|  | /* | 
|  | *  Host code generation | 
|  | * | 
|  | *  Copyright (c) 2003 Fabrice Bellard | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  | #ifdef _WIN32 | 
|  | #include <windows.h> | 
|  | #else | 
|  | #include <sys/types.h> | 
|  | #include <sys/mman.h> | 
|  | #endif | 
|  | #include <stdarg.h> | 
|  | #include <stdlib.h> | 
|  | #include <stdio.h> | 
|  | #include <string.h> | 
|  | #include <inttypes.h> | 
|  |  | 
|  | #include "config.h" | 
|  |  | 
|  | #include "qemu-common.h" | 
|  | #define NO_CPU_IO_DEFS | 
|  | #include "cpu.h" | 
|  | #include "disas/disas.h" | 
|  | #include "tcg.h" | 
|  | #include "qemu/timer.h" | 
|  | #include "exec/memory.h" | 
|  | #include "exec/address-spaces.h" | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  | #include "qemu.h" | 
|  | #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) | 
|  | #include <sys/param.h> | 
|  | #if __FreeBSD_version >= 700104 | 
|  | #define HAVE_KINFO_GETVMMAP | 
|  | #define sigqueue sigqueue_freebsd  /* avoid redefinition */ | 
|  | #include <sys/time.h> | 
|  | #include <sys/proc.h> | 
|  | #include <machine/profile.h> | 
|  | #define _KERNEL | 
|  | #include <sys/user.h> | 
|  | #undef _KERNEL | 
|  | #undef sigqueue | 
|  | #include <libutil.h> | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #include "exec/cputlb.h" | 
|  | #include "translate-all.h" | 
|  |  | 
|  | //#define DEBUG_TB_INVALIDATE | 
|  | //#define DEBUG_FLUSH | 
|  | /* make various TB consistency checks */ | 
|  | //#define DEBUG_TB_CHECK | 
|  |  | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | /* TB consistency checks only implemented for usermode emulation.  */ | 
|  | #undef DEBUG_TB_CHECK | 
|  | #endif | 
|  |  | 
|  | #define SMC_BITMAP_USE_THRESHOLD 10 | 
|  |  | 
|  | typedef struct PageDesc { | 
|  | /* list of TBs intersecting this ram page */ | 
|  | TranslationBlock *first_tb; | 
|  | /* in order to optimize self modifying code, we count the number | 
|  | of lookups we do to a given page to use a bitmap */ | 
|  | unsigned int code_write_count; | 
|  | uint8_t *code_bitmap; | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  | unsigned long flags; | 
|  | #endif | 
|  | } PageDesc; | 
|  |  | 
|  | /* In system mode we want L1_MAP to be based on ram offsets, | 
|  | while in user mode we want it to be based on virtual addresses.  */ | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS | 
|  | # define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS | 
|  | #else | 
|  | # define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS | 
|  | #endif | 
|  | #else | 
|  | # define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS | 
|  | #endif | 
|  |  | 
|  | /* The bits remaining after N lower levels of page tables.  */ | 
|  | #define V_L1_BITS_REM \ | 
|  | ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS) | 
|  |  | 
|  | #if V_L1_BITS_REM < 4 | 
|  | #define V_L1_BITS  (V_L1_BITS_REM + L2_BITS) | 
|  | #else | 
|  | #define V_L1_BITS  V_L1_BITS_REM | 
|  | #endif | 
|  |  | 
|  | #define V_L1_SIZE  ((target_ulong)1 << V_L1_BITS) | 
|  |  | 
|  | #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS) | 
|  |  | 
|  | uintptr_t qemu_real_host_page_size; | 
|  | uintptr_t qemu_host_page_size; | 
|  | uintptr_t qemu_host_page_mask; | 
|  |  | 
|  | /* This is a multi-level map on the virtual address space. | 
|  | The bottom level has pointers to PageDesc.  */ | 
|  | static void *l1_map[V_L1_SIZE]; | 
|  |  | 
|  | /* code generation context */ | 
|  | TCGContext tcg_ctx; | 
|  |  | 
|  | static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, | 
|  | tb_page_addr_t phys_page2); | 
|  | static TranslationBlock *tb_find_pc(uintptr_t tc_ptr); | 
|  |  | 
|  | void cpu_gen_init(void) | 
|  | { | 
|  | tcg_context_init(&tcg_ctx); | 
|  | } | 
|  |  | 
|  | /* return non zero if the very first instruction is invalid so that | 
|  | the virtual CPU can trigger an exception. | 
|  |  | 
|  | '*gen_code_size_ptr' contains the size of the generated code (host | 
|  | code). | 
|  | */ | 
|  | int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr) | 
|  | { | 
|  | TCGContext *s = &tcg_ctx; | 
|  | uint8_t *gen_code_buf; | 
|  | int gen_code_size; | 
|  | #ifdef CONFIG_PROFILER | 
|  | int64_t ti; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_PROFILER | 
|  | s->tb_count1++; /* includes aborted translations because of | 
|  | exceptions */ | 
|  | ti = profile_getclock(); | 
|  | #endif | 
|  | tcg_func_start(s); | 
|  |  | 
|  | gen_intermediate_code(env, tb); | 
|  |  | 
|  | /* generate machine code */ | 
|  | gen_code_buf = tb->tc_ptr; | 
|  | tb->tb_next_offset[0] = 0xffff; | 
|  | tb->tb_next_offset[1] = 0xffff; | 
|  | s->tb_next_offset = tb->tb_next_offset; | 
|  | #ifdef USE_DIRECT_JUMP | 
|  | s->tb_jmp_offset = tb->tb_jmp_offset; | 
|  | s->tb_next = NULL; | 
|  | #else | 
|  | s->tb_jmp_offset = NULL; | 
|  | s->tb_next = tb->tb_next; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_PROFILER | 
|  | s->tb_count++; | 
|  | s->interm_time += profile_getclock() - ti; | 
|  | s->code_time -= profile_getclock(); | 
|  | #endif | 
|  | gen_code_size = tcg_gen_code(s, gen_code_buf); | 
|  | *gen_code_size_ptr = gen_code_size; | 
|  | #ifdef CONFIG_PROFILER | 
|  | s->code_time += profile_getclock(); | 
|  | s->code_in_len += tb->size; | 
|  | s->code_out_len += gen_code_size; | 
|  | #endif | 
|  |  | 
|  | #ifdef DEBUG_DISAS | 
|  | if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) { | 
|  | qemu_log("OUT: [size=%d]\n", *gen_code_size_ptr); | 
|  | log_disas(tb->tc_ptr, *gen_code_size_ptr); | 
|  | qemu_log("\n"); | 
|  | qemu_log_flush(); | 
|  | } | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* The cpu state corresponding to 'searched_pc' is restored. | 
|  | */ | 
|  | static int cpu_restore_state_from_tb(TranslationBlock *tb, CPUArchState *env, | 
|  | uintptr_t searched_pc) | 
|  | { | 
|  | TCGContext *s = &tcg_ctx; | 
|  | int j; | 
|  | uintptr_t tc_ptr; | 
|  | #ifdef CONFIG_PROFILER | 
|  | int64_t ti; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_PROFILER | 
|  | ti = profile_getclock(); | 
|  | #endif | 
|  | tcg_func_start(s); | 
|  |  | 
|  | gen_intermediate_code_pc(env, tb); | 
|  |  | 
|  | if (use_icount) { | 
|  | /* Reset the cycle counter to the start of the block.  */ | 
|  | env->icount_decr.u16.low += tb->icount; | 
|  | /* Clear the IO flag.  */ | 
|  | env->can_do_io = 0; | 
|  | } | 
|  |  | 
|  | /* find opc index corresponding to search_pc */ | 
|  | tc_ptr = (uintptr_t)tb->tc_ptr; | 
|  | if (searched_pc < tc_ptr) | 
|  | return -1; | 
|  |  | 
|  | s->tb_next_offset = tb->tb_next_offset; | 
|  | #ifdef USE_DIRECT_JUMP | 
|  | s->tb_jmp_offset = tb->tb_jmp_offset; | 
|  | s->tb_next = NULL; | 
|  | #else | 
|  | s->tb_jmp_offset = NULL; | 
|  | s->tb_next = tb->tb_next; | 
|  | #endif | 
|  | j = tcg_gen_code_search_pc(s, (uint8_t *)tc_ptr, searched_pc - tc_ptr); | 
|  | if (j < 0) | 
|  | return -1; | 
|  | /* now find start of instruction before */ | 
|  | while (s->gen_opc_instr_start[j] == 0) { | 
|  | j--; | 
|  | } | 
|  | env->icount_decr.u16.low -= s->gen_opc_icount[j]; | 
|  |  | 
|  | restore_state_to_opc(env, tb, j); | 
|  |  | 
|  | #ifdef CONFIG_PROFILER | 
|  | s->restore_time += profile_getclock() - ti; | 
|  | s->restore_count++; | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool cpu_restore_state(CPUArchState *env, uintptr_t retaddr) | 
|  | { | 
|  | TranslationBlock *tb; | 
|  |  | 
|  | tb = tb_find_pc(retaddr); | 
|  | if (tb) { | 
|  | cpu_restore_state_from_tb(tb, env, retaddr); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #ifdef _WIN32 | 
