|  | /* | 
|  | * MIPS SIMD Architecture Module Instruction emulation helpers for QEMU. | 
|  | * | 
|  | * Copyright (c) 2014 Imagination Technologies | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  |  | 
|  | #include "cpu.h" | 
|  | #include "exec/helper-proto.h" | 
|  |  | 
|  | /* Data format min and max values */ | 
|  | #define DF_BITS(df) (1 << ((df) + 3)) | 
|  |  | 
|  | #define DF_MAX_INT(df)  (int64_t)((1LL << (DF_BITS(df) - 1)) - 1) | 
|  | #define M_MAX_INT(m)    (int64_t)((1LL << ((m)         - 1)) - 1) | 
|  |  | 
|  | #define DF_MIN_INT(df)  (int64_t)(-(1LL << (DF_BITS(df) - 1))) | 
|  | #define M_MIN_INT(m)    (int64_t)(-(1LL << ((m)         - 1))) | 
|  |  | 
|  | #define DF_MAX_UINT(df) (uint64_t)(-1ULL >> (64 - DF_BITS(df))) | 
|  | #define M_MAX_UINT(m)   (uint64_t)(-1ULL >> (64 - (m))) | 
|  |  | 
|  | #define UNSIGNED(x, df) ((x) & DF_MAX_UINT(df)) | 
|  | #define SIGNED(x, df)                                                   \ | 
|  | ((((int64_t)x) << (64 - DF_BITS(df))) >> (64 - DF_BITS(df))) | 
|  |  | 
|  | /* Element-by-element access macros */ | 
|  | #define DF_ELEMENTS(df) (MSA_WRLEN / DF_BITS(df)) | 
|  |  | 
|  | static inline void msa_move_v(wr_t *pwd, wr_t *pws) | 
|  | { | 
|  | uint32_t i; | 
|  |  | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | pwd->d[i] = pws->d[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define MSA_FN_IMM8(FUNC, DEST, OPERATION)                              \ | 
|  | void helper_msa_ ## FUNC(CPUMIPSState *env, uint32_t wd, uint32_t ws,   \ | 
|  | uint32_t i8)                                                    \ | 
|  | {                                                                       \ | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr);                          \ | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr);                          \ | 
|  | uint32_t i;                                                         \ | 
|  | for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) {                        \ | 
|  | DEST = OPERATION;                                               \ | 
|  | }                                                                   \ | 
|  | } | 
|  |  | 
|  | MSA_FN_IMM8(andi_b, pwd->b[i], pws->b[i] & i8) | 
|  | MSA_FN_IMM8(ori_b, pwd->b[i], pws->b[i] | i8) | 
|  | MSA_FN_IMM8(nori_b, pwd->b[i], ~(pws->b[i] | i8)) | 
|  | MSA_FN_IMM8(xori_b, pwd->b[i], pws->b[i] ^ i8) | 
|  |  | 
|  | #define BIT_MOVE_IF_NOT_ZERO(dest, arg1, arg2, df) \ | 
|  | UNSIGNED(((dest & (~arg2)) | (arg1 & arg2)), df) | 
|  | MSA_FN_IMM8(bmnzi_b, pwd->b[i], | 
|  | BIT_MOVE_IF_NOT_ZERO(pwd->b[i], pws->b[i], i8, DF_BYTE)) | 
|  |  | 
|  | #define BIT_MOVE_IF_ZERO(dest, arg1, arg2, df) \ | 
|  | UNSIGNED((dest & arg2) | (arg1 & (~arg2)), df) | 
|  | MSA_FN_IMM8(bmzi_b, pwd->b[i], | 
|  | BIT_MOVE_IF_ZERO(pwd->b[i], pws->b[i], i8, DF_BYTE)) | 
|  |  | 
|  | #define BIT_SELECT(dest, arg1, arg2, df) \ | 
|  | UNSIGNED((arg1 & (~dest)) | (arg2 & dest), df) | 
|  | MSA_FN_IMM8(bseli_b, pwd->b[i], | 
|  | BIT_SELECT(pwd->b[i], pws->b[i], i8, DF_BYTE)) | 
|  |  | 
|  | #undef MSA_FN_IMM8 | 
|  |  | 
|  | #define SHF_POS(i, imm) (((i) & 0xfc) + (((imm) >> (2 * ((i) & 0x03))) & 0x03)) | 
|  |  | 
|  | void helper_msa_shf_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t imm) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t wx, *pwx = &wx; | 
|  | uint32_t i; | 
|  |  | 
|  | switch (df) { | 
|  | case DF_BYTE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { | 
|  | pwx->b[i] = pws->b[SHF_POS(i, imm)]; | 
|  | } | 
|  | break; | 
|  | case DF_HALF: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { | 
|  | pwx->h[i] = pws->h[SHF_POS(i, imm)]; | 
|  | } | 
|  | break; | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | pwx->w[i] = pws->w[SHF_POS(i, imm)]; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | #define MSA_FN_VECTOR(FUNC, DEST, OPERATION)                            \ | 
|  | void helper_msa_ ## FUNC(CPUMIPSState *env, uint32_t wd, uint32_t ws,   \ | 
|  | uint32_t wt)                                                    \ | 
|  | {                                                                       \ | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr);                          \ | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr);                          \ | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr);                          \ | 
|  | uint32_t i;                                                         \ | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {                      \ | 
|  | DEST = OPERATION;                                               \ | 
|  | }                                                                   \ | 
|  | } | 
|  |  | 
|  | MSA_FN_VECTOR(and_v, pwd->d[i], pws->d[i] & pwt->d[i]) | 
|  | MSA_FN_VECTOR(or_v, pwd->d[i], pws->d[i] | pwt->d[i]) | 
|  | MSA_FN_VECTOR(nor_v, pwd->d[i], ~(pws->d[i] | pwt->d[i])) | 
|  | MSA_FN_VECTOR(xor_v, pwd->d[i], pws->d[i] ^ pwt->d[i]) | 
|  | MSA_FN_VECTOR(bmnz_v, pwd->d[i], | 
|  | BIT_MOVE_IF_NOT_ZERO(pwd->d[i], pws->d[i], pwt->d[i], DF_DOUBLE)) | 
|  | MSA_FN_VECTOR(bmz_v, pwd->d[i], | 
|  | BIT_MOVE_IF_ZERO(pwd->d[i], pws->d[i], pwt->d[i], DF_DOUBLE)) | 
|  | MSA_FN_VECTOR(bsel_v, pwd->d[i], | 
|  | BIT_SELECT(pwd->d[i], pws->d[i], pwt->d[i], DF_DOUBLE)) | 
|  | #undef BIT_MOVE_IF_NOT_ZERO | 
|  | #undef BIT_MOVE_IF_ZERO | 
|  | #undef BIT_SELECT | 
|  | #undef MSA_FN_VECTOR | 
|  |  | 
|  | static inline int64_t msa_addv_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | return arg1 + arg2; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_subv_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | return arg1 - arg2; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_ceq_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | return arg1 == arg2 ? -1 : 0; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_cle_s_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | return arg1 <= arg2 ? -1 : 0; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_cle_u_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | uint64_t u_arg1 = UNSIGNED(arg1, df); | 
|  | uint64_t u_arg2 = UNSIGNED(arg2, df); | 
|  | return u_arg1 <= u_arg2 ? -1 : 0; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_clt_s_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | return arg1 < arg2 ? -1 : 0; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_clt_u_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | uint64_t u_arg1 = UNSIGNED(arg1, df); | 
|  | uint64_t u_arg2 = UNSIGNED(arg2, df); | 
