|  | /* | 
|  | *  Helpers for floating point instructions. | 
|  | * | 
|  | *  Copyright (c) 2007 Jocelyn Mayer | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  |  | 
|  | #include "cpu.h" | 
|  | #include "helper.h" | 
|  | #include "softfloat.h" | 
|  |  | 
|  | #define FP_STATUS (env->fp_status) | 
|  |  | 
|  |  | 
|  | void helper_setroundmode(CPUAlphaState *env, uint32_t val) | 
|  | { | 
|  | set_float_rounding_mode(val, &FP_STATUS); | 
|  | } | 
|  |  | 
|  | void helper_setflushzero(CPUAlphaState *env, uint32_t val) | 
|  | { | 
|  | set_flush_to_zero(val, &FP_STATUS); | 
|  | } | 
|  |  | 
|  | void helper_fp_exc_clear(CPUAlphaState *env) | 
|  | { | 
|  | set_float_exception_flags(0, &FP_STATUS); | 
|  | } | 
|  |  | 
|  | uint32_t helper_fp_exc_get(CPUAlphaState *env) | 
|  | { | 
|  | return get_float_exception_flags(&FP_STATUS); | 
|  | } | 
|  |  | 
|  | static inline void inline_fp_exc_raise(CPUAlphaState *env, uintptr_t retaddr, | 
|  | uint32_t exc, uint32_t regno) | 
|  | { | 
|  | if (exc) { | 
|  | uint32_t hw_exc = 0; | 
|  |  | 
|  | if (exc & float_flag_invalid) { | 
|  | hw_exc |= EXC_M_INV; | 
|  | } | 
|  | if (exc & float_flag_divbyzero) { | 
|  | hw_exc |= EXC_M_DZE; | 
|  | } | 
|  | if (exc & float_flag_overflow) { | 
|  | hw_exc |= EXC_M_FOV; | 
|  | } | 
|  | if (exc & float_flag_underflow) { | 
|  | hw_exc |= EXC_M_UNF; | 
|  | } | 
|  | if (exc & float_flag_inexact) { | 
|  | hw_exc |= EXC_M_INE; | 
|  | } | 
|  |  | 
|  | arith_excp(env, retaddr, hw_exc, 1ull << regno); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Raise exceptions for ieee fp insns without software completion. | 
|  | In that case there are no exceptions that don't trap; the mask | 
|  | doesn't apply.  */ | 
|  | void helper_fp_exc_raise(CPUAlphaState *env, uint32_t exc, uint32_t regno) | 
|  | { | 
|  | inline_fp_exc_raise(env, GETPC(), exc, regno); | 
|  | } | 
|  |  | 
|  | /* Raise exceptions for ieee fp insns with software completion.  */ | 
|  | void helper_fp_exc_raise_s(CPUAlphaState *env, uint32_t exc, uint32_t regno) | 
|  | { | 
|  | if (exc) { | 
|  | env->fpcr_exc_status |= exc; | 
|  | exc &= ~env->fpcr_exc_mask; | 
|  | inline_fp_exc_raise(env, GETPC(), exc, regno); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Input handing without software completion.  Trap for all | 
|  | non-finite numbers.  */ | 
|  | void helper_ieee_input(CPUAlphaState *env, uint64_t val) | 
|  | { | 
|  | uint32_t exp = (uint32_t)(val >> 52) & 0x7ff; | 
|  | uint64_t frac = val & 0xfffffffffffffull; | 
|  |  | 
|  | if (exp == 0) { | 
|  | /* Denormals without DNZ set raise an exception.  */ | 
|  | if (frac != 0 && !env->fp_status.flush_inputs_to_zero) { | 
|  | arith_excp(env, GETPC(), EXC_M_UNF, 0); | 
|  | } | 
|  | } else if (exp == 0x7ff) { | 
|  | /* Infinity or NaN.  */ | 
|  | /* ??? I'm not sure these exception bit flags are correct.  I do | 
|  | know that the Linux kernel, at least, doesn't rely on them and | 
|  | just emulates the insn to figure out what exception to use.  */ | 
|  | arith_excp(env, GETPC(), frac ? EXC_M_INV : EXC_M_FOV, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Similar, but does not trap for infinities.  Used for comparisons.  */ | 