|  | static inline void map_exec(void *addr, long size) | 
|  | { | 
|  | DWORD old_protect; | 
|  | VirtualProtect(addr, size, | 
|  | PAGE_EXECUTE_READWRITE, &old_protect); | 
|  | } | 
|  | #else | 
|  | static inline void map_exec(void *addr, long size) | 
|  | { | 
|  | unsigned long start, end, page_size; | 
|  |  | 
|  | page_size = getpagesize(); | 
|  | start = (unsigned long)addr; | 
|  | start &= ~(page_size - 1); | 
|  |  | 
|  | end = (unsigned long)addr + size; | 
|  | end += page_size - 1; | 
|  | end &= ~(page_size - 1); | 
|  |  | 
|  | mprotect((void *)start, end - start, | 
|  | PROT_READ | PROT_WRITE | PROT_EXEC); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void page_init(void) | 
|  | { | 
|  | /* NOTE: we can always suppose that qemu_host_page_size >= | 
|  | TARGET_PAGE_SIZE */ | 
|  | #ifdef _WIN32 | 
|  | { | 
|  | SYSTEM_INFO system_info; | 
|  |  | 
|  | GetSystemInfo(&system_info); | 
|  | qemu_real_host_page_size = system_info.dwPageSize; | 
|  | } | 
|  | #else | 
|  | qemu_real_host_page_size = getpagesize(); | 
|  | #endif | 
|  | if (qemu_host_page_size == 0) { | 
|  | qemu_host_page_size = qemu_real_host_page_size; | 
|  | } | 
|  | if (qemu_host_page_size < TARGET_PAGE_SIZE) { | 
|  | qemu_host_page_size = TARGET_PAGE_SIZE; | 
|  | } | 
|  | qemu_host_page_mask = ~(qemu_host_page_size - 1); | 
|  |  | 
|  | #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) | 
|  | { | 
|  | #ifdef HAVE_KINFO_GETVMMAP | 
|  | struct kinfo_vmentry *freep; | 
|  | int i, cnt; | 
|  |  | 
|  | freep = kinfo_getvmmap(getpid(), &cnt); | 
|  | if (freep) { | 
|  | mmap_lock(); | 
|  | for (i = 0; i < cnt; i++) { | 
|  | unsigned long startaddr, endaddr; | 
|  |  | 
|  | startaddr = freep[i].kve_start; | 
|  | endaddr = freep[i].kve_end; | 
|  | if (h2g_valid(startaddr)) { | 
|  | startaddr = h2g(startaddr) & TARGET_PAGE_MASK; | 
|  |  | 
|  | if (h2g_valid(endaddr)) { | 
|  | endaddr = h2g(endaddr); | 
|  | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | 
|  | } else { | 
|  | #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS | 
|  | endaddr = ~0ul; | 
|  | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  | free(freep); | 
|  | mmap_unlock(); | 
|  | } | 
|  | #else | 
|  | FILE *f; | 
|  |  | 
|  | last_brk = (unsigned long)sbrk(0); | 
|  |  | 
|  | f = fopen("/compat/linux/proc/self/maps", "r"); | 
|  | if (f) { | 
|  | mmap_lock(); | 
|  |  | 
|  | do { | 
|  | unsigned long startaddr, endaddr; | 
|  | int n; | 
|  |  | 
|  | n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); | 
|  |  | 
|  | if (n == 2 && h2g_valid(startaddr)) { | 
|  | startaddr = h2g(startaddr) & TARGET_PAGE_MASK; | 
|  |  | 
|  | if (h2g_valid(endaddr)) { | 
|  | endaddr = h2g(endaddr); | 
|  | } else { | 
|  | endaddr = ~0ul; | 
|  | } | 
|  | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | 
|  | } | 
|  | } while (!feof(f)); | 
|  |  | 
|  | fclose(f); | 
|  | mmap_unlock(); | 
|  | } | 
|  | #endif | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) | 
|  | { | 
|  | PageDesc *pd; | 
|  | void **lp; | 
|  | int i; | 
|  |  | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  | /* We can't use g_malloc because it may recurse into a locked mutex. */ | 
|  | # define ALLOC(P, SIZE)                                 \ | 
|  | do {                                                \ | 
|  | P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE,    \ | 
|  | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);   \ | 
|  | } while (0) | 
|  | #else | 
|  | # define ALLOC(P, SIZE) \ | 
|  | do { P = g_malloc0(SIZE); } while (0) | 
|  | #endif | 
|  |  | 
|  | /* Level 1.  Always allocated.  */ | 
|  | lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1)); | 
|  |  | 
|  | /* Level 2..N-1.  */ | 
|  | for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) { | 
|  | void **p = *lp; | 
|  |  | 
|  | if (p == NULL) { | 
|  | if (!alloc) { | 
|  | return NULL; | 
|  | } | 
|  | ALLOC(p, sizeof(void *) * L2_SIZE); | 
|  | *lp = p; | 
|  | } | 
|  |  | 
|  | lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1)); | 
|  | } | 
|  |  | 
|  | pd = *lp; | 
|  | if (pd == NULL) { | 
|  | if (!alloc) { | 
|  | return NULL; | 
|  | } | 
|  | ALLOC(pd, sizeof(PageDesc) * L2_SIZE); | 
|  | *lp = pd; | 
|  | } | 
|  |  | 
|  | #undef ALLOC | 
|  |  | 
|  | return pd + (index & (L2_SIZE - 1)); | 
|  | } | 
|  |  | 
|  | static inline PageDesc *page_find(tb_page_addr_t index) | 
|  | { | 
|  | return page_find_alloc(index, 0); | 
|  | } | 
|  |  | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | #define mmap_lock() do { } while (0) | 
|  | #define mmap_unlock() do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  | /* Currently it is not recommended to allocate big chunks of data in | 
|  | user mode. It will change when a dedicated libc will be used.  */ | 
|  | /* ??? 64-bit hosts ought to have no problem mmaping data outside the | 
|  | region in which the guest needs to run.  Revisit this.  */ | 
|  | #define USE_STATIC_CODE_GEN_BUFFER | 
|  | #endif | 
|  |  | 
|  | /* ??? Should configure for this, not list operating systems here.  */ | 
|  | #if (defined(__linux__) \ | 
|  | || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \ | 
|  | || defined(__DragonFly__) || defined(__OpenBSD__) \ | 
|  | || defined(__NetBSD__)) | 
|  | # define USE_MMAP | 
|  | #endif | 
|  |  | 
|  | /* Minimum size of the code gen buffer.  This number is randomly chosen, | 
|  | but not so small that we can't have a fair number of TB's live.  */ | 
|  | #define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024) | 
|  |  | 
|  | /* Maximum size of the code gen buffer we'd like to use.  Unless otherwise | 
|  | indicated, this is constrained by the range of direct branches on the | 
|  | host cpu, as used by the TCG implementation of goto_tb.  */ | 
|  | #if defined(__x86_64__) | 
|  | # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024) | 
|  | #elif defined(__sparc__) | 
|  | # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024) | 
|  | #elif defined(__arm__) | 
|  | # define MAX_CODE_GEN_BUFFER_SIZE  (16u * 1024 * 1024) | 
|  | #elif defined(__s390x__) | 
|  | /* We have a +- 4GB range on the branches; leave some slop.  */ | 
|  | # define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024) | 
|  | #else | 
|  | # define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1) | 
|  | #endif | 
|  |  | 
|  | #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024) | 
|  |  | 
|  | #define DEFAULT_CODE_GEN_BUFFER_SIZE \ | 
|  | (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \ | 
|  | ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE) | 
|  |  | 
|  | static inline size_t size_code_gen_buffer(size_t tb_size) | 
|  | { | 
|  | /* Size the buffer.  */ | 
|  | if (tb_size == 0) { | 
|  | #ifdef USE_STATIC_CODE_GEN_BUFFER | 
|  | tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | 
|  | #else | 
|  | /* ??? Needs adjustments.  */ | 
|  | /* ??? If we relax the requirement that CONFIG_USER_ONLY use the | 
|  | static buffer, we could size this on RESERVED_VA, on the text | 
|  | segment size of the executable, or continue to use the default.  */ | 
|  | tb_size = (unsigned long)(ram_size / 4); | 
|  | #endif | 
|  | } | 
|  | if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) { | 
|  | tb_size = MIN_CODE_GEN_BUFFER_SIZE; | 
|  | } | 
|  | if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) { | 
|  | tb_size = MAX_CODE_GEN_BUFFER_SIZE; | 
|  | } | 
|  | tcg_ctx.code_gen_buffer_size = tb_size; | 
|  | return tb_size; | 