|  | return u_arg1 < u_arg2 ? -1 : 0; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_max_s_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | return arg1 > arg2 ? arg1 : arg2; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_max_u_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | uint64_t u_arg1 = UNSIGNED(arg1, df); | 
|  | uint64_t u_arg2 = UNSIGNED(arg2, df); | 
|  | return u_arg1 > u_arg2 ? arg1 : arg2; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_min_s_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | return arg1 < arg2 ? arg1 : arg2; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_min_u_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | uint64_t u_arg1 = UNSIGNED(arg1, df); | 
|  | uint64_t u_arg2 = UNSIGNED(arg2, df); | 
|  | return u_arg1 < u_arg2 ? arg1 : arg2; | 
|  | } | 
|  |  | 
|  | #define MSA_BINOP_IMM_DF(helper, func)                                  \ | 
|  | void helper_msa_ ## helper ## _df(CPUMIPSState *env, uint32_t df,       \ | 
|  | uint32_t wd, uint32_t ws, int32_t u5)           \ | 
|  | {                                                                       \ | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr);                          \ | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr);                          \ | 
|  | uint32_t i;                                                         \ | 
|  | \ | 
|  | switch (df) {                                                       \ | 
|  | case DF_BYTE:                                                       \ | 
|  | for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) {                    \ | 
|  | pwd->b[i] = msa_ ## func ## _df(df, pws->b[i], u5);         \ | 
|  | }                                                               \ | 
|  | break;                                                          \ | 
|  | case DF_HALF:                                                       \ | 
|  | for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) {                    \ | 
|  | pwd->h[i] = msa_ ## func ## _df(df, pws->h[i], u5);         \ | 
|  | }                                                               \ | 
|  | break;                                                          \ | 
|  | case DF_WORD:                                                       \ | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {                    \ | 
|  | pwd->w[i] = msa_ ## func ## _df(df, pws->w[i], u5);         \ | 
|  | }                                                               \ | 
|  | break;                                                          \ | 
|  | case DF_DOUBLE:                                                     \ | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {                  \ | 
|  | pwd->d[i] = msa_ ## func ## _df(df, pws->d[i], u5);         \ | 
|  | }                                                               \ | 
|  | break;                                                          \ | 
|  | default:                                                            \ | 
|  | assert(0);                                                      \ | 
|  | }                                                                   \ | 
|  | } | 
|  |  | 
|  | MSA_BINOP_IMM_DF(addvi, addv) | 
|  | MSA_BINOP_IMM_DF(subvi, subv) | 
|  | MSA_BINOP_IMM_DF(ceqi, ceq) | 
|  | MSA_BINOP_IMM_DF(clei_s, cle_s) | 
|  | MSA_BINOP_IMM_DF(clei_u, cle_u) | 
|  | MSA_BINOP_IMM_DF(clti_s, clt_s) | 
|  | MSA_BINOP_IMM_DF(clti_u, clt_u) | 
|  | MSA_BINOP_IMM_DF(maxi_s, max_s) | 
|  | MSA_BINOP_IMM_DF(maxi_u, max_u) | 
|  | MSA_BINOP_IMM_DF(mini_s, min_s) | 
|  | MSA_BINOP_IMM_DF(mini_u, min_u) | 
|  | #undef MSA_BINOP_IMM_DF | 
|  |  | 
|  | void helper_msa_ldi_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | int32_t s10) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | switch (df) { | 
|  | case DF_BYTE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { | 
|  | pwd->b[i] = (int8_t)s10; | 
|  | } | 
|  | break; | 
|  | case DF_HALF: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { | 
|  | pwd->h[i] = (int16_t)s10; | 
|  | } | 
|  | break; | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | pwd->w[i] = (int32_t)s10; | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | pwd->d[i] = (int64_t)s10; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Data format bit position and unsigned values */ | 
|  | #define BIT_POSITION(x, df) ((uint64_t)(x) % DF_BITS(df)) | 
|  |  | 
|  | static inline int64_t msa_sll_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | int32_t b_arg2 = BIT_POSITION(arg2, df); | 
|  | return arg1 << b_arg2; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_sra_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | int32_t b_arg2 = BIT_POSITION(arg2, df); | 
|  | return arg1 >> b_arg2; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_srl_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | uint64_t u_arg1 = UNSIGNED(arg1, df); | 
|  | int32_t b_arg2 = BIT_POSITION(arg2, df); | 
|  | return u_arg1 >> b_arg2; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_bclr_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | int32_t b_arg2 = BIT_POSITION(arg2, df); | 
|  | return UNSIGNED(arg1 & (~(1LL << b_arg2)), df); | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_bset_df(uint32_t df, int64_t arg1, | 
|  | int64_t arg2) | 
|  | { | 
|  | int32_t b_arg2 = BIT_POSITION(arg2, df); | 
|  | return UNSIGNED(arg1 | (1LL << b_arg2), df); | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_bneg_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | int32_t b_arg2 = BIT_POSITION(arg2, df); | 
|  | return UNSIGNED(arg1 ^ (1LL << b_arg2), df); | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_binsl_df(uint32_t df, int64_t dest, int64_t arg1, | 
|  | int64_t arg2) | 
|  | { | 
|  | uint64_t u_arg1 = UNSIGNED(arg1, df); | 
|  | uint64_t u_dest = UNSIGNED(dest, df); | 
|  | int32_t sh_d = BIT_POSITION(arg2, df) + 1; | 
|  | int32_t sh_a = DF_BITS(df) - sh_d; | 
|  | if (sh_d == DF_BITS(df)) { | 
|  | return u_arg1; | 
|  | } else { | 
|  | return UNSIGNED(UNSIGNED(u_dest << sh_d, df) >> sh_d, df) | | 
|  | UNSIGNED(UNSIGNED(u_arg1 >> sh_a, df) << sh_a, df); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_binsr_df(uint32_t df, int64_t dest, int64_t arg1, | 
|  | int64_t arg2) | 
|  | { | 
|  | uint64_t u_arg1 = UNSIGNED(arg1, df); | 
|  | uint64_t u_dest = UNSIGNED(dest, df); | 
|  | int32_t sh_d = BIT_POSITION(arg2, df) + 1; | 
|  | int32_t sh_a = DF_BITS(df) - sh_d; | 
|  | if (sh_d == DF_BITS(df)) { | 
|  | return u_arg1; | 
|  | } else { | 