|  | void helper_ieee_input_cmp(CPUAlphaState *env, uint64_t val) | 
|  | { | 
|  | uint32_t exp = (uint32_t)(val >> 52) & 0x7ff; | 
|  | uint64_t frac = val & 0xfffffffffffffull; | 
|  |  | 
|  | if (exp == 0) { | 
|  | /* Denormals without DNZ set raise an exception.  */ | 
|  | if (frac != 0 && !env->fp_status.flush_inputs_to_zero) { | 
|  | arith_excp(env, GETPC(), EXC_M_UNF, 0); | 
|  | } | 
|  | } else if (exp == 0x7ff && frac) { | 
|  | /* NaN.  */ | 
|  | arith_excp(env, GETPC(), EXC_M_INV, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* F floating (VAX) */ | 
|  | static uint64_t float32_to_f(float32 fa) | 
|  | { | 
|  | uint64_t r, exp, mant, sig; | 
|  | CPU_FloatU a; | 
|  |  | 
|  | a.f = fa; | 
|  | sig = ((uint64_t)a.l & 0x80000000) << 32; | 
|  | exp = (a.l >> 23) & 0xff; | 
|  | mant = ((uint64_t)a.l & 0x007fffff) << 29; | 
|  |  | 
|  | if (exp == 255) { | 
|  | /* NaN or infinity */ | 
|  | r = 1; /* VAX dirty zero */ | 
|  | } else if (exp == 0) { | 
|  | if (mant == 0) { | 
|  | /* Zero */ | 
|  | r = 0; | 
|  | } else { | 
|  | /* Denormalized */ | 
|  | r = sig | ((exp + 1) << 52) | mant; | 
|  | } | 
|  | } else { | 
|  | if (exp >= 253) { | 
|  | /* Overflow */ | 
|  | r = 1; /* VAX dirty zero */ | 
|  | } else { | 
|  | r = sig | ((exp + 2) << 52); | 
|  | } | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static float32 f_to_float32(CPUAlphaState *env, uintptr_t retaddr, uint64_t a) | 
|  | { | 
|  | uint32_t exp, mant_sig; | 
|  | CPU_FloatU r; | 
|  |  | 
|  | exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f); | 
|  | mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff); | 
|  |  | 
|  | if (unlikely(!exp && mant_sig)) { | 
|  | /* Reserved operands / Dirty zero */ | 
|  | dynamic_excp(env, retaddr, EXCP_OPCDEC, 0); | 
|  | } | 
|  |  | 
|  | if (exp < 3) { | 
|  | /* Underflow */ | 
|  | r.l = 0; | 
|  | } else { | 
|  | r.l = ((exp - 2) << 23) | mant_sig; | 
|  | } | 
|  |  | 
|  | return r.f; | 
|  | } | 
|  |  | 
|  | uint32_t helper_f_to_memory(uint64_t a) | 
|  | { | 
|  | uint32_t r; | 
|  | r =  (a & 0x00001fffe0000000ull) >> 13; | 
|  | r |= (a & 0x07ffe00000000000ull) >> 45; | 
|  | r |= (a & 0xc000000000000000ull) >> 48; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | uint64_t helper_memory_to_f(uint32_t a) | 
|  | { | 
|  | uint64_t r; | 
|  | r =  ((uint64_t)(a & 0x0000c000)) << 48; | 
|  | r |= ((uint64_t)(a & 0x003fffff)) << 45; | 
|  | r |= ((uint64_t)(a & 0xffff0000)) << 13; | 
|  | if (!(a & 0x00004000)) { | 
|  | r |= 0x7ll << 59; | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* ??? Emulating VAX arithmetic with IEEE arithmetic is wrong.  We should | 
|  | either implement VAX arithmetic properly or just signal invalid opcode.  */ | 
|  |  | 
|  | uint64_t helper_addf(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float32 fa, fb, fr; | 
|  |  | 
|  | fa = f_to_float32(env, GETPC(), a); | 
|  | fb = f_to_float32(env, GETPC(), b); | 
|  | fr = float32_add(fa, fb, &FP_STATUS); | 
|  | return float32_to_f(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_subf(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float32 fa, fb, fr; | 
|  |  | 
|  | fa = f_to_float32(env, GETPC(), a); | 