|  | } | 
|  |  | 
|  | #ifdef USE_STATIC_CODE_GEN_BUFFER | 
|  | static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] | 
|  | __attribute__((aligned(CODE_GEN_ALIGN))); | 
|  |  | 
|  | static inline void *alloc_code_gen_buffer(void) | 
|  | { | 
|  | map_exec(static_code_gen_buffer, tcg_ctx.code_gen_buffer_size); | 
|  | return static_code_gen_buffer; | 
|  | } | 
|  | #elif defined(USE_MMAP) | 
|  | static inline void *alloc_code_gen_buffer(void) | 
|  | { | 
|  | int flags = MAP_PRIVATE | MAP_ANONYMOUS; | 
|  | uintptr_t start = 0; | 
|  | void *buf; | 
|  |  | 
|  | /* Constrain the position of the buffer based on the host cpu. | 
|  | Note that these addresses are chosen in concert with the | 
|  | addresses assigned in the relevant linker script file.  */ | 
|  | # if defined(__PIE__) || defined(__PIC__) | 
|  | /* Don't bother setting a preferred location if we're building | 
|  | a position-independent executable.  We're more likely to get | 
|  | an address near the main executable if we let the kernel | 
|  | choose the address.  */ | 
|  | # elif defined(__x86_64__) && defined(MAP_32BIT) | 
|  | /* Force the memory down into low memory with the executable. | 
|  | Leave the choice of exact location with the kernel.  */ | 
|  | flags |= MAP_32BIT; | 
|  | /* Cannot expect to map more than 800MB in low memory.  */ | 
|  | if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) { | 
|  | tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024; | 
|  | } | 
|  | # elif defined(__sparc__) | 
|  | start = 0x40000000ul; | 
|  | # elif defined(__s390x__) | 
|  | start = 0x90000000ul; | 
|  | # endif | 
|  |  | 
|  | buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size, | 
|  | PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0); | 
|  | return buf == MAP_FAILED ? NULL : buf; | 
|  | } | 
|  | #else | 
|  | static inline void *alloc_code_gen_buffer(void) | 
|  | { | 
|  | void *buf = g_malloc(tcg_ctx.code_gen_buffer_size); | 
|  |  | 
|  | if (buf) { | 
|  | map_exec(buf, tcg_ctx.code_gen_buffer_size); | 
|  | } | 
|  | return buf; | 
|  | } | 
|  | #endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */ | 
|  |  | 
|  | static inline void code_gen_alloc(size_t tb_size) | 
|  | { | 
|  | tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size); | 
|  | tcg_ctx.code_gen_buffer = alloc_code_gen_buffer(); | 
|  | if (tcg_ctx.code_gen_buffer == NULL) { | 
|  | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size, | 
|  | QEMU_MADV_HUGEPAGE); | 
|  |  | 
|  | /* Steal room for the prologue at the end of the buffer.  This ensures | 
|  | (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches | 
|  | from TB's to the prologue are going to be in range.  It also means | 
|  | that we don't need to mark (additional) portions of the data segment | 
|  | as executable.  */ | 
|  | tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer + | 
|  | tcg_ctx.code_gen_buffer_size - 1024; | 
|  | tcg_ctx.code_gen_buffer_size -= 1024; | 
|  |  | 
|  | tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size - | 
|  | (TCG_MAX_OP_SIZE * OPC_BUF_SIZE); | 
|  | tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size / | 
|  | CODE_GEN_AVG_BLOCK_SIZE; | 
|  | tcg_ctx.tb_ctx.tbs = | 
|  | g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock)); | 
|  | } | 
|  |  | 
|  | /* Must be called before using the QEMU cpus. 'tb_size' is the size | 
|  | (in bytes) allocated to the translation buffer. Zero means default | 
|  | size. */ | 
|  | void tcg_exec_init(unsigned long tb_size) | 
|  | { | 
|  | cpu_gen_init(); | 
|  | code_gen_alloc(tb_size); | 
|  | tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer; | 
|  | tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size); | 
|  | page_init(); | 
|  | #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE) | 
|  | /* There's no guest base to take into account, so go ahead and | 
|  | initialize the prologue now.  */ | 
|  | tcg_prologue_init(&tcg_ctx); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | bool tcg_enabled(void) | 
|  | { | 
|  | return tcg_ctx.code_gen_buffer != NULL; | 
|  | } | 
|  |  | 
|  | /* Allocate a new translation block. Flush the translation buffer if | 
|  | too many translation blocks or too much generated code. */ | 
|  | static TranslationBlock *tb_alloc(target_ulong pc) | 
|  | { | 
|  | TranslationBlock *tb; | 
|  |  | 
|  | if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks || | 
|  | (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >= | 
|  | tcg_ctx.code_gen_buffer_max_size) { | 
|  | return NULL; | 
|  | } | 
|  | tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++]; | 
|  | tb->pc = pc; | 
|  | tb->cflags = 0; | 
|  | return tb; | 
|  | } | 
|  |  | 
|  | void tb_free(TranslationBlock *tb) | 
|  | { | 
|  | /* In practice this is mostly used for single use temporary TB | 
|  | Ignore the hard cases and just back up if this TB happens to | 
|  | be the last one generated.  */ | 
|  | if (tcg_ctx.tb_ctx.nb_tbs > 0 && | 
|  | tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) { | 
|  | tcg_ctx.code_gen_ptr = tb->tc_ptr; | 
|  | tcg_ctx.tb_ctx.nb_tbs--; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void invalidate_page_bitmap(PageDesc *p) | 
|  | { | 
|  | if (p->code_bitmap) { | 
|  | g_free(p->code_bitmap); | 
|  | p->code_bitmap = NULL; | 
|  | } | 
|  | p->code_write_count = 0; | 
|  | } | 
|  |  | 
|  | /* Set to NULL all the 'first_tb' fields in all PageDescs. */ | 
|  | static void page_flush_tb_1(int level, void **lp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (*lp == NULL) { | 
|  | return; | 
|  | } | 
|  | if (level == 0) { | 
|  | PageDesc *pd = *lp; | 
|  |  | 
|  | for (i = 0; i < L2_SIZE; ++i) { | 
|  | pd[i].first_tb = NULL; | 
|  | invalidate_page_bitmap(pd + i); | 
|  | } | 
|  | } else { | 
|  | void **pp = *lp; | 
|  |  | 
|  | for (i = 0; i < L2_SIZE; ++i) { | 
|  | page_flush_tb_1(level - 1, pp + i); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void page_flush_tb(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < V_L1_SIZE; i++) { | 
|  | page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* flush all the translation blocks */ | 
|  | /* XXX: tb_flush is currently not thread safe */ | 
|  | void tb_flush(CPUArchState *env1) | 
|  | { | 
|  | CPUArchState *env; | 
|  |  | 
|  | #if defined(DEBUG_FLUSH) | 
|  | printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n", | 
|  | (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer), | 
|  | tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ? | 
|  | ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) / | 
|  | tcg_ctx.tb_ctx.nb_tbs : 0); | 
|  | #endif | 
|  | if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) | 
|  | > tcg_ctx.code_gen_buffer_size) { | 
|  | cpu_abort(env1, "Internal error: code buffer overflow\n"); | 
|  | } | 
|  | tcg_ctx.tb_ctx.nb_tbs = 0; | 
|  |  | 
|  | for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | memset(env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof(void *)); | 
|  | } | 
|  |  | 
|  | memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, | 
|  | CODE_GEN_PHYS_HASH_SIZE * sizeof(void *)); | 
|  | page_flush_tb(); | 
|  |  | 
|  | tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer; | 
|  | /* XXX: flush processor icache at this point if cache flush is | 
|  | expensive */ | 
|  | tcg_ctx.tb_ctx.tb_flush_count++; | 
|  | } | 
|  |  | 
|  | #ifdef DEBUG_TB_CHECK | 
|  |  | 
|  | static void tb_invalidate_check(target_ulong address) | 
|  | { | 
|  | TranslationBlock *tb; | 
|  | int i; | 
|  |  | 