|  | return UNSIGNED(UNSIGNED(u_dest >> sh_d, df) << sh_d, df) | | 
|  | UNSIGNED(UNSIGNED(u_arg1 << sh_a, df) >> sh_a, df); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_sat_s_df(uint32_t df, int64_t arg, uint32_t m) | 
|  | { | 
|  | return arg < M_MIN_INT(m+1) ? M_MIN_INT(m+1) : | 
|  | arg > M_MAX_INT(m+1) ? M_MAX_INT(m+1) : | 
|  | arg; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_sat_u_df(uint32_t df, int64_t arg, uint32_t m) | 
|  | { | 
|  | uint64_t u_arg = UNSIGNED(arg, df); | 
|  | return  u_arg < M_MAX_UINT(m+1) ? u_arg : | 
|  | M_MAX_UINT(m+1); | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_srar_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | int32_t b_arg2 = BIT_POSITION(arg2, df); | 
|  | if (b_arg2 == 0) { | 
|  | return arg1; | 
|  | } else { | 
|  | int64_t r_bit = (arg1 >> (b_arg2 - 1)) & 1; | 
|  | return (arg1 >> b_arg2) + r_bit; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_srlr_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | uint64_t u_arg1 = UNSIGNED(arg1, df); | 
|  | int32_t b_arg2 = BIT_POSITION(arg2, df); | 
|  | if (b_arg2 == 0) { | 
|  | return u_arg1; | 
|  | } else { | 
|  | uint64_t r_bit = (u_arg1 >> (b_arg2 - 1)) & 1; | 
|  | return (u_arg1 >> b_arg2) + r_bit; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define MSA_BINOP_IMMU_DF(helper, func)                                  \ | 
|  | void helper_msa_ ## helper ## _df(CPUMIPSState *env, uint32_t df, uint32_t wd, \ | 
|  | uint32_t ws, uint32_t u5)                        \ | 
|  | {                                                                       \ | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr);                          \ | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr);                          \ | 
|  | uint32_t i;                                                         \ | 
|  | \ | 
|  | switch (df) {                                                       \ | 
|  | case DF_BYTE:                                                       \ | 
|  | for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) {                    \ | 
|  | pwd->b[i] = msa_ ## func ## _df(df, pws->b[i], u5);         \ | 
|  | }                                                               \ | 
|  | break;                                                          \ | 
|  | case DF_HALF:                                                       \ | 
|  | for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) {                    \ | 
|  | pwd->h[i] = msa_ ## func ## _df(df, pws->h[i], u5);         \ | 
|  | }                                                               \ | 
|  | break;                                                          \ | 
|  | case DF_WORD:                                                       \ | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {                    \ | 
|  | pwd->w[i] = msa_ ## func ## _df(df, pws->w[i], u5);         \ | 
|  | }                                                               \ | 
|  | break;                                                          \ | 
|  | case DF_DOUBLE:                                                     \ | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {                  \ | 
|  | pwd->d[i] = msa_ ## func ## _df(df, pws->d[i], u5);         \ | 
|  | }                                                               \ | 
|  | break;                                                          \ | 
|  | default:                                                            \ | 
|  | assert(0);                                                      \ | 
|  | }                                                                   \ | 
|  | } | 
|  |  | 
|  | MSA_BINOP_IMMU_DF(slli, sll) | 
|  | MSA_BINOP_IMMU_DF(srai, sra) | 
|  | MSA_BINOP_IMMU_DF(srli, srl) | 
|  | MSA_BINOP_IMMU_DF(bclri, bclr) | 
|  | MSA_BINOP_IMMU_DF(bseti, bset) | 
|  | MSA_BINOP_IMMU_DF(bnegi, bneg) | 
|  | MSA_BINOP_IMMU_DF(sat_s, sat_s) | 
|  | MSA_BINOP_IMMU_DF(sat_u, sat_u) | 
|  | MSA_BINOP_IMMU_DF(srari, srar) | 
|  | MSA_BINOP_IMMU_DF(srlri, srlr) | 
|  | #undef MSA_BINOP_IMMU_DF | 
|  |  | 
|  | #define MSA_TEROP_IMMU_DF(helper, func)                                  \ | 
|  | void helper_msa_ ## helper ## _df(CPUMIPSState *env, uint32_t df,       \ | 
|  | uint32_t wd, uint32_t ws, uint32_t u5) \ | 
|  | {                                                                       \ | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr);                          \ | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr);                          \ | 
|  | uint32_t i;                                                         \ | 
|  | \ | 
|  | switch (df) {                                                       \ | 
|  | case DF_BYTE:                                                       \ | 
|  | for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) {                    \ | 
|  | pwd->b[i] = msa_ ## func ## _df(df, pwd->b[i], pws->b[i],   \ | 
|  | u5);                        \ | 
|  | }                                                               \ | 
|  | break;                                                          \ | 
|  | case DF_HALF:                                                       \ | 
|  | for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) {                    \ | 
|  | pwd->h[i] = msa_ ## func ## _df(df, pwd->h[i], pws->h[i],   \ | 
|  | u5);                        \ | 
|  | }                                                               \ | 
|  | break;                                                          \ | 
|  | case DF_WORD:                                                       \ | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {                    \ | 
|  | pwd->w[i] = msa_ ## func ## _df(df, pwd->w[i], pws->w[i],   \ | 
|  | u5);                        \ | 
|  | }                                                               \ | 
|  | break;                                                          \ | 
|  | case DF_DOUBLE:                                                     \ | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {                  \ | 
|  | pwd->d[i] = msa_ ## func ## _df(df, pwd->d[i], pws->d[i],   \ | 
|  | u5);                        \ | 
|  | }                                                               \ | 
|  | break;                                                          \ | 
|  | default:                                                            \ | 
|  | assert(0);                                                      \ | 
|  | }                                                                   \ | 