|  | fb = f_to_float32(env, GETPC(), b); | 
|  | fr = float32_sub(fa, fb, &FP_STATUS); | 
|  | return float32_to_f(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_mulf(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float32 fa, fb, fr; | 
|  |  | 
|  | fa = f_to_float32(env, GETPC(), a); | 
|  | fb = f_to_float32(env, GETPC(), b); | 
|  | fr = float32_mul(fa, fb, &FP_STATUS); | 
|  | return float32_to_f(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_divf(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float32 fa, fb, fr; | 
|  |  | 
|  | fa = f_to_float32(env, GETPC(), a); | 
|  | fb = f_to_float32(env, GETPC(), b); | 
|  | fr = float32_div(fa, fb, &FP_STATUS); | 
|  | return float32_to_f(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_sqrtf(CPUAlphaState *env, uint64_t t) | 
|  | { | 
|  | float32 ft, fr; | 
|  |  | 
|  | ft = f_to_float32(env, GETPC(), t); | 
|  | fr = float32_sqrt(ft, &FP_STATUS); | 
|  | return float32_to_f(fr); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* G floating (VAX) */ | 
|  | static uint64_t float64_to_g(float64 fa) | 
|  | { | 
|  | uint64_t r, exp, mant, sig; | 
|  | CPU_DoubleU a; | 
|  |  | 
|  | a.d = fa; | 
|  | sig = a.ll & 0x8000000000000000ull; | 
|  | exp = (a.ll >> 52) & 0x7ff; | 
|  | mant = a.ll & 0x000fffffffffffffull; | 
|  |  | 
|  | if (exp == 2047) { | 
|  | /* NaN or infinity */ | 
|  | r = 1; /* VAX dirty zero */ | 
|  | } else if (exp == 0) { | 
|  | if (mant == 0) { | 
|  | /* Zero */ | 
|  | r = 0; | 
|  | } else { | 
|  | /* Denormalized */ | 
|  | r = sig | ((exp + 1) << 52) | mant; | 
|  | } | 
|  | } else { | 
|  | if (exp >= 2045) { | 
|  | /* Overflow */ | 
|  | r = 1; /* VAX dirty zero */ | 
|  | } else { | 
|  | r = sig | ((exp + 2) << 52); | 
|  | } | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static float64 g_to_float64(CPUAlphaState *env, uintptr_t retaddr, uint64_t a) | 
|  | { | 
|  | uint64_t exp, mant_sig; | 
|  | CPU_DoubleU r; | 
|  |  | 
|  | exp = (a >> 52) & 0x7ff; | 
|  | mant_sig = a & 0x800fffffffffffffull; | 
|  |  | 
|  | if (!exp && mant_sig) { | 
|  | /* Reserved operands / Dirty zero */ | 
|  | dynamic_excp(env, retaddr, EXCP_OPCDEC, 0); | 
|  | } | 
|  |  | 
|  | if (exp < 3) { | 
|  | /* Underflow */ | 
|  | r.ll = 0; | 
|  | } else { | 
|  | r.ll = ((exp - 2) << 52) | mant_sig; | 
|  | } | 
|  |  | 
|  | return r.d; | 
|  | } | 
|  |  | 
|  | uint64_t helper_g_to_memory(uint64_t a) | 
|  | { | 
|  | uint64_t r; | 
|  | r =  (a & 0x000000000000ffffull) << 48; | 
|  | r |= (a & 0x00000000ffff0000ull) << 16; | 
|  | r |= (a & 0x0000ffff00000000ull) >> 16; | 
|  | r |= (a & 0xffff000000000000ull) >> 48; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | uint64_t helper_memory_to_g(uint64_t a) | 
|  | { | 
|  | uint64_t r; | 
|  | r =  (a & 0x000000000000ffffull) << 48; | 
|  | r |= (a & 0x00000000ffff0000ull) << 16; | 
|  | r |= (a & 0x0000ffff00000000ull) >> 16; | 
|  | r |= (a & 0xffff000000000000ull) >> 48; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | uint64_t helper_addg(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float64 fa, fb, fr; | 
|  |  | 
|  | fa = g_to_float64(env, GETPC(), a); | 
|  | fb = g_to_float64(env, GETPC(), b); | 
|  | fr = float64_add(fa, fb, &FP_STATUS); | 