|  | address &= TARGET_PAGE_MASK; | 
|  | for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) { | 
|  | for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | 
|  | if (!(address + TARGET_PAGE_SIZE <= tb->pc || | 
|  | address >= tb->pc + tb->size)) { | 
|  | printf("ERROR invalidate: address=" TARGET_FMT_lx | 
|  | " PC=%08lx size=%04x\n", | 
|  | address, (long)tb->pc, tb->size); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* verify that all the pages have correct rights for code */ | 
|  | static void tb_page_check(void) | 
|  | { | 
|  | TranslationBlock *tb; | 
|  | int i, flags1, flags2; | 
|  |  | 
|  | for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) { | 
|  | for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL; | 
|  | tb = tb->phys_hash_next) { | 
|  | flags1 = page_get_flags(tb->pc); | 
|  | flags2 = page_get_flags(tb->pc + tb->size - 1); | 
|  | if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { | 
|  | printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", | 
|  | (long)tb->pc, tb->size, flags1, flags2); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb) | 
|  | { | 
|  | TranslationBlock *tb1; | 
|  |  | 
|  | for (;;) { | 
|  | tb1 = *ptb; | 
|  | if (tb1 == tb) { | 
|  | *ptb = tb1->phys_hash_next; | 
|  | break; | 
|  | } | 
|  | ptb = &tb1->phys_hash_next; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb) | 
|  | { | 
|  | TranslationBlock *tb1; | 
|  | unsigned int n1; | 
|  |  | 
|  | for (;;) { | 
|  | tb1 = *ptb; | 
|  | n1 = (uintptr_t)tb1 & 3; | 
|  | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | 
|  | if (tb1 == tb) { | 
|  | *ptb = tb1->page_next[n1]; | 
|  | break; | 
|  | } | 
|  | ptb = &tb1->page_next[n1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void tb_jmp_remove(TranslationBlock *tb, int n) | 
|  | { | 
|  | TranslationBlock *tb1, **ptb; | 
|  | unsigned int n1; | 
|  |  | 
|  | ptb = &tb->jmp_next[n]; | 
|  | tb1 = *ptb; | 
|  | if (tb1) { | 
|  | /* find tb(n) in circular list */ | 
|  | for (;;) { | 
|  | tb1 = *ptb; | 
|  | n1 = (uintptr_t)tb1 & 3; | 
|  | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | 
|  | if (n1 == n && tb1 == tb) { | 
|  | break; | 
|  | } | 
|  | if (n1 == 2) { | 
|  | ptb = &tb1->jmp_first; | 
|  | } else { | 
|  | ptb = &tb1->jmp_next[n1]; | 
|  | } | 
|  | } | 
|  | /* now we can suppress tb(n) from the list */ | 
|  | *ptb = tb->jmp_next[n]; | 
|  |  | 
|  | tb->jmp_next[n] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* reset the jump entry 'n' of a TB so that it is not chained to | 
|  | another TB */ | 
|  | static inline void tb_reset_jump(TranslationBlock *tb, int n) | 
|  | { | 
|  | tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n])); | 
|  | } | 
|  |  | 
|  | /* invalidate one TB */ | 
|  | void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) | 
|  | { | 
|  | CPUArchState *env; | 
|  | PageDesc *p; | 
|  | unsigned int h, n1; | 
|  | tb_page_addr_t phys_pc; | 
|  | TranslationBlock *tb1, *tb2; | 
|  |  | 
|  | /* remove the TB from the hash list */ | 
|  | phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | 
|  | h = tb_phys_hash_func(phys_pc); | 
|  | tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb); | 
|  |  | 
|  | /* remove the TB from the page list */ | 
|  | if (tb->page_addr[0] != page_addr) { | 
|  | p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); | 
|  | tb_page_remove(&p->first_tb, tb); | 
|  | invalidate_page_bitmap(p); | 
|  | } | 
|  | if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) { | 
|  | p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); | 
|  | tb_page_remove(&p->first_tb, tb); | 
|  | invalidate_page_bitmap(p); | 
|  | } | 
|  |  | 
|  | tcg_ctx.tb_ctx.tb_invalidated_flag = 1; | 
|  |  | 
|  | /* remove the TB from the hash list */ | 
|  | h = tb_jmp_cache_hash_func(tb->pc); | 
|  | for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | if (env->tb_jmp_cache[h] == tb) { | 
|  | env->tb_jmp_cache[h] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* suppress this TB from the two jump lists */ | 
|  | tb_jmp_remove(tb, 0); | 
|  | tb_jmp_remove(tb, 1); | 
|  |  | 
|  | /* suppress any remaining jumps to this TB */ | 
|  | tb1 = tb->jmp_first; | 
|  | for (;;) { | 
|  | n1 = (uintptr_t)tb1 & 3; | 
|  | if (n1 == 2) { | 
|  | break; | 
|  | } | 
|  | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | 
|  | tb2 = tb1->jmp_next[n1]; | 
|  | tb_reset_jump(tb1, n1); | 
|  | tb1->jmp_next[n1] = NULL; | 
|  | tb1 = tb2; | 
|  | } | 
|  | tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */ | 
|  |  | 
|  | tcg_ctx.tb_ctx.tb_phys_invalidate_count++; | 
|  | } | 
|  |  | 
|  | static inline void set_bits(uint8_t *tab, int start, int len) | 
|  | { | 
|  | int end, mask, end1; | 
|  |  | 
|  | end = start + len; | 
|  | tab += start >> 3; | 
|  | mask = 0xff << (start & 7); | 
|  | if ((start & ~7) == (end & ~7)) { | 
|  | if (start < end) { | 
|  | mask &= ~(0xff << (end & 7)); | 
|  | *tab |= mask; | 
|  | } | 
|  | } else { | 
|  | *tab++ |= mask; | 
|  | start = (start + 8) & ~7; | 
|  | end1 = end & ~7; | 
|  | while (start < end1) { | 
|  | *tab++ = 0xff; | 
|  | start += 8; | 
|  | } | 
|  | if (start < end) { | 
|  | mask = ~(0xff << (end & 7)); | 
|  | *tab |= mask; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void build_page_bitmap(PageDesc *p) | 
|  | { | 
|  | int n, tb_start, tb_end; | 
|  | TranslationBlock *tb; | 
|  |  | 
|  | p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8); | 
|  |  | 
|  | tb = p->first_tb; | 
|  | while (tb != NULL) { | 
|  | n = (uintptr_t)tb & 3; | 
|  | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | 
|  | /* NOTE: this is subtle as a TB may span two physical pages */ | 
|  | if (n == 0) { | 
|  | /* NOTE: tb_end may be after the end of the page, but | 
|  | it is not a problem */ | 
|  | tb_start = tb->pc & ~TARGET_PAGE_MASK; | 
|  | tb_end = tb_start + tb->size; | 
|  | if (tb_end > TARGET_PAGE_SIZE) { | 
|  | tb_end = TARGET_PAGE_SIZE; | 
|  | } | 
|  | } else { | 
|  | tb_start = 0; | 
|  | tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | 
|  | } | 
|  | set_bits(p->code_bitmap, tb_start, tb_end - tb_start); | 
|  | tb = tb->page_next[n]; | 
|  | } | 
|  | } | 
|  |  | 
|  | TranslationBlock *tb_gen_code(CPUArchState *env, | 
|  | target_ulong pc, target_ulong cs_base, | 
|  | int flags, int cflags) | 
|  | { | 
|  | TranslationBlock *tb; | 
|  | uint8_t *tc_ptr; | 
|  | tb_page_addr_t phys_pc, phys_page2; | 
|  | target_ulong virt_page2; | 
|  | int code_gen_size; | 
|  |  | 
|  | phys_pc = get_page_addr_code(env, pc); | 
|  | tb = tb_alloc(pc); | 
|  | if (!tb) { | 
|  | /* flush must be done */ | 
|  | tb_flush(env); | 
|  | /* cannot fail at this point */ | 
|  | tb = tb_alloc(pc); | 
|  | /* Don't forget to invalidate previous TB info.  */ | 
|  | tcg_ctx.tb_ctx.tb_invalidated_flag = 1; | 
|  | } | 
|  | tc_ptr = tcg_ctx.code_gen_ptr; | 
|  | tb->tc_ptr = tc_ptr; | 
|  | tb->cs_base = cs_base; | 
|  | tb->flags = flags; | 
|  | tb->cflags = cflags; | 
|  | cpu_gen_code(env, tb, &code_gen_size); | 
|  | tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr + | 
|  | code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); | 
|  |  | 
|  | /* check next page if needed */ | 
|  | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; | 
|  | phys_page2 = -1; | 
|  | if ((pc & TARGET_PAGE_MASK) != virt_page2) { | 
|  | phys_page2 = get_page_addr_code(env, virt_page2); | 
|  | } | 
|  | tb_link_page(tb, phys_pc, phys_page2); | 
|  | return tb; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Invalidate all TBs which intersect with the target physical address range | 