|  | } | 
|  |  | 
|  | MSA_TEROP_IMMU_DF(binsli, binsl) | 
|  | MSA_TEROP_IMMU_DF(binsri, binsr) | 
|  | #undef MSA_TEROP_IMMU_DF | 
|  |  | 
|  | static inline int64_t msa_max_a_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | uint64_t abs_arg1 = arg1 >= 0 ? arg1 : -arg1; | 
|  | uint64_t abs_arg2 = arg2 >= 0 ? arg2 : -arg2; | 
|  | return abs_arg1 > abs_arg2 ? arg1 : arg2; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_min_a_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | uint64_t abs_arg1 = arg1 >= 0 ? arg1 : -arg1; | 
|  | uint64_t abs_arg2 = arg2 >= 0 ? arg2 : -arg2; | 
|  | return abs_arg1 < abs_arg2 ? arg1 : arg2; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_add_a_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | uint64_t abs_arg1 = arg1 >= 0 ? arg1 : -arg1; | 
|  | uint64_t abs_arg2 = arg2 >= 0 ? arg2 : -arg2; | 
|  | return abs_arg1 + abs_arg2; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_adds_a_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | uint64_t max_int = (uint64_t)DF_MAX_INT(df); | 
|  | uint64_t abs_arg1 = arg1 >= 0 ? arg1 : -arg1; | 
|  | uint64_t abs_arg2 = arg2 >= 0 ? arg2 : -arg2; | 
|  | if (abs_arg1 > max_int || abs_arg2 > max_int) { | 
|  | return (int64_t)max_int; | 
|  | } else { | 
|  | return (abs_arg1 < max_int - abs_arg2) ? abs_arg1 + abs_arg2 : max_int; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_adds_s_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | int64_t max_int = DF_MAX_INT(df); | 
|  | int64_t min_int = DF_MIN_INT(df); | 
|  | if (arg1 < 0) { | 
|  | return (min_int - arg1 < arg2) ? arg1 + arg2 : min_int; | 
|  | } else { | 
|  | return (arg2 < max_int - arg1) ? arg1 + arg2 : max_int; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline uint64_t msa_adds_u_df(uint32_t df, uint64_t arg1, uint64_t arg2) | 
|  | { | 
|  | uint64_t max_uint = DF_MAX_UINT(df); | 
|  | uint64_t u_arg1 = UNSIGNED(arg1, df); | 
|  | uint64_t u_arg2 = UNSIGNED(arg2, df); | 
|  | return (u_arg1 < max_uint - u_arg2) ? u_arg1 + u_arg2 : max_uint; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_ave_s_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | /* signed shift */ | 
|  | return (arg1 >> 1) + (arg2 >> 1) + (arg1 & arg2 & 1); | 
|  | } | 
|  |  | 
|  | static inline uint64_t msa_ave_u_df(uint32_t df, uint64_t arg1, uint64_t arg2) | 
|  | { | 
|  | uint64_t u_arg1 = UNSIGNED(arg1, df); | 
|  | uint64_t u_arg2 = UNSIGNED(arg2, df); | 
|  | /* unsigned shift */ | 
|  | return (u_arg1 >> 1) + (u_arg2 >> 1) + (u_arg1 & u_arg2 & 1); | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_aver_s_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | /* signed shift */ | 
|  | return (arg1 >> 1) + (arg2 >> 1) + ((arg1 | arg2) & 1); | 
|  | } | 
|  |  | 
|  | static inline uint64_t msa_aver_u_df(uint32_t df, uint64_t arg1, uint64_t arg2) | 
|  | { | 
|  | uint64_t u_arg1 = UNSIGNED(arg1, df); | 
|  | uint64_t u_arg2 = UNSIGNED(arg2, df); | 
|  | /* unsigned shift */ | 
|  | return (u_arg1 >> 1) + (u_arg2 >> 1) + ((u_arg1 | u_arg2) & 1); | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_subs_s_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | int64_t max_int = DF_MAX_INT(df); | 
|  | int64_t min_int = DF_MIN_INT(df); | 
|  | if (arg2 > 0) { | 
|  | return (min_int + arg2 < arg1) ? arg1 - arg2 : min_int; | 
|  | } else { | 
|  | return (arg1 < max_int + arg2) ? arg1 - arg2 : max_int; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_subs_u_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | uint64_t u_arg1 = UNSIGNED(arg1, df); | 
|  | uint64_t u_arg2 = UNSIGNED(arg2, df); | 
|  | return (u_arg1 > u_arg2) ? u_arg1 - u_arg2 : 0; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_subsus_u_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | uint64_t u_arg1 = UNSIGNED(arg1, df); | 
|  | uint64_t max_uint = DF_MAX_UINT(df); | 
|  | if (arg2 >= 0) { | 
|  | uint64_t u_arg2 = (uint64_t)arg2; | 
|  | return (u_arg1 > u_arg2) ? | 
|  | (int64_t)(u_arg1 - u_arg2) : | 
|  | 0; | 
|  | } else { | 
|  | uint64_t u_arg2 = (uint64_t)(-arg2); | 
|  | return (u_arg1 < max_uint - u_arg2) ? | 
|  | (int64_t)(u_arg1 + u_arg2) : | 
|  | (int64_t)max_uint; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_subsuu_s_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | uint64_t u_arg1 = UNSIGNED(arg1, df); | 
|  | uint64_t u_arg2 = UNSIGNED(arg2, df); | 
|  | int64_t max_int = DF_MAX_INT(df); | 
|  | int64_t min_int = DF_MIN_INT(df); | 
|  | if (u_arg1 > u_arg2) { | 
|  | return u_arg1 - u_arg2 < (uint64_t)max_int ? | 
|  | (int64_t)(u_arg1 - u_arg2) : | 
|  | max_int; | 
|  | } else { | 
|  | return u_arg2 - u_arg1 < (uint64_t)(-min_int) ? | 
|  | (int64_t)(u_arg1 - u_arg2) : | 
|  | min_int; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_asub_s_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | /* signed compare */ | 
|  | return (arg1 < arg2) ? | 
|  | (uint64_t)(arg2 - arg1) : (uint64_t)(arg1 - arg2); | 
|  | } | 
|  |  | 
|  | static inline uint64_t msa_asub_u_df(uint32_t df, uint64_t arg1, uint64_t arg2) | 
|  | { | 
|  | uint64_t u_arg1 = UNSIGNED(arg1, df); | 
|  | uint64_t u_arg2 = UNSIGNED(arg2, df); | 
|  | /* unsigned compare */ | 
|  | return (u_arg1 < u_arg2) ? | 
|  | (uint64_t)(u_arg2 - u_arg1) : (uint64_t)(u_arg1 - u_arg2); | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_mulv_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | return arg1 * arg2; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_div_s_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | if (arg1 == DF_MIN_INT(df) && arg2 == -1) { | 
|  | return DF_MIN_INT(df); | 
|  | } | 
|  | return arg2 ? arg1 / arg2 : 0; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_div_u_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | uint64_t u_arg1 = UNSIGNED(arg1, df); | 
|  | uint64_t u_arg2 = UNSIGNED(arg2, df); | 
|  | return u_arg2 ? u_arg1 / u_arg2 : 0; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_mod_s_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | if (arg1 == DF_MIN_INT(df) && arg2 == -1) { | 
|  | return 0; | 
|  | } | 
|  | return arg2 ? arg1 % arg2 : 0; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_mod_u_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | uint64_t u_arg1 = UNSIGNED(arg1, df); | 
|  | uint64_t u_arg2 = UNSIGNED(arg2, df); | 
|  | return u_arg2 ? u_arg1 % u_arg2 : 0; | 
|  | } | 
|  |  | 
|  | #define SIGNED_EVEN(a, df) \ | 
|  | ((((int64_t)(a)) << (64 - DF_BITS(df)/2)) >> (64 - DF_BITS(df)/2)) | 
|  |  | 
|  | #define UNSIGNED_EVEN(a, df) \ | 