|  | return float64_to_g(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_subg(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float64 fa, fb, fr; | 
|  |  | 
|  | fa = g_to_float64(env, GETPC(), a); | 
|  | fb = g_to_float64(env, GETPC(), b); | 
|  | fr = float64_sub(fa, fb, &FP_STATUS); | 
|  | return float64_to_g(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_mulg(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float64 fa, fb, fr; | 
|  |  | 
|  | fa = g_to_float64(env, GETPC(), a); | 
|  | fb = g_to_float64(env, GETPC(), b); | 
|  | fr = float64_mul(fa, fb, &FP_STATUS); | 
|  | return float64_to_g(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_divg(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float64 fa, fb, fr; | 
|  |  | 
|  | fa = g_to_float64(env, GETPC(), a); | 
|  | fb = g_to_float64(env, GETPC(), b); | 
|  | fr = float64_div(fa, fb, &FP_STATUS); | 
|  | return float64_to_g(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_sqrtg(CPUAlphaState *env, uint64_t a) | 
|  | { | 
|  | float64 fa, fr; | 
|  |  | 
|  | fa = g_to_float64(env, GETPC(), a); | 
|  | fr = float64_sqrt(fa, &FP_STATUS); | 
|  | return float64_to_g(fr); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* S floating (single) */ | 
|  |  | 
|  | /* Taken from linux/arch/alpha/kernel/traps.c, s_mem_to_reg.  */ | 
|  | static inline uint64_t float32_to_s_int(uint32_t fi) | 
|  | { | 
|  | uint32_t frac = fi & 0x7fffff; | 
|  | uint32_t sign = fi >> 31; | 
|  | uint32_t exp_msb = (fi >> 30) & 1; | 
|  | uint32_t exp_low = (fi >> 23) & 0x7f; | 
|  | uint32_t exp; | 
|  |  | 
|  | exp = (exp_msb << 10) | exp_low; | 
|  | if (exp_msb) { | 
|  | if (exp_low == 0x7f) { | 
|  | exp = 0x7ff; | 
|  | } | 
|  | } else { | 
|  | if (exp_low != 0x00) { | 
|  | exp |= 0x380; | 
|  | } | 
|  | } | 
|  |  | 
|  | return (((uint64_t)sign << 63) | 
|  | | ((uint64_t)exp << 52) | 
|  | | ((uint64_t)frac << 29)); | 
|  | } | 
|  |  | 
|  | static inline uint64_t float32_to_s(float32 fa) | 
|  | { | 
|  | CPU_FloatU a; | 
|  | a.f = fa; | 
|  | return float32_to_s_int(a.l); | 
|  | } | 
|  |  | 
|  | static inline uint32_t s_to_float32_int(uint64_t a) | 
|  | { | 
|  | return ((a >> 32) & 0xc0000000) | ((a >> 29) & 0x3fffffff); | 
|  | } | 
|  |  | 
|  | static inline float32 s_to_float32(uint64_t a) | 
|  | { | 
|  | CPU_FloatU r; | 
|  | r.l = s_to_float32_int(a); | 
|  | return r.f; | 
|  | } | 
|  |  | 
|  | uint32_t helper_s_to_memory(uint64_t a) | 
|  | { | 
|  | return s_to_float32_int(a); | 
|  | } | 
|  |  | 
|  | uint64_t helper_memory_to_s(uint32_t a) | 
|  | { | 
|  | return float32_to_s_int(a); | 
|  | } | 
|  |  | 
|  | uint64_t helper_adds(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float32 fa, fb, fr; | 
|  |  | 
|  | fa = s_to_float32(a); | 
|  | fb = s_to_float32(b); | 
|  | fr = float32_add(fa, fb, &FP_STATUS); | 
|  | return float32_to_s(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_subs(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float32 fa, fb, fr; | 
|  |  | 
|  | fa = s_to_float32(a); | 
|  | fb = s_to_float32(b); | 
|  | fr = float32_sub(fa, fb, &FP_STATUS); | 