|  | * [start;end[. NOTE: start and end may refer to *different* physical pages. | 
|  | * 'is_cpu_write_access' should be true if called from a real cpu write | 
|  | * access: the virtual CPU will exit the current TB if code is modified inside | 
|  | * this TB. | 
|  | */ | 
|  | void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end, | 
|  | int is_cpu_write_access) | 
|  | { | 
|  | while (start < end) { | 
|  | tb_invalidate_phys_page_range(start, end, is_cpu_write_access); | 
|  | start &= TARGET_PAGE_MASK; | 
|  | start += TARGET_PAGE_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Invalidate all TBs which intersect with the target physical address range | 
|  | * [start;end[. NOTE: start and end must refer to the *same* physical page. | 
|  | * 'is_cpu_write_access' should be true if called from a real cpu write | 
|  | * access: the virtual CPU will exit the current TB if code is modified inside | 
|  | * this TB. | 
|  | */ | 
|  | void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end, | 
|  | int is_cpu_write_access) | 
|  | { | 
|  | TranslationBlock *tb, *tb_next, *saved_tb; | 
|  | CPUArchState *env = cpu_single_env; | 
|  | CPUState *cpu = NULL; | 
|  | tb_page_addr_t tb_start, tb_end; | 
|  | PageDesc *p; | 
|  | int n; | 
|  | #ifdef TARGET_HAS_PRECISE_SMC | 
|  | int current_tb_not_found = is_cpu_write_access; | 
|  | TranslationBlock *current_tb = NULL; | 
|  | int current_tb_modified = 0; | 
|  | target_ulong current_pc = 0; | 
|  | target_ulong current_cs_base = 0; | 
|  | int current_flags = 0; | 
|  | #endif /* TARGET_HAS_PRECISE_SMC */ | 
|  |  | 
|  | p = page_find(start >> TARGET_PAGE_BITS); | 
|  | if (!p) { | 
|  | return; | 
|  | } | 
|  | if (!p->code_bitmap && | 
|  | ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD && | 
|  | is_cpu_write_access) { | 
|  | /* build code bitmap */ | 
|  | build_page_bitmap(p); | 
|  | } | 
|  | if (env != NULL) { | 
|  | cpu = ENV_GET_CPU(env); | 
|  | } | 
|  |  | 
|  | /* we remove all the TBs in the range [start, end[ */ | 
|  | /* XXX: see if in some cases it could be faster to invalidate all | 
|  | the code */ | 
|  | tb = p->first_tb; | 
|  | while (tb != NULL) { | 
|  | n = (uintptr_t)tb & 3; | 
|  | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | 
|  | tb_next = tb->page_next[n]; | 
|  | /* NOTE: this is subtle as a TB may span two physical pages */ | 
|  | if (n == 0) { | 
|  | /* NOTE: tb_end may be after the end of the page, but | 
|  | it is not a problem */ | 
|  | tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | 
|  | tb_end = tb_start + tb->size; | 
|  | } else { | 
|  | tb_start = tb->page_addr[1]; | 
|  | tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | 
|  | } | 
|  | if (!(tb_end <= start || tb_start >= end)) { | 
|  | #ifdef TARGET_HAS_PRECISE_SMC | 
|  | if (current_tb_not_found) { | 
|  | current_tb_not_found = 0; | 
|  | current_tb = NULL; | 
|  | if (env->mem_io_pc) { | 
|  | /* now we have a real cpu fault */ | 
|  | current_tb = tb_find_pc(env->mem_io_pc); | 
|  | } | 
|  | } | 
|  | if (current_tb == tb && | 
|  | (current_tb->cflags & CF_COUNT_MASK) != 1) { | 
|  | /* If we are modifying the current TB, we must stop | 
|  | its execution. We could be more precise by checking | 
|  | that the modification is after the current PC, but it | 
|  | would require a specialized function to partially | 
|  | restore the CPU state */ | 
|  |  | 
|  | current_tb_modified = 1; | 
|  | cpu_restore_state_from_tb(current_tb, env, env->mem_io_pc); | 
|  | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, | 
|  | ¤t_flags); | 
|  | } | 
|  | #endif /* TARGET_HAS_PRECISE_SMC */ | 
|  | /* we need to do that to handle the case where a signal | 
|  | occurs while doing tb_phys_invalidate() */ | 
|  | saved_tb = NULL; | 
|  | if (cpu != NULL) { | 
|  | saved_tb = cpu->current_tb; | 
|  | cpu->current_tb = NULL; | 
|  | } | 
|  | tb_phys_invalidate(tb, -1); | 
|  | if (cpu != NULL) { | 
|  | cpu->current_tb = saved_tb; | 
|  | if (env && env->interrupt_request && cpu->current_tb) { | 
|  | cpu_interrupt(env, env->interrupt_request); | 
|  | } | 
|  | } | 
|  | } | 
|  | tb = tb_next; | 
|  | } | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | /* if no code remaining, no need to continue to use slow writes */ | 
|  | if (!p->first_tb) { | 
|  | invalidate_page_bitmap(p); | 
|  | if (is_cpu_write_access) { | 
|  | tlb_unprotect_code_phys(env, start, env->mem_io_vaddr); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | #ifdef TARGET_HAS_PRECISE_SMC | 
|  | if (current_tb_modified) { | 
|  | /* we generate a block containing just the instruction | 
|  | modifying the memory. It will ensure that it cannot modify | 
|  | itself */ | 
|  | cpu->current_tb = NULL; | 
|  | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); | 
|  | cpu_resume_from_signal(env, NULL); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* len must be <= 8 and start must be a multiple of len */ | 
|  | void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len) | 
|  | { | 
|  | PageDesc *p; | 
|  | int offset, b; | 
|  |  | 
|  | #if 0 | 
|  | if (1) { | 
|  | qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n", | 
|  | cpu_single_env->mem_io_vaddr, len, | 
|  | cpu_single_env->eip, | 
|  | cpu_single_env->eip + | 
|  | (intptr_t)cpu_single_env->segs[R_CS].base); | 
|  | } | 
|  | #endif | 
|  | p = page_find(start >> TARGET_PAGE_BITS); | 
|  | if (!p) { | 
|  | return; | 
|  | } | 
|  | if (p->code_bitmap) { | 
|  | offset = start & ~TARGET_PAGE_MASK; | 
|  | b = p->code_bitmap[offset >> 3] >> (offset & 7); | 
|  | if (b & ((1 << len) - 1)) { | 
|  | goto do_invalidate; | 
|  | } | 
|  | } else { | 
|  | do_invalidate: | 
|  | tb_invalidate_phys_page_range(start, start + len, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if !defined(CONFIG_SOFTMMU) | 
|  | static void tb_invalidate_phys_page(tb_page_addr_t addr, | 
|  | uintptr_t pc, void *puc) | 
|  | { | 
|  | TranslationBlock *tb; | 
|  | PageDesc *p; | 
|  | int n; | 
|  | #ifdef TARGET_HAS_PRECISE_SMC | 
|  | TranslationBlock *current_tb = NULL; | 
|  | CPUArchState *env = cpu_single_env; | 
|  | CPUState *cpu = NULL; | 
|  | int current_tb_modified = 0; | 
|  | target_ulong current_pc = 0; | 
|  | target_ulong current_cs_base = 0; | 
|  | int current_flags = 0; | 
|  | #endif | 
|  |  | 
|  | addr &= TARGET_PAGE_MASK; | 
|  | p = page_find(addr >> TARGET_PAGE_BITS); | 
|  | if (!p) { | 
|  | return; | 
|  | } | 
|  | tb = p->first_tb; | 
|  | #ifdef TARGET_HAS_PRECISE_SMC | 
|  | if (tb && pc != 0) { | 
|  | current_tb = tb_find_pc(pc); | 
|  | } | 
|  | if (env != NULL) { | 
|  | cpu = ENV_GET_CPU(env); | 
|  | } | 
|  | #endif | 
|  | while (tb != NULL) { | 
|  | n = (uintptr_t)tb & 3; | 
|  | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | 
|  | #ifdef TARGET_HAS_PRECISE_SMC | 
|  | if (current_tb == tb && | 
|  | (current_tb->cflags & CF_COUNT_MASK) != 1) { | 
|  | /* If we are modifying the current TB, we must stop | 
|  | its execution. We could be more precise by checking | 
|  | that the modification is after the current PC, but it | 
|  | would require a specialized function to partially | 
|  | restore the CPU state */ | 
|  |  | 
|  | current_tb_modified = 1; | 
|  | cpu_restore_state_from_tb(current_tb, env, pc); | 
|  | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, | 
|  | ¤t_flags); | 
|  | } | 
|  | #endif /* TARGET_HAS_PRECISE_SMC */ | 
|  | tb_phys_invalidate(tb, addr); | 
|  | tb = tb->page_next[n]; | 
|  | } | 
|  | p->first_tb = NULL; | 
|  | #ifdef TARGET_HAS_PRECISE_SMC | 