|  | ((((uint64_t)(a)) << (64 - DF_BITS(df)/2)) >> (64 - DF_BITS(df)/2)) | 
|  |  | 
|  | #define SIGNED_ODD(a, df) \ | 
|  | ((((int64_t)(a)) << (64 - DF_BITS(df))) >> (64 - DF_BITS(df)/2)) | 
|  |  | 
|  | #define UNSIGNED_ODD(a, df) \ | 
|  | ((((uint64_t)(a)) << (64 - DF_BITS(df))) >> (64 - DF_BITS(df)/2)) | 
|  |  | 
|  | #define SIGNED_EXTRACT(e, o, a, df)     \ | 
|  | do {                                \ | 
|  | e = SIGNED_EVEN(a, df);         \ | 
|  | o = SIGNED_ODD(a, df);          \ | 
|  | } while (0); | 
|  |  | 
|  | #define UNSIGNED_EXTRACT(e, o, a, df)   \ | 
|  | do {                                \ | 
|  | e = UNSIGNED_EVEN(a, df);       \ | 
|  | o = UNSIGNED_ODD(a, df);        \ | 
|  | } while (0); | 
|  |  | 
|  | static inline int64_t msa_dotp_s_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | int64_t even_arg1; | 
|  | int64_t even_arg2; | 
|  | int64_t odd_arg1; | 
|  | int64_t odd_arg2; | 
|  | SIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df); | 
|  | SIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df); | 
|  | return (even_arg1 * even_arg2) + (odd_arg1 * odd_arg2); | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_dotp_u_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | int64_t even_arg1; | 
|  | int64_t even_arg2; | 
|  | int64_t odd_arg1; | 
|  | int64_t odd_arg2; | 
|  | UNSIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df); | 
|  | UNSIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df); | 
|  | return (even_arg1 * even_arg2) + (odd_arg1 * odd_arg2); | 
|  | } | 
|  |  | 
|  | #define CONCATENATE_AND_SLIDE(s, k)             \ | 
|  | do {                                        \ | 
|  | for (i = 0; i < s; i++) {               \ | 
|  | v[i]     = pws->b[s * k + i];       \ | 
|  | v[i + s] = pwd->b[s * k + i];       \ | 
|  | }                                       \ | 
|  | for (i = 0; i < s; i++) {               \ | 
|  | pwd->b[s * k + i] = v[i + n];       \ | 
|  | }                                       \ | 
|  | } while (0) | 
|  |  | 
|  | static inline void msa_sld_df(uint32_t df, wr_t *pwd, | 
|  | wr_t *pws, target_ulong rt) | 
|  | { | 
|  | uint32_t n = rt % DF_ELEMENTS(df); | 
|  | uint8_t v[64]; | 
|  | uint32_t i, k; | 
|  |  | 
|  | switch (df) { | 
|  | case DF_BYTE: | 
|  | CONCATENATE_AND_SLIDE(DF_ELEMENTS(DF_BYTE), 0); | 
|  | break; | 
|  | case DF_HALF: | 
|  | for (k = 0; k < 2; k++) { | 
|  | CONCATENATE_AND_SLIDE(DF_ELEMENTS(DF_HALF), k); | 
|  | } | 
|  | break; | 
|  | case DF_WORD: | 
|  | for (k = 0; k < 4; k++) { | 
|  | CONCATENATE_AND_SLIDE(DF_ELEMENTS(DF_WORD), k); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (k = 0; k < 8; k++) { | 
|  | CONCATENATE_AND_SLIDE(DF_ELEMENTS(DF_DOUBLE), k); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_hadd_s_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | return SIGNED_ODD(arg1, df) + SIGNED_EVEN(arg2, df); | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_hadd_u_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | return UNSIGNED_ODD(arg1, df) + UNSIGNED_EVEN(arg2, df); | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_hsub_s_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | return SIGNED_ODD(arg1, df) - SIGNED_EVEN(arg2, df); | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_hsub_u_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | return UNSIGNED_ODD(arg1, df) - UNSIGNED_EVEN(arg2, df); | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_mul_q_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | int64_t q_min = DF_MIN_INT(df); | 
|  | int64_t q_max = DF_MAX_INT(df); | 
|  |  | 
|  | if (arg1 == q_min && arg2 == q_min) { | 
|  | return q_max; | 
|  | } | 
|  | return (arg1 * arg2) >> (DF_BITS(df) - 1); | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_mulr_q_df(uint32_t df, int64_t arg1, int64_t arg2) | 
|  | { | 
|  | int64_t q_min = DF_MIN_INT(df); | 
|  | int64_t q_max = DF_MAX_INT(df); | 
|  | int64_t r_bit = 1 << (DF_BITS(df) - 2); | 
|  |  | 
|  | if (arg1 == q_min && arg2 == q_min) { | 
|  | return q_max; | 
|  | } | 
|  | return (arg1 * arg2 + r_bit) >> (DF_BITS(df) - 1); | 
|  | } | 
|  |  | 
|  | #define MSA_BINOP_DF(func) \ | 
|  | void helper_msa_ ## func ## _df(CPUMIPSState *env, uint32_t df,         \ | 
|  | uint32_t wd, uint32_t ws, uint32_t wt)  \ | 
|  | {                                                                       \ | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr);                          \ | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr);                          \ | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr);                          \ | 
|  | uint32_t i;                                                         \ | 
|  | \ | 
|  | switch (df) {                                                       \ | 
|  | case DF_BYTE:                                                       \ | 
|  | for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) {                    \ | 
|  | pwd->b[i] = msa_ ## func ## _df(df, pws->b[i], pwt->b[i]);  \ | 
|  | }                                                               \ | 
|  | break;                                                          \ | 
|  | case DF_HALF:                                                       \ | 
|  | for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) {                    \ | 
|  | pwd->h[i] = msa_ ## func ## _df(df, pws->h[i], pwt->h[i]);  \ | 
|  | }                                                               \ | 
|  | break;                                                          \ | 
|  | case DF_WORD:                                                       \ | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {                    \ | 
|  | pwd->w[i] = msa_ ## func ## _df(df, pws->w[i], pwt->w[i]);  \ | 
|  | }                                                               \ | 
|  | break;                                                          \ | 
|  | case DF_DOUBLE:                                                     \ | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {                  \ | 
|  | pwd->d[i] = msa_ ## func ## _df(df, pws->d[i], pwt->d[i]);  \ | 
|  | }                                                               \ | 
|  | break;                                                          \ | 
|  | default:                                                            \ | 
|  | assert(0);                                                      \ | 
|  | }                                                                   \ | 
|  | } | 
|  |  | 
|  | MSA_BINOP_DF(sll) | 