|  | return float32_to_s(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_muls(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float32 fa, fb, fr; | 
|  |  | 
|  | fa = s_to_float32(a); | 
|  | fb = s_to_float32(b); | 
|  | fr = float32_mul(fa, fb, &FP_STATUS); | 
|  | return float32_to_s(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_divs(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float32 fa, fb, fr; | 
|  |  | 
|  | fa = s_to_float32(a); | 
|  | fb = s_to_float32(b); | 
|  | fr = float32_div(fa, fb, &FP_STATUS); | 
|  | return float32_to_s(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_sqrts(CPUAlphaState *env, uint64_t a) | 
|  | { | 
|  | float32 fa, fr; | 
|  |  | 
|  | fa = s_to_float32(a); | 
|  | fr = float32_sqrt(fa, &FP_STATUS); | 
|  | return float32_to_s(fr); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* T floating (double) */ | 
|  | static inline float64 t_to_float64(uint64_t a) | 
|  | { | 
|  | /* Memory format is the same as float64 */ | 
|  | CPU_DoubleU r; | 
|  | r.ll = a; | 
|  | return r.d; | 
|  | } | 
|  |  | 
|  | static inline uint64_t float64_to_t(float64 fa) | 
|  | { | 
|  | /* Memory format is the same as float64 */ | 
|  | CPU_DoubleU r; | 
|  | r.d = fa; | 
|  | return r.ll; | 
|  | } | 
|  |  | 
|  | uint64_t helper_addt(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float64 fa, fb, fr; | 
|  |  | 
|  | fa = t_to_float64(a); | 
|  | fb = t_to_float64(b); | 
|  | fr = float64_add(fa, fb, &FP_STATUS); | 
|  | return float64_to_t(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_subt(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float64 fa, fb, fr; | 
|  |  | 
|  | fa = t_to_float64(a); | 
|  | fb = t_to_float64(b); | 
|  | fr = float64_sub(fa, fb, &FP_STATUS); | 
|  | return float64_to_t(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_mult(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float64 fa, fb, fr; | 
|  |  | 
|  | fa = t_to_float64(a); | 
|  | fb = t_to_float64(b); | 
|  | fr = float64_mul(fa, fb, &FP_STATUS); | 
|  | return float64_to_t(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_divt(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float64 fa, fb, fr; | 
|  |  | 
|  | fa = t_to_float64(a); | 
|  | fb = t_to_float64(b); | 
|  | fr = float64_div(fa, fb, &FP_STATUS); | 
|  | return float64_to_t(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_sqrtt(CPUAlphaState *env, uint64_t a) | 
|  | { | 
|  | float64 fa, fr; | 
|  |  | 
|  | fa = t_to_float64(a); | 
|  | fr = float64_sqrt(fa, &FP_STATUS); | 
|  | return float64_to_t(fr); | 
|  | } | 
|  |  | 
|  | /* Comparisons */ | 
|  | uint64_t helper_cmptun(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float64 fa, fb; | 
|  |  | 
|  | fa = t_to_float64(a); | 
|  | fb = t_to_float64(b); | 
|  |  | 
|  | if (float64_unordered_quiet(fa, fb, &FP_STATUS)) { | 
|  | return 0x4000000000000000ULL; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t helper_cmpteq(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float64 fa, fb; | 
|  |  | 
|  | fa = t_to_float64(a); | 
|  | fb = t_to_float64(b); | 
|  |  | 
|  | if (float64_eq_quiet(fa, fb, &FP_STATUS)) { | 
|  | return 0x4000000000000000ULL; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t helper_cmptle(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float64 fa, fb; | 