|  | if (current_tb_modified) { | 
|  | /* we generate a block containing just the instruction | 
|  | modifying the memory. It will ensure that it cannot modify | 
|  | itself */ | 
|  | cpu->current_tb = NULL; | 
|  | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); | 
|  | cpu_resume_from_signal(env, puc); | 
|  | } | 
|  | #endif | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* add the tb in the target page and protect it if necessary */ | 
|  | static inline void tb_alloc_page(TranslationBlock *tb, | 
|  | unsigned int n, tb_page_addr_t page_addr) | 
|  | { | 
|  | PageDesc *p; | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | bool page_already_protected; | 
|  | #endif | 
|  |  | 
|  | tb->page_addr[n] = page_addr; | 
|  | p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1); | 
|  | tb->page_next[n] = p->first_tb; | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | page_already_protected = p->first_tb != NULL; | 
|  | #endif | 
|  | p->first_tb = (TranslationBlock *)((uintptr_t)tb | n); | 
|  | invalidate_page_bitmap(p); | 
|  |  | 
|  | #if defined(TARGET_HAS_SMC) || 1 | 
|  |  | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  | if (p->flags & PAGE_WRITE) { | 
|  | target_ulong addr; | 
|  | PageDesc *p2; | 
|  | int prot; | 
|  |  | 
|  | /* force the host page as non writable (writes will have a | 
|  | page fault + mprotect overhead) */ | 
|  | page_addr &= qemu_host_page_mask; | 
|  | prot = 0; | 
|  | for (addr = page_addr; addr < page_addr + qemu_host_page_size; | 
|  | addr += TARGET_PAGE_SIZE) { | 
|  |  | 
|  | p2 = page_find(addr >> TARGET_PAGE_BITS); | 
|  | if (!p2) { | 
|  | continue; | 
|  | } | 
|  | prot |= p2->flags; | 
|  | p2->flags &= ~PAGE_WRITE; | 
|  | } | 
|  | mprotect(g2h(page_addr), qemu_host_page_size, | 
|  | (prot & PAGE_BITS) & ~PAGE_WRITE); | 
|  | #ifdef DEBUG_TB_INVALIDATE | 
|  | printf("protecting code page: 0x" TARGET_FMT_lx "\n", | 
|  | page_addr); | 
|  | #endif | 
|  | } | 
|  | #else | 
|  | /* if some code is already present, then the pages are already | 
|  | protected. So we handle the case where only the first TB is | 
|  | allocated in a physical page */ | 
|  | if (!page_already_protected) { | 
|  | tlb_protect_code(page_addr); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #endif /* TARGET_HAS_SMC */ | 
|  | } | 
|  |  | 
|  | /* add a new TB and link it to the physical page tables. phys_page2 is | 
|  | (-1) to indicate that only one page contains the TB. */ | 
|  | static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, | 
|  | tb_page_addr_t phys_page2) | 
|  | { | 
|  | unsigned int h; | 
|  | TranslationBlock **ptb; | 
|  |  | 
|  | /* Grab the mmap lock to stop another thread invalidating this TB | 
|  | before we are done.  */ | 
|  | mmap_lock(); | 
|  | /* add in the physical hash table */ | 
|  | h = tb_phys_hash_func(phys_pc); | 
|  | ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h]; | 
|  | tb->phys_hash_next = *ptb; | 
|  | *ptb = tb; | 
|  |  | 
|  | /* add in the page list */ | 
|  | tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK); | 
|  | if (phys_page2 != -1) { | 
|  | tb_alloc_page(tb, 1, phys_page2); | 
|  | } else { | 
|  | tb->page_addr[1] = -1; | 
|  | } | 
|  |  | 
|  | tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); | 
|  | tb->jmp_next[0] = NULL; | 
|  | tb->jmp_next[1] = NULL; | 
|  |  | 
|  | /* init original jump addresses */ | 
|  | if (tb->tb_next_offset[0] != 0xffff) { | 
|  | tb_reset_jump(tb, 0); | 
|  | } | 
|  | if (tb->tb_next_offset[1] != 0xffff) { | 
|  | tb_reset_jump(tb, 1); | 
|  | } | 
|  |  | 
|  | #ifdef DEBUG_TB_CHECK | 
|  | tb_page_check(); | 
|  | #endif | 
|  | mmap_unlock(); | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_QEMU_LDST_OPTIMIZATION) && defined(CONFIG_SOFTMMU) | 
|  | /* check whether the given addr is in TCG generated code buffer or not */ | 
|  | bool is_tcg_gen_code(uintptr_t tc_ptr) | 
|  | { | 
|  | /* This can be called during code generation, code_gen_buffer_max_size | 
|  | is used instead of code_gen_ptr for upper boundary checking */ | 
|  | return (tc_ptr >= (uintptr_t)tcg_ctx.code_gen_buffer && | 
|  | tc_ptr < (uintptr_t)(tcg_ctx.code_gen_buffer + | 
|  | tcg_ctx.code_gen_buffer_max_size)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr < | 
|  | tb[1].tc_ptr. Return NULL if not found */ | 
|  | static TranslationBlock *tb_find_pc(uintptr_t tc_ptr) | 
|  | { | 
|  | int m_min, m_max, m; | 
|  | uintptr_t v; | 
|  | TranslationBlock *tb; | 
|  |  | 
|  | if (tcg_ctx.tb_ctx.nb_tbs <= 0) { | 
|  | return NULL; | 
|  | } | 
|  | if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer || | 
|  | tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) { | 
|  | return NULL; | 
|  | } | 
|  | /* binary search (cf Knuth) */ | 
|  | m_min = 0; | 
|  | m_max = tcg_ctx.tb_ctx.nb_tbs - 1; | 
|  | while (m_min <= m_max) { | 
|  | m = (m_min + m_max) >> 1; | 
|  | tb = &tcg_ctx.tb_ctx.tbs[m]; | 
|  | v = (uintptr_t)tb->tc_ptr; | 
|  | if (v == tc_ptr) { | 
|  | return tb; | 
|  | } else if (tc_ptr < v) { | 
|  | m_max = m - 1; | 
|  | } else { | 
|  | m_min = m + 1; | 
|  | } | 
|  | } | 
|  | return &tcg_ctx.tb_ctx.tbs[m_max]; | 
|  | } | 
|  |  | 
|  | static void tb_reset_jump_recursive(TranslationBlock *tb); | 
|  |  | 
|  | static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n) | 
|  | { | 
|  | TranslationBlock *tb1, *tb_next, **ptb; | 
|  | unsigned int n1; | 
|  |  | 
|  | tb1 = tb->jmp_next[n]; | 
|  | if (tb1 != NULL) { | 
|  | /* find head of list */ | 
|  | for (;;) { | 
|  | n1 = (uintptr_t)tb1 & 3; | 
|  | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | 
|  | if (n1 == 2) { | 
|  | break; | 
|  | } | 
|  | tb1 = tb1->jmp_next[n1]; | 
|  | } | 
|  | /* we are now sure now that tb jumps to tb1 */ | 
|  | tb_next = tb1; | 
|  |  | 
|  | /* remove tb from the jmp_first list */ | 
|  | ptb = &tb_next->jmp_first; | 
|  | for (;;) { | 
|  | tb1 = *ptb; | 
|  | n1 = (uintptr_t)tb1 & 3; | 
|  | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | 
|  | if (n1 == n && tb1 == tb) { | 
|  | break; | 
|  | } | 
|  | ptb = &tb1->jmp_next[n1]; | 
|  | } | 
|  | *ptb = tb->jmp_next[n]; | 
|  | tb->jmp_next[n] = NULL; | 
|  |  | 
|  | /* suppress the jump to next tb in generated code */ | 
|  | tb_reset_jump(tb, n); | 
|  |  | 
|  | /* suppress jumps in the tb on which we could have jumped */ | 
|  | tb_reset_jump_recursive(tb_next); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tb_reset_jump_recursive(TranslationBlock *tb) | 
|  | { | 
|  | tb_reset_jump_recursive2(tb, 0); | 
|  | tb_reset_jump_recursive2(tb, 1); | 
|  | } | 
|  |  | 
|  | #if defined(TARGET_HAS_ICE) && !defined(CONFIG_USER_ONLY) | 
|  | void tb_invalidate_phys_addr(hwaddr addr) | 
|  | { | 
|  | ram_addr_t ram_addr; | 
|  | MemoryRegionSection *section; | 
|  |  | 
|  | section = phys_page_find(address_space_memory.dispatch, | 
|  | addr >> TARGET_PAGE_BITS); | 
|  | if (!(memory_region_is_ram(section->mr) | 
|  | || (section->mr->rom_device && section->mr->readable))) { | 
|  | return; | 
|  | } | 
|  | ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK) | 
|  | + memory_region_section_addr(section, addr); | 
|  | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); | 
|  | } | 
|  | #endif /* TARGET_HAS_ICE && !defined(CONFIG_USER_ONLY) */ | 
|  |  | 
|  | void cpu_unlink_tb(CPUState *cpu) | 
|  | { | 
|  | /* FIXME: TB unchaining isn't SMP safe.  For now just ignore the | 
|  | problem and hope the cpu will stop of its own accord.  For userspace | 
|  | emulation this often isn't actually as bad as it sounds.  Often | 