|  | MSA_BINOP_DF(sra) | 
|  | MSA_BINOP_DF(srl) | 
|  | MSA_BINOP_DF(bclr) | 
|  | MSA_BINOP_DF(bset) | 
|  | MSA_BINOP_DF(bneg) | 
|  | MSA_BINOP_DF(addv) | 
|  | MSA_BINOP_DF(subv) | 
|  | MSA_BINOP_DF(max_s) | 
|  | MSA_BINOP_DF(max_u) | 
|  | MSA_BINOP_DF(min_s) | 
|  | MSA_BINOP_DF(min_u) | 
|  | MSA_BINOP_DF(max_a) | 
|  | MSA_BINOP_DF(min_a) | 
|  | MSA_BINOP_DF(ceq) | 
|  | MSA_BINOP_DF(clt_s) | 
|  | MSA_BINOP_DF(clt_u) | 
|  | MSA_BINOP_DF(cle_s) | 
|  | MSA_BINOP_DF(cle_u) | 
|  | MSA_BINOP_DF(add_a) | 
|  | MSA_BINOP_DF(adds_a) | 
|  | MSA_BINOP_DF(adds_s) | 
|  | MSA_BINOP_DF(adds_u) | 
|  | MSA_BINOP_DF(ave_s) | 
|  | MSA_BINOP_DF(ave_u) | 
|  | MSA_BINOP_DF(aver_s) | 
|  | MSA_BINOP_DF(aver_u) | 
|  | MSA_BINOP_DF(subs_s) | 
|  | MSA_BINOP_DF(subs_u) | 
|  | MSA_BINOP_DF(subsus_u) | 
|  | MSA_BINOP_DF(subsuu_s) | 
|  | MSA_BINOP_DF(asub_s) | 
|  | MSA_BINOP_DF(asub_u) | 
|  | MSA_BINOP_DF(mulv) | 
|  | MSA_BINOP_DF(div_s) | 
|  | MSA_BINOP_DF(div_u) | 
|  | MSA_BINOP_DF(mod_s) | 
|  | MSA_BINOP_DF(mod_u) | 
|  | MSA_BINOP_DF(dotp_s) | 
|  | MSA_BINOP_DF(dotp_u) | 
|  | MSA_BINOP_DF(srar) | 
|  | MSA_BINOP_DF(srlr) | 
|  | MSA_BINOP_DF(hadd_s) | 
|  | MSA_BINOP_DF(hadd_u) | 
|  | MSA_BINOP_DF(hsub_s) | 
|  | MSA_BINOP_DF(hsub_u) | 
|  |  | 
|  | MSA_BINOP_DF(mul_q) | 
|  | MSA_BINOP_DF(mulr_q) | 
|  | #undef MSA_BINOP_DF | 
|  |  | 
|  | void helper_msa_sld_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t rt) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  |  | 
|  | msa_sld_df(df, pwd, pws, env->active_tc.gpr[rt]); | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_maddv_df(uint32_t df, int64_t dest, int64_t arg1, | 
|  | int64_t arg2) | 
|  | { | 
|  | return dest + arg1 * arg2; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_msubv_df(uint32_t df, int64_t dest, int64_t arg1, | 
|  | int64_t arg2) | 
|  | { | 
|  | return dest - arg1 * arg2; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_dpadd_s_df(uint32_t df, int64_t dest, int64_t arg1, | 
|  | int64_t arg2) | 
|  | { | 
|  | int64_t even_arg1; | 
|  | int64_t even_arg2; | 
|  | int64_t odd_arg1; | 
|  | int64_t odd_arg2; | 
|  | SIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df); | 
|  | SIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df); | 
|  | return dest + (even_arg1 * even_arg2) + (odd_arg1 * odd_arg2); | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_dpadd_u_df(uint32_t df, int64_t dest, int64_t arg1, | 
|  | int64_t arg2) | 
|  | { | 
|  | int64_t even_arg1; | 
|  | int64_t even_arg2; | 
|  | int64_t odd_arg1; | 
|  | int64_t odd_arg2; | 
|  | UNSIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df); | 
|  | UNSIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df); | 
|  | return dest + (even_arg1 * even_arg2) + (odd_arg1 * odd_arg2); | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_dpsub_s_df(uint32_t df, int64_t dest, int64_t arg1, | 
|  | int64_t arg2) | 
|  | { | 
|  | int64_t even_arg1; | 
|  | int64_t even_arg2; | 
|  | int64_t odd_arg1; | 
|  | int64_t odd_arg2; | 
|  | SIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df); | 
|  | SIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df); | 
|  | return dest - ((even_arg1 * even_arg2) + (odd_arg1 * odd_arg2)); | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_dpsub_u_df(uint32_t df, int64_t dest, int64_t arg1, | 
|  | int64_t arg2) | 
|  | { | 
|  | int64_t even_arg1; | 
|  | int64_t even_arg2; | 
|  | int64_t odd_arg1; | 
|  | int64_t odd_arg2; | 
|  | UNSIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df); | 
|  | UNSIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df); | 
|  | return dest - ((even_arg1 * even_arg2) + (odd_arg1 * odd_arg2)); | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_madd_q_df(uint32_t df, int64_t dest, int64_t arg1, | 
|  | int64_t arg2) | 
|  | { | 
|  | int64_t q_prod, q_ret; | 
|  |  | 
|  | int64_t q_max = DF_MAX_INT(df); | 
|  | int64_t q_min = DF_MIN_INT(df); | 
|  |  | 
|  | q_prod = arg1 * arg2; | 
|  | q_ret = ((dest << (DF_BITS(df) - 1)) + q_prod) >> (DF_BITS(df) - 1); | 
|  |  | 
|  | return (q_ret < q_min) ? q_min : (q_max < q_ret) ? q_max : q_ret; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_msub_q_df(uint32_t df, int64_t dest, int64_t arg1, | 
|  | int64_t arg2) | 
|  | { | 
|  | int64_t q_prod, q_ret; | 
|  |  | 
|  | int64_t q_max = DF_MAX_INT(df); | 
|  | int64_t q_min = DF_MIN_INT(df); | 
|  |  | 
|  | q_prod = arg1 * arg2; | 
|  | q_ret = ((dest << (DF_BITS(df) - 1)) - q_prod) >> (DF_BITS(df) - 1); | 
|  |  | 
|  | return (q_ret < q_min) ? q_min : (q_max < q_ret) ? q_max : q_ret; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_maddr_q_df(uint32_t df, int64_t dest, int64_t arg1, | 
|  | int64_t arg2) | 
|  | { | 
|  | int64_t q_prod, q_ret; | 
|  |  | 
|  | int64_t q_max = DF_MAX_INT(df); | 
|  | int64_t q_min = DF_MIN_INT(df); | 
|  | int64_t r_bit = 1 << (DF_BITS(df) - 2); | 
|  |  | 
|  | q_prod = arg1 * arg2; | 
|  | q_ret = ((dest << (DF_BITS(df) - 1)) + q_prod + r_bit) >> (DF_BITS(df) - 1); | 
|  |  | 
|  | return (q_ret < q_min) ? q_min : (q_max < q_ret) ? q_max : q_ret; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_msubr_q_df(uint32_t df, int64_t dest, int64_t arg1, | 
|  | int64_t arg2) | 
|  | { | 
|  | int64_t q_prod, q_ret; | 
|  |  | 
|  | int64_t q_max = DF_MAX_INT(df); | 
|  | int64_t q_min = DF_MIN_INT(df); | 
|  | int64_t r_bit = 1 << (DF_BITS(df) - 2); | 
|  |  | 
|  | q_prod = arg1 * arg2; | 
|  | q_ret = ((dest << (DF_BITS(df) - 1)) - q_prod + r_bit) >> (DF_BITS(df) - 1); | 
|  |  | 
|  | return (q_ret < q_min) ? q_min : (q_max < q_ret) ? q_max : q_ret; | 
|  | } | 
|  |  | 
|  | #define MSA_TEROP_DF(func) \ | 
|  | void helper_msa_ ## func ## _df(CPUMIPSState *env, uint32_t df, uint32_t wd,   \ | 
|  | uint32_t ws, uint32_t wt)                     \ | 
|  | {                                                                       \ | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr);                          \ | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr);                          \ | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr);                          \ | 
|  | uint32_t i;                                                         \ | 
|  | \ | 
|  | switch (df) {                                                       \ | 
|  | case DF_BYTE:                                                       \ | 
|  | for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) {                    \ | 
|  | pwd->b[i] = msa_ ## func ## _df(df, pwd->b[i], pws->b[i],   \ | 
