  | int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM ); | 
|  | int floatx80_compare( floatx80, floatx80 STATUS_PARAM ); | 
|  | int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM ); | 
|  | int floatx80_is_quiet_nan( floatx80 ); | 
|  | int floatx80_is_signaling_nan( floatx80 ); | 
|  | floatx80 floatx80_maybe_silence_nan( floatx80 ); | 
|  | floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM ); | 
|  |  | 
|  | INLINE floatx80 floatx80_abs(floatx80 a) | 
|  | { | 
|  | a.high &= 0x7fff; | 
|  | return a; | 
|  | } | 
|  |  | 
|  | INLINE floatx80 floatx80_chs(floatx80 a) | 
|  | { | 
|  | a.high ^= 0x8000; | 
|  | return a; | 
|  | } | 
|  |  | 
|  | INLINE int floatx80_is_infinity(floatx80 a) | 
|  | { | 
|  | return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL; | 
|  | } | 
|  |  | 
|  | INLINE int floatx80_is_neg(floatx80 a) | 
|  | { | 
|  | return a.high >> 15; | 
|  | } | 
|  |  | 
|  | INLINE int floatx80_is_zero(floatx80 a) | 
|  | { | 
|  | return (a.high & 0x7fff) == 0 && a.low == 0; | 
|  | } | 
|  |  | 
|  | INLINE int floatx80_is_zero_or_denormal(floatx80 a) | 
|  | { | 
|  | return (a.high & 0x7fff) == 0; | 
|  | } | 
|  |  | 
|  | INLINE int floatx80_is_any_nan(floatx80 a) | 
|  | { | 
|  | return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1); | 
|  | } | 
|  |  | 
|  | #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL) | 
|  | #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL) | 
|  | #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL) | 
|  | #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL) | 
|  | #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL) | 
|  | #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL) | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | The pattern for a default generated extended double-precision NaN. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | extern const floatx80 floatx80_default_nan; | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Software IEC/IEEE quadruple-precision conversion routines. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | int32 float128_to_int32( float128 STATUS_PARAM ); | 
|  | int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM ); | 
|  | int64 float128_to_int64( float128 STATUS_PARAM ); | 
|  | int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM ); | 
|  | float32 float128_to_float32( float128 STATUS_PARAM ); | 
|  | float64 float128_to_float64( float128 STATUS_PARAM ); | 
|  | floatx80 float128_to_floatx80( float128 STATUS_PARAM ); | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Software IEC/IEEE quadruple-precision operations. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | float128 float128_round_to_int( float128 STATUS_PARAM ); | 
|  | float128 float128_add( float128, float128 STATUS_PARAM ); | 
|  | float128 float128_sub( float128, float128 STATUS_PARAM ); | 
|  | float128 float128_mul( float128, float128 STATUS_PARAM ); | 
|  | float128 float128_div( float128, float128 STATUS_PARAM ); | 
|  | float128 float128_rem( float128, float128 STATUS_PARAM ); | 
|  | float128 float128_sqrt( float128 STATUS_PARAM ); | 
|  | int float128_eq( float128, float128 STATUS_PARAM ); | 
|  | int float128_le( float128, float128 STATUS_PARAM ); | 
|  | int float128_lt( float128, float128 STATUS_PARAM ); | 
|  | int float128_unordered( float128, float128 STATUS_PARAM ); | 
|  | int float128_eq_quiet( float128, float128 STATUS_PARAM ); | 
|  | int float128_le_quiet( float128, float128 STATUS_PARAM ); | 
|  | int float128_lt_quiet( float128, float128 STATUS_PARAM ); | 
|  | int float128_unordered_quiet( float128, float128 STATUS_PARAM ); | 
|  | int float128_compare( float128, float128 STATUS_PARAM ); | 
|  | int float128_compare_quiet( float128, float128 STATUS_PARAM ); | 
|  | int float128_is_quiet_nan( float128 ); | 
|  | int float128_is_signaling_nan( float128 ); | 
|  | float128 float128_maybe_silence_nan( float128 ); | 
|  | float128 float128_scalbn( float128, int STATUS_PARAM ); | 
|  |  | 
|  | INLINE float128 float128_abs(float128 a) | 
|  | { | 
|  | a.high &= 0x7fffffffffffffffLL; | 
|  | return a; | 
|  | } | 
|  |  | 
|  | INLINE float128 float128_chs(float128 a) | 
|  | { | 
|  | a.high ^= 0x8000000000000000LL; | 
|  | return a; | 
|  | } | 
|  |  | 
|  | INLINE int float128_is_infinity(float128 a) | 
|  | { | 
|  | return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0; | 
|  | } | 
|  |  | 
|  | INLINE int float128_is_neg(float128 a) | 
|  | { | 
|  | return a.high >> 63; | 
|  | } | 
|  |  | 
|  | INLINE int float128_is_zero(float128 a) | 
|  | { | 
|  | return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0; | 
|  | } | 
|  |  | 
|  | INLINE int float128_is_zero_or_denormal(float128 a) | 
|  | { | 
|  | return (a.high & 0x7fff000000000000LL) == 0; | 
|  | } | 
|  |  | 
|  | INLINE int float128_is_any_nan(float128 a) | 
|  | { | 
|  | return ((a.high >> 48) & 0x7fff) == 0x7fff && | 
|  | ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0)); | 
|  | } | 
|  |  | 
|  | #define float128_zero make_float128(0, 0) | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | The pattern for a default generated quadruple-precision NaN. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | extern const float128 float128_default_nan; | 
|  |  | 
|  | #endif /* !SOFTFLOAT_H */ |