|  | signals are used primarily to interrupt blocking syscalls.  */ | 
|  | TranslationBlock *tb; | 
|  | static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED; | 
|  |  | 
|  | spin_lock(&interrupt_lock); | 
|  | tb = cpu->current_tb; | 
|  | /* if the cpu is currently executing code, we must unlink it and | 
|  | all the potentially executing TB */ | 
|  | if (tb) { | 
|  | cpu->current_tb = NULL; | 
|  | tb_reset_jump_recursive(tb); | 
|  | } | 
|  | spin_unlock(&interrupt_lock); | 
|  | } | 
|  |  | 
|  | void tb_check_watchpoint(CPUArchState *env) | 
|  | { | 
|  | TranslationBlock *tb; | 
|  |  | 
|  | tb = tb_find_pc(env->mem_io_pc); | 
|  | if (!tb) { | 
|  | cpu_abort(env, "check_watchpoint: could not find TB for pc=%p", | 
|  | (void *)env->mem_io_pc); | 
|  | } | 
|  | cpu_restore_state_from_tb(tb, env, env->mem_io_pc); | 
|  | tb_phys_invalidate(tb, -1); | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | /* mask must never be zero, except for A20 change call */ | 
|  | static void tcg_handle_interrupt(CPUArchState *env, int mask) | 
|  | { | 
|  | CPUState *cpu = ENV_GET_CPU(env); | 
|  | int old_mask; | 
|  |  | 
|  | old_mask = env->interrupt_request; | 
|  | env->interrupt_request |= mask; | 
|  |  | 
|  | /* | 
|  | * If called from iothread context, wake the target cpu in | 
|  | * case its halted. | 
|  | */ | 
|  | if (!qemu_cpu_is_self(cpu)) { | 
|  | qemu_cpu_kick(cpu); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (use_icount) { | 
|  | env->icount_decr.u16.high = 0xffff; | 
|  | if (!can_do_io(env) | 
|  | && (mask & ~old_mask) != 0) { | 
|  | cpu_abort(env, "Raised interrupt while not in I/O function"); | 
|  | } | 
|  | } else { | 
|  | cpu_unlink_tb(cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt; | 
|  |  | 
|  | /* in deterministic execution mode, instructions doing device I/Os | 
|  | must be at the end of the TB */ | 
|  | void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr) | 
|  | { | 
|  | TranslationBlock *tb; | 
|  | uint32_t n, cflags; | 
|  | target_ulong pc, cs_base; | 
|  | uint64_t flags; | 
|  |  | 
|  | tb = tb_find_pc(retaddr); | 
|  | if (!tb) { | 
|  | cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", | 
|  | (void *)retaddr); | 
|  | } | 
|  | n = env->icount_decr.u16.low + tb->icount; | 
|  | cpu_restore_state_from_tb(tb, env, retaddr); | 
|  | /* Calculate how many instructions had been executed before the fault | 
|  | occurred.  */ | 
|  | n = n - env->icount_decr.u16.low; | 
|  | /* Generate a new TB ending on the I/O insn.  */ | 
|  | n++; | 
|  | /* On MIPS and SH, delay slot instructions can only be restarted if | 
|  | they were already the first instruction in the TB.  If this is not | 
|  | the first instruction in a TB then re-execute the preceding | 
|  | branch.  */ | 
|  | #if defined(TARGET_MIPS) | 
|  | if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) { | 
|  | env->active_tc.PC -= 4; | 
|  | env->icount_decr.u16.low++; | 
|  | env->hflags &= ~MIPS_HFLAG_BMASK; | 
|  | } | 
|  | #elif defined(TARGET_SH4) | 
|  | if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 | 
|  | && n > 1) { | 
|  | env->pc -= 2; | 
|  | env->icount_decr.u16.low++; | 
|  | env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); | 
|  | } | 
|  | #endif | 
|  | /* This should never happen.  */ | 
|  | if (n > CF_COUNT_MASK) { | 
|  | cpu_abort(env, "TB too big during recompile"); | 
|  | } | 
|  |  | 
|  | cflags = n | CF_LAST_IO; | 
|  | pc = tb->pc; | 
|  | cs_base = tb->cs_base; | 
|  | flags = tb->flags; | 
|  | tb_phys_invalidate(tb, -1); | 
|  | /* FIXME: In theory this could raise an exception.  In practice | 
|  | we have already translated the block once so it's probably ok.  */ | 
|  | tb_gen_code(env, pc, cs_base, flags, cflags); | 
|  | /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not | 
|  | the first in the TB) then we end up generating a whole new TB and | 
|  | repeating the fault, which is horribly inefficient. | 
|  | Better would be to execute just this insn uncached, or generate a | 
|  | second new TB.  */ | 
|  | cpu_resume_from_signal(env, NULL); | 
|  | } | 
|  |  | 
|  | void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | /* Discard jump cache entries for any tb which might potentially | 
|  | overlap the flushed page.  */ | 
|  | i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE); | 
|  | memset(&env->tb_jmp_cache[i], 0, | 
|  | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | 
|  |  | 
|  | i = tb_jmp_cache_hash_page(addr); | 
|  | memset(&env->tb_jmp_cache[i], 0, | 
|  | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | 
|  | } | 
|  |  | 
|  | void dump_exec_info(FILE *f, fprintf_function cpu_fprintf) | 
|  | { | 
|  | int i, target_code_size, max_target_code_size; | 
|  | int direct_jmp_count, direct_jmp2_count, cross_page; | 
|  | TranslationBlock *tb; | 
|  |  | 
|  | target_code_size = 0; | 
|  | max_target_code_size = 0; | 
|  | cross_page = 0; | 
|  | direct_jmp_count = 0; | 
|  | direct_jmp2_count = 0; | 
|  | for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) { | 
|  | tb = &tcg_ctx.tb_ctx.tbs[i]; | 
|  | target_code_size += tb->size; | 
|  | if (tb->size > max_target_code_size) { | 
|  | max_target_code_size = tb->size; | 
|  | } | 
|  | if (tb->page_addr[1] != -1) { | 
|  | cross_page++; | 
|  | } | 
|  | if (tb->tb_next_offset[0] != 0xffff) { | 
|  | direct_jmp_count++; | 
|  | if (tb->tb_next_offset[1] != 0xffff) { | 
|  | direct_jmp2_count++; | 
|  | } | 
|  | } | 
|  | } | 
|  | /* XXX: avoid using doubles ? */ | 
|  | cpu_fprintf(f, "Translation buffer state:\n"); | 
|  | cpu_fprintf(f, "gen code size       %td/%zd\n", | 
|  | tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer, | 
|  | tcg_ctx.code_gen_buffer_max_size); | 
|  | cpu_fprintf(f, "TB count            %d/%d\n", | 
|  | tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks); | 
|  | cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n", | 
|  | tcg_ctx.tb_ctx.nb_tbs ? target_code_size / | 
|  | tcg_ctx.tb_ctx.nb_tbs : 0, | 
|  | max_target_code_size); | 
|  | cpu_fprintf(f, "TB avg host size    %td bytes (expansion ratio: %0.1f)\n", | 
|  | tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr - | 
|  | tcg_ctx.code_gen_buffer) / | 
|  | tcg_ctx.tb_ctx.nb_tbs : 0, | 
|  | target_code_size ? (double) (tcg_ctx.code_gen_ptr - | 
|  | tcg_ctx.code_gen_buffer) / | 
|  | target_code_size : 0); | 
|  | cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page, | 
|  | tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) / | 
|  | tcg_ctx.tb_ctx.nb_tbs : 0); | 
|  | cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n", | 
|  | direct_jmp_count, | 
|  | tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) / | 
|  | tcg_ctx.tb_ctx.nb_tbs : 0, | 
|  | direct_jmp2_count, | 
|  | tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) / | 
|  | tcg_ctx.tb_ctx.nb_tbs : 0); | 
|  | cpu_fprintf(f, "\nStatistics:\n"); | 
|  | cpu_fprintf(f, "TB flush count      %d\n", tcg_ctx.tb_ctx.tb_flush_count); | 
|  | cpu_fprintf(f, "TB invalidate count %d\n", | 
|  | tcg_ctx.tb_ctx.tb_phys_invalidate_count); | 
|  | cpu_fprintf(f, "TLB flush count     %d\n", tlb_flush_count); | 
|  | tcg_dump_info(f, cpu_fprintf); | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_USER_ONLY */ | 
|  |  | 
|  | void cpu_interrupt(CPUArchState *env, int mask) | 
|  | { | 
|  | CPUState *cpu = ENV_GET_CPU(env); | 
|  |  | 
|  | env->interrupt_request |= mask; | 
|  | cpu_unlink_tb(cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Walks guest process memory "regions" one by one | 
|  | * and calls callback function 'fn' for each region. | 