|  |  | 
|  | fa = t_to_float64(a); | 
|  | fb = t_to_float64(b); | 
|  |  | 
|  | if (float64_le(fa, fb, &FP_STATUS)) { | 
|  | return 0x4000000000000000ULL; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t helper_cmptlt(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float64 fa, fb; | 
|  |  | 
|  | fa = t_to_float64(a); | 
|  | fb = t_to_float64(b); | 
|  |  | 
|  | if (float64_lt(fa, fb, &FP_STATUS)) { | 
|  | return 0x4000000000000000ULL; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t helper_cmpgeq(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float64 fa, fb; | 
|  |  | 
|  | fa = g_to_float64(env, GETPC(), a); | 
|  | fb = g_to_float64(env, GETPC(), b); | 
|  |  | 
|  | if (float64_eq_quiet(fa, fb, &FP_STATUS)) { | 
|  | return 0x4000000000000000ULL; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t helper_cmpgle(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float64 fa, fb; | 
|  |  | 
|  | fa = g_to_float64(env, GETPC(), a); | 
|  | fb = g_to_float64(env, GETPC(), b); | 
|  |  | 
|  | if (float64_le(fa, fb, &FP_STATUS)) { | 
|  | return 0x4000000000000000ULL; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t helper_cmpglt(CPUAlphaState *env, uint64_t a, uint64_t b) | 
|  | { | 
|  | float64 fa, fb; | 
|  |  | 
|  | fa = g_to_float64(env, GETPC(), a); | 
|  | fb = g_to_float64(env, GETPC(), b); | 
|  |  | 
|  | if (float64_lt(fa, fb, &FP_STATUS)) { | 
|  | return 0x4000000000000000ULL; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Floating point format conversion */ | 
|  | uint64_t helper_cvtts(CPUAlphaState *env, uint64_t a) | 
|  | { | 
|  | float64 fa; | 
|  | float32 fr; | 
|  |  | 
|  | fa = t_to_float64(a); | 
|  | fr = float64_to_float32(fa, &FP_STATUS); | 
|  | return float32_to_s(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_cvtst(CPUAlphaState *env, uint64_t a) | 
|  | { | 
|  | float32 fa; | 
|  | float64 fr; | 
|  |  | 
|  | fa = s_to_float32(a); | 
|  | fr = float32_to_float64(fa, &FP_STATUS); | 
|  | return float64_to_t(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_cvtqs(CPUAlphaState *env, uint64_t a) | 
|  | { | 
|  | float32 fr = int64_to_float32(a, &FP_STATUS); | 
|  | return float32_to_s(fr); | 
|  | } | 
|  |  | 
|  | /* Implement float64 to uint64 conversion without saturation -- we must | 
|  | supply the truncated result.  This behaviour is used by the compiler | 
|  | to get unsigned conversion for free with the same instruction. | 
|  |  | 
|  | The VI flag is set when overflow or inexact exceptions should be raised.  */ | 
|  |  | 
|  | static inline uint64_t inline_cvttq(CPUAlphaState *env, uint64_t a, | 
|  | int roundmode, int VI) | 
|  | { | 
|  | uint64_t frac, ret = 0; | 
|  | uint32_t exp, sign, exc = 0; | 
|  | int shift; | 
|  |  | 
|  | sign = (a >> 63); | 
|  | exp = (uint32_t)(a >> 52) & 0x7ff; | 
|  | frac = a & 0xfffffffffffffull; | 
|  |  | 
|  | if (exp == 0) { | 
|  | if (unlikely(frac != 0)) { | 
|  | goto do_underflow; | 
|  | } | 
|  | } else if (exp == 0x7ff) { | 
|  | exc = (frac ? float_flag_invalid : VI ? float_flag_overflow : 0); | 
|  | } else { | 
|  | /* Restore implicit bit.  */ | 
|  | frac |= 0x10000000000000ull; | 
|  |  | 