|  | pwt->b[i]);                 \ | 
|  | }                                                               \ | 
|  | break;                                                          \ | 
|  | case DF_HALF:                                                       \ | 
|  | for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) {                    \ | 
|  | pwd->h[i] = msa_ ## func ## _df(df, pwd->h[i], pws->h[i],   \ | 
|  | pwt->h[i]);                 \ | 
|  | }                                                               \ | 
|  | break;                                                          \ | 
|  | case DF_WORD:                                                       \ | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {                    \ | 
|  | pwd->w[i] = msa_ ## func ## _df(df, pwd->w[i], pws->w[i],   \ | 
|  | pwt->w[i]);                 \ | 
|  | }                                                               \ | 
|  | break;                                                          \ | 
|  | case DF_DOUBLE:                                                     \ | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {                  \ | 
|  | pwd->d[i] = msa_ ## func ## _df(df, pwd->d[i], pws->d[i],   \ | 
|  | pwt->d[i]);                 \ | 
|  | }                                                               \ | 
|  | break;                                                          \ | 
|  | default:                                                            \ | 
|  | assert(0);                                                      \ | 
|  | }                                                                   \ | 
|  | } | 
|  |  | 
|  | MSA_TEROP_DF(maddv) | 
|  | MSA_TEROP_DF(msubv) | 
|  | MSA_TEROP_DF(dpadd_s) | 
|  | MSA_TEROP_DF(dpadd_u) | 
|  | MSA_TEROP_DF(dpsub_s) | 
|  | MSA_TEROP_DF(dpsub_u) | 
|  | MSA_TEROP_DF(binsl) | 
|  | MSA_TEROP_DF(binsr) | 
|  | MSA_TEROP_DF(madd_q) | 
|  | MSA_TEROP_DF(msub_q) | 
|  | MSA_TEROP_DF(maddr_q) | 
|  | MSA_TEROP_DF(msubr_q) | 
|  | #undef MSA_TEROP_DF | 
|  |  | 
|  | static inline void msa_splat_df(uint32_t df, wr_t *pwd, | 
|  | wr_t *pws, target_ulong rt) | 
|  | { | 
|  | uint32_t n = rt % DF_ELEMENTS(df); | 
|  | uint32_t i; | 
|  |  | 
|  | switch (df) { | 
|  | case DF_BYTE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { | 
|  | pwd->b[i] = pws->b[n]; | 
|  | } | 
|  | break; | 
|  | case DF_HALF: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { | 
|  | pwd->h[i] = pws->h[n]; | 
|  | } | 
|  | break; | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | pwd->w[i] = pws->w[n]; | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | pwd->d[i] = pws->d[n]; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_msa_splat_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t rt) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  |  | 
|  | msa_splat_df(df, pwd, pws, env->active_tc.gpr[rt]); | 
|  | } | 
|  |  | 
|  | #define MSA_DO_B MSA_DO(b) | 
|  | #define MSA_DO_H MSA_DO(h) | 
|  | #define MSA_DO_W MSA_DO(w) | 
|  | #define MSA_DO_D MSA_DO(d) | 
|  |  | 
|  | #define MSA_LOOP_B MSA_LOOP(B) | 
|  | #define MSA_LOOP_H MSA_LOOP(H) | 
|  | #define MSA_LOOP_W MSA_LOOP(W) | 
|  | #define MSA_LOOP_D MSA_LOOP(D) | 
|  |  | 
|  | #define MSA_LOOP_COND_B MSA_LOOP_COND(DF_BYTE) | 
|  | #define MSA_LOOP_COND_H MSA_LOOP_COND(DF_HALF) | 
|  | #define MSA_LOOP_COND_W MSA_LOOP_COND(DF_WORD) | 
|  | #define MSA_LOOP_COND_D MSA_LOOP_COND(DF_DOUBLE) | 
|  |  | 
|  | #define MSA_LOOP(DF) \ | 
|  | for (i = 0; i < (MSA_LOOP_COND_ ## DF) ; i++) { \ | 
|  | MSA_DO_ ## DF \ | 
|  | } | 
|  |  | 
|  | #define MSA_FN_DF(FUNC)                                             \ | 
|  | void helper_msa_##FUNC(CPUMIPSState *env, uint32_t df, uint32_t wd, \ | 
|  | uint32_t ws, uint32_t wt)                                   \ | 
|  | {                                                                   \ | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr);                      \ | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr);                      \ | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr);                      \ | 
|  | wr_t wx, *pwx = &wx;                                            \ | 
|  | uint32_t i;                                                     \ | 
|  | switch (df) {                                                   \ | 
|  | case DF_BYTE:                                                   \ | 
|  | MSA_LOOP_B                                                  \ | 
|  | break;                                                      \ | 
|  | case DF_HALF:                                                   \ | 
|  | MSA_LOOP_H                                                  \ | 
|  | break;                                                      \ | 
|  | case DF_WORD:                                                   \ | 
|  | MSA_LOOP_W                                                  \ | 
|  | break;                                                      \ | 
|  | case DF_DOUBLE:                                                 \ | 
|  | MSA_LOOP_D                                                  \ | 
|  | break;                                                       \ | 
|  | default:                                                        \ | 
|  | assert(0);                                                  \ | 
|  | }                                                               \ | 
|  | msa_move_v(pwd, pwx);                                           \ | 
|  | } | 
|  |  | 
|  | #define MSA_LOOP_COND(DF) \ | 
|  | (DF_ELEMENTS(DF) / 2) | 
|  |  | 
|  | #define Rb(pwr, i) (pwr->b[i]) | 
|  | #define Lb(pwr, i) (pwr->b[i + DF_ELEMENTS(DF_BYTE)/2]) | 
|  | #define Rh(pwr, i) (pwr->h[i]) | 
|  | #define Lh(pwr, i) (pwr->h[i + DF_ELEMENTS(DF_HALF)/2]) | 
|  | #define Rw(pwr, i) (pwr->w[i]) | 
|  | #define Lw(pwr, i) (pwr->w[i + DF_ELEMENTS(DF_WORD)/2]) | 
|  | #define Rd(pwr, i) (pwr->d[i]) | 
|  | #define Ld(pwr, i) (pwr->d[i + DF_ELEMENTS(DF_DOUBLE)/2]) | 
|  |  | 
|  | #define MSA_DO(DF)                      \ | 
|  | do {                                \ | 
|  | R##DF(pwx, i) = pwt->DF[2*i];   \ | 
|  | L##DF(pwx, i) = pws->DF[2*i];   \ | 
|  | } while (0); | 
|  | MSA_FN_DF(pckev_df) | 
|  | #undef MSA_DO | 
|  |  | 
|  | #define MSA_DO(DF)                      \ | 
|  | do {                                \ | 
|  | R##DF(pwx, i) = pwt->DF[2*i+1]; \ | 
|  | L##DF(pwx, i) = pws->DF[2*i+1]; \ | 
|  | } while (0); | 
|  | MSA_FN_DF(pckod_df) | 
|  | #undef MSA_DO | 
|  |  | 
|  | #define MSA_DO(DF)                      \ | 