|  | */ | 
|  | struct walk_memory_regions_data { | 
|  | walk_memory_regions_fn fn; | 
|  | void *priv; | 
|  | uintptr_t start; | 
|  | int prot; | 
|  | }; | 
|  |  | 
|  | static int walk_memory_regions_end(struct walk_memory_regions_data *data, | 
|  | abi_ulong end, int new_prot) | 
|  | { | 
|  | if (data->start != -1ul) { | 
|  | int rc = data->fn(data->priv, data->start, end, data->prot); | 
|  | if (rc != 0) { | 
|  | return rc; | 
|  | } | 
|  | } | 
|  |  | 
|  | data->start = (new_prot ? end : -1ul); | 
|  | data->prot = new_prot; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int walk_memory_regions_1(struct walk_memory_regions_data *data, | 
|  | abi_ulong base, int level, void **lp) | 
|  | { | 
|  | abi_ulong pa; | 
|  | int i, rc; | 
|  |  | 
|  | if (*lp == NULL) { | 
|  | return walk_memory_regions_end(data, base, 0); | 
|  | } | 
|  |  | 
|  | if (level == 0) { | 
|  | PageDesc *pd = *lp; | 
|  |  | 
|  | for (i = 0; i < L2_SIZE; ++i) { | 
|  | int prot = pd[i].flags; | 
|  |  | 
|  | pa = base | (i << TARGET_PAGE_BITS); | 
|  | if (prot != data->prot) { | 
|  | rc = walk_memory_regions_end(data, pa, prot); | 
|  | if (rc != 0) { | 
|  | return rc; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | void **pp = *lp; | 
|  |  | 
|  | for (i = 0; i < L2_SIZE; ++i) { | 
|  | pa = base | ((abi_ulong)i << | 
|  | (TARGET_PAGE_BITS + L2_BITS * level)); | 
|  | rc = walk_memory_regions_1(data, pa, level - 1, pp + i); | 
|  | if (rc != 0) { | 
|  | return rc; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int walk_memory_regions(void *priv, walk_memory_regions_fn fn) | 
|  | { | 
|  | struct walk_memory_regions_data data; | 
|  | uintptr_t i; | 
|  |  | 
|  | data.fn = fn; | 
|  | data.priv = priv; | 
|  | data.start = -1ul; | 
|  | data.prot = 0; | 
|  |  | 
|  | for (i = 0; i < V_L1_SIZE; i++) { | 
|  | int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT, | 
|  | V_L1_SHIFT / L2_BITS - 1, l1_map + i); | 
|  |  | 
|  | if (rc != 0) { | 
|  | return rc; | 
|  | } | 
|  | } | 
|  |  | 
|  | return walk_memory_regions_end(&data, 0, 0); | 
|  | } | 
|  |  | 
|  | static int dump_region(void *priv, abi_ulong start, | 
|  | abi_ulong end, unsigned long prot) | 
|  | { | 
|  | FILE *f = (FILE *)priv; | 
|  |  | 
|  | (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx | 
|  | " "TARGET_ABI_FMT_lx" %c%c%c\n", | 
|  | start, end, end - start, | 
|  | ((prot & PAGE_READ) ? 'r' : '-'), | 
|  | ((prot & PAGE_WRITE) ? 'w' : '-'), | 
|  | ((prot & PAGE_EXEC) ? 'x' : '-')); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* dump memory mappings */ | 
|  | void page_dump(FILE *f) | 
|  | { | 
|  | (void) fprintf(f, "%-8s %-8s %-8s %s\n", | 
|  | "start", "end", "size", "prot"); | 
|  | walk_memory_regions(f, dump_region); | 
|  | } | 
|  |  | 
|  | int page_get_flags(target_ulong address) | 
|  | { | 
|  | PageDesc *p; | 
|  |  | 
|  | p = page_find(address >> TARGET_PAGE_BITS); | 
|  | if (!p) { | 
|  | return 0; | 
|  | } | 
|  | return p->flags; | 
|  | } | 
|  |  | 
|  | /* Modify the flags of a page and invalidate the code if necessary. | 
|  | The flag PAGE_WRITE_ORG is positioned automatically depending | 
|  | on PAGE_WRITE.  The mmap_lock should already be held.  */ | 
|  | void page_set_flags(target_ulong start, target_ulong end, int flags) | 
|  | { | 
|  | target_ulong addr, len; | 
|  |  | 
|  | /* This function should never be called with addresses outside the | 
|  | guest address space.  If this assert fires, it probably indicates | 
|  | a missing call to h2g_valid.  */ | 
|  | #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS | 
|  | assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); | 
|  | #endif | 
|  | assert(start < end); | 
|  |  | 
|  | start = start & TARGET_PAGE_MASK; | 
|  | end = TARGET_PAGE_ALIGN(end); | 
|  |  | 
|  | if (flags & PAGE_WRITE) { | 
|  | flags |= PAGE_WRITE_ORG; | 
|  | } | 
|  |  | 
|  | for (addr = start, len = end - start; | 
|  | len != 0; | 
|  | len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | 
|  | PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1); | 
|  |  | 
|  | /* If the write protection bit is set, then we invalidate | 
|  | the code inside.  */ | 
|  | if (!(p->flags & PAGE_WRITE) && | 
|  | (flags & PAGE_WRITE) && | 
|  | p->first_tb) { | 
|  | tb_invalidate_phys_page(addr, 0, NULL); | 
|  | } | 
|  | p->flags = flags; | 
|  | } | 
|  | } | 
|  |  | 
|  | int page_check_range(target_ulong start, target_ulong len, int flags) | 
|  | { | 
|  | PageDesc *p; | 
|  | target_ulong end; | 
|  | target_ulong addr; | 
|  |  | 
|  | /* This function should never be called with addresses outside the | 
|  | guest address space.  If this assert fires, it probably indicates | 
|  | a missing call to h2g_valid.  */ | 
|  | #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS | 
|  | assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); | 
|  | #endif | 
|  |  | 
|  | if (len == 0) { | 
|  | return 0; | 
|  | } | 
|  | if (start + len - 1 < start) { | 
|  | /* We've wrapped around.  */ | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* must do before we loose bits in the next step */ | 
|  | end = TARGET_PAGE_ALIGN(start + len); | 
|  | start = start & TARGET_PAGE_MASK; | 
|  |  | 
|  | for (addr = start, len = end - start; | 
|  | len != 0; | 
|  | len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | 
|  | p = page_find(addr >> TARGET_PAGE_BITS); | 
|  | if (!p) { | 
|  | return -1; | 
|  | } | 
|  | if (!(p->flags & PAGE_VALID)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) { | 
|  | return -1; | 
|  | } | 
|  | if (flags & PAGE_WRITE) { | 
|  | if (!(p->flags & PAGE_WRITE_ORG)) { | 
|  | return -1; | 
|  | } | 
|  | /* unprotect the page if it was put read-only because it | 
|  | contains translated code */ | 
|  | if (!(p->flags & PAGE_WRITE)) { | 
|  | if (!page_unprotect(addr, 0, NULL)) { | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* called from signal handler: invalidate the code and unprotect the | 
|  | page. Return TRUE if the fault was successfully handled. */ | 
|  | int page_unprotect(target_ulong address, uintptr_t pc, void *puc) | 
|  | { | 
|  | unsigned int prot; | 
|  | PageDesc *p; | 
|  | target_ulong host_start, host_end, addr; | 
|  |  | 
|  | /* Technically this isn't safe inside a signal handler.  However we | 
|  | know this only ever happens in a synchronous SEGV handler, so in | 
|  | practice it seems to be ok.  */ | 
|  | mmap_lock(); | 
|  |  | 
|  | p = page_find(address >> TARGET_PAGE_BITS); | 
|  | if (!p) { | 
|  | mmap_unlock(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* if the page was really writable, then we change its | 
|  | protection back to writable */ | 
|  | if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) { | 
|  | host_start = address & qemu_host_page_mask; | 
|  | host_end = host_start + qemu_host_page_size; | 
|  |  | 
|  | prot = 0; | 
|  | for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) { | 
|  | p = page_find(addr >> TARGET_PAGE_BITS); | 
|  | p->flags |= PAGE_WRITE; | 
|  | prot |= p->flags; | 
|  |  | 
|  | /* and since the content will be modified, we must invalidate | 
|  | the corresponding translated code. */ | 
|  | tb_invalidate_phys_page(addr, pc, puc); | 
|  | #ifdef DEBUG_TB_CHECK | 
|  | tb_invalidate_check(addr); | 
|  | #endif | 
|  | } | 
|  | mprotect((void *)g2h(host_start), qemu_host_page_size, | 
|  | prot & PAGE_BITS); | 
|  |  | 
|  | mmap_unlock(); | 
|  | return 1; | 
|  | } | 
|  | mmap_unlock(); | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_USER_ONLY */ |