|  | shift = exp - 1023 - 52; | 
|  | if (shift >= 0) { | 
|  | /* In this case the number is so large that we must shift | 
|  | the fraction left.  There is no rounding to do.  */ | 
|  | if (shift < 63) { | 
|  | ret = frac << shift; | 
|  | if (VI && (ret >> shift) != frac) { | 
|  | exc = float_flag_overflow; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | uint64_t round; | 
|  |  | 
|  | /* In this case the number is smaller than the fraction as | 
|  | represented by the 52 bit number.  Here we must think | 
|  | about rounding the result.  Handle this by shifting the | 
|  | fractional part of the number into the high bits of ROUND. | 
|  | This will let us efficiently handle round-to-nearest.  */ | 
|  | shift = -shift; | 
|  | if (shift < 63) { | 
|  | ret = frac >> shift; | 
|  | round = frac << (64 - shift); | 
|  | } else { | 
|  | /* The exponent is so small we shift out everything. | 
|  | Leave a sticky bit for proper rounding below.  */ | 
|  | do_underflow: | 
|  | round = 1; | 
|  | } | 
|  |  | 
|  | if (round) { | 
|  | exc = (VI ? float_flag_inexact : 0); | 
|  | switch (roundmode) { | 
|  | case float_round_nearest_even: | 
|  | if (round == (1ull << 63)) { | 
|  | /* Fraction is exactly 0.5; round to even.  */ | 
|  | ret += (ret & 1); | 
|  | } else if (round > (1ull << 63)) { | 
|  | ret += 1; | 
|  | } | 
|  | break; | 
|  | case float_round_to_zero: | 
|  | break; | 
|  | case float_round_up: | 
|  | ret += 1 - sign; | 
|  | break; | 
|  | case float_round_down: | 
|  | ret += sign; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (sign) { | 
|  | ret = -ret; | 
|  | } | 
|  | } | 
|  | if (unlikely(exc)) { | 
|  | float_raise(exc, &FP_STATUS); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint64_t helper_cvttq(CPUAlphaState *env, uint64_t a) | 
|  | { | 
|  | return inline_cvttq(env, a, FP_STATUS.float_rounding_mode, 1); | 
|  | } | 
|  |  | 
|  | uint64_t helper_cvttq_c(CPUAlphaState *env, uint64_t a) | 
|  | { | 
|  | return inline_cvttq(env, a, float_round_to_zero, 0); | 
|  | } | 
|  |  | 
|  | uint64_t helper_cvttq_svic(CPUAlphaState *env, uint64_t a) | 
|  | { | 
|  | return inline_cvttq(env, a, float_round_to_zero, 1); | 
|  | } | 
|  |  | 
|  | uint64_t helper_cvtqt(CPUAlphaState *env, uint64_t a) | 
|  | { | 
|  | float64 fr = int64_to_float64(a, &FP_STATUS); | 
|  | return float64_to_t(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_cvtqf(CPUAlphaState *env, uint64_t a) | 
|  | { | 
|  | float32 fr = int64_to_float32(a, &FP_STATUS); | 
|  | return float32_to_f(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_cvtgf(CPUAlphaState *env, uint64_t a) | 
|  | { | 
|  | float64 fa; | 
|  | float32 fr; | 
|  |  | 
|  | fa = g_to_float64(env, GETPC(), a); | 
|  | fr = float64_to_float32(fa, &FP_STATUS); | 
|  | return float32_to_f(fr); | 
|  | } | 
|  |  | 
|  | uint64_t helper_cvtgq(CPUAlphaState *env, uint64_t a) | 
|  | { | 
|  | float64 fa = g_to_float64(env, GETPC(), a); | 
|  | return float64_to_int64_round_to_zero(fa, &FP_STATUS); | 
|  | } | 
|  |  | 
|  | uint64_t helper_cvtqg(CPUAlphaState *env, uint64_t a) | 
|  | { | 
|  | float64 fr; | 
|  | fr = int64_to_float64(a, &FP_STATUS); | 
|  | return float64_to_g(fr); | 
|  | } |