|  | do {                                \ | 
|  | pwx->DF[2*i]   = L##DF(pwt, i); \ | 
|  | pwx->DF[2*i+1] = L##DF(pws, i); \ | 
|  | } while (0); | 
|  | MSA_FN_DF(ilvl_df) | 
|  | #undef MSA_DO | 
|  |  | 
|  | #define MSA_DO(DF)                      \ | 
|  | do {                                \ | 
|  | pwx->DF[2*i]   = R##DF(pwt, i); \ | 
|  | pwx->DF[2*i+1] = R##DF(pws, i); \ | 
|  | } while (0); | 
|  | MSA_FN_DF(ilvr_df) | 
|  | #undef MSA_DO | 
|  |  | 
|  | #define MSA_DO(DF)                      \ | 
|  | do {                                \ | 
|  | pwx->DF[2*i]   = pwt->DF[2*i];  \ | 
|  | pwx->DF[2*i+1] = pws->DF[2*i];  \ | 
|  | } while (0); | 
|  | MSA_FN_DF(ilvev_df) | 
|  | #undef MSA_DO | 
|  |  | 
|  | #define MSA_DO(DF)                          \ | 
|  | do {                                    \ | 
|  | pwx->DF[2*i]   = pwt->DF[2*i+1];    \ | 
|  | pwx->DF[2*i+1] = pws->DF[2*i+1];    \ | 
|  | } while (0); | 
|  | MSA_FN_DF(ilvod_df) | 
|  | #undef MSA_DO | 
|  | #undef MSA_LOOP_COND | 
|  |  | 
|  | #define MSA_LOOP_COND(DF) \ | 
|  | (DF_ELEMENTS(DF)) | 
|  |  | 
|  | #define MSA_DO(DF)                                                          \ | 
|  | do {                                                                    \ | 
|  | uint32_t n = DF_ELEMENTS(df);                                       \ | 
|  | uint32_t k = (pwd->DF[i] & 0x3f) % (2 * n);                         \ | 
|  | pwx->DF[i] =                                                        \ | 
|  | (pwd->DF[i] & 0xc0) ? 0 : k < n ? pwt->DF[k] : pws->DF[k - n];  \ | 
|  | } while (0); | 
|  | MSA_FN_DF(vshf_df) | 
|  | #undef MSA_DO | 
|  | #undef MSA_LOOP_COND | 
|  | #undef MSA_FN_DF | 
|  |  | 
|  | void helper_msa_sldi_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t n) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  |  | 
|  | msa_sld_df(df, pwd, pws, n); | 
|  | } | 
|  |  | 
|  | void helper_msa_splati_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t n) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  |  | 
|  | msa_splat_df(df, pwd, pws, n); | 
|  | } | 
|  |  | 
|  | void helper_msa_copy_s_df(CPUMIPSState *env, uint32_t df, uint32_t rd, | 
|  | uint32_t ws, uint32_t n) | 
|  | { | 
|  | n %= DF_ELEMENTS(df); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_BYTE: | 
|  | env->active_tc.gpr[rd] = (int8_t)env->active_fpu.fpr[ws].wr.b[n]; | 
|  | break; | 
|  | case DF_HALF: | 
|  | env->active_tc.gpr[rd] = (int16_t)env->active_fpu.fpr[ws].wr.h[n]; | 
|  | break; | 
|  | case DF_WORD: | 
|  | env->active_tc.gpr[rd] = (int32_t)env->active_fpu.fpr[ws].wr.w[n]; | 
|  | break; | 
|  | #ifdef TARGET_MIPS64 | 
|  | case DF_DOUBLE: | 
|  | env->active_tc.gpr[rd] = (int64_t)env->active_fpu.fpr[ws].wr.d[n]; | 
|  | break; | 
|  | #endif | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_msa_copy_u_df(CPUMIPSState *env, uint32_t df, uint32_t rd, | 
|  | uint32_t ws, uint32_t n) | 
|  | { | 
|  | n %= DF_ELEMENTS(df); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_BYTE: | 
|  | env->active_tc.gpr[rd] = (uint8_t)env->active_fpu.fpr[ws].wr.b[n]; | 
|  | break; | 
|  | case DF_HALF: | 
|  | env->active_tc.gpr[rd] = (uint16_t)env->active_fpu.fpr[ws].wr.h[n]; | 
|  | break; | 
|  | case DF_WORD: | 
|  | env->active_tc.gpr[rd] = (uint32_t)env->active_fpu.fpr[ws].wr.w[n]; | 
|  | break; | 
|  | #ifdef TARGET_MIPS64 | 
|  | case DF_DOUBLE: | 
|  | env->active_tc.gpr[rd] = (uint64_t)env->active_fpu.fpr[ws].wr.d[n]; | 
|  | break; | 
|  | #endif | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_msa_insert_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t rs_num, uint32_t n) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | target_ulong rs = env->active_tc.gpr[rs_num]; | 
|  |  | 
|  | switch (df) { | 
|  | case DF_BYTE: | 
|  | pwd->b[n] = (int8_t)rs; | 
|  | break; | 
|  | case DF_HALF: | 
|  | pwd->h[n] = (int16_t)rs; | 
|  | break; | 
|  | case DF_WORD: | 
|  | pwd->w[n] = (int32_t)rs; | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | pwd->d[n] = (int64_t)rs; | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_msa_insve_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t n) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_BYTE: | 
|  | pwd->b[n] = (int8_t)pws->b[0]; | 
|  | break; | 
|  | case DF_HALF: | 
|  | pwd->h[n] = (int16_t)pws->h[0]; | 
|  | break; | 
|  | case DF_WORD: | 
|  | pwd->w[n] = (int32_t)pws->w[0]; | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | pwd->d[n] = (int64_t)pws->d[0]; | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void helper_msa_ctcmsa(CPUMIPSState *env, target_ulong elm, uint32_t cd) | 
|  | { | 
|  | switch (cd) { | 
|  | case 0: | 
|  | break; | 
|  | case 1: | 
|  | env->active_tc.msacsr = (int32_t)elm & MSACSR_MASK; | 
|  | restore_msa_fp_status(env); | 
|  | /* check exception */ | 
|  | if ((GET_FP_ENABLE(env->active_tc.msacsr) | FP_UNIMPLEMENTED) | 
|  | & GET_FP_CAUSE(env->active_tc.msacsr)) { | 
|  | helper_raise_exception(env, EXCP_MSAFPE); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | target_ulong helper_msa_cfcmsa(CPUMIPSState *env, uint32_t cs) | 
|  | { | 
|  | switch (cs) { | 
|  | case 0: | 
|  | return env->msair; | 
|  | case 1: | 
|  | return env->active_tc.msacsr & MSACSR_MASK; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void helper_msa_move_v(CPUMIPSState *env, uint32_t wd, uint32_t ws) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  |  | 
|  | msa_move_v(pwd, pws); | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_pcnt_df(uint32_t df, int64_t arg) | 
|  | { | 
|  | uint64_t x; | 
|  |  | 
|  | x = UNSIGNED(arg, df); | 
|  |  | 
|  | x = (x & 0x5555555555555555ULL) + ((x >>  1) & 0x5555555555555555ULL); | 
|  | x = (x & 0x3333333333333333ULL) + ((x >>  2) & 0x3333333333333333ULL); | 
|  | x = (x & 0x0F0F0F0F0F0F0F0FULL) + ((x >>  4) & 0x0F0F0F0F0F0F0F0FULL); | 
|  | x = (x & 0x00FF00FF00FF00FFULL) + ((x >>  8) & 0x00FF00FF00FF00FFULL); | 
|  | x = (x & 0x0000FFFF0000FFFFULL) + ((x >> 16) & 0x0000FFFF0000FFFFULL); | 
|  | x = (x & 0x00000000FFFFFFFFULL) + ((x >> 32)); | 
|  |  | 
|  | return x; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_nlzc_df(uint32_t df, int64_t arg) | 
|  | { | 
|  | uint64_t x, y; | 
|  | int n, c; | 
|  |  | 
|  | x = UNSIGNED(arg, df); | 
|  | n = DF_BITS(df); | 
|  | c = DF_BITS(df) / 2; | 
|  |  | 
|  | do { | 
|  | y = x >> c; | 
|  | if (y != 0) { | 
|  | n = n - c; | 
|  | x = y; | 
|  | } | 
|  | c = c >> 1; | 
|  | } while (c != 0); | 
|  |  | 
|  | return n - x; | 
|  | } | 
|  |  | 
|  | static inline int64_t msa_nloc_df(uint32_t df, int64_t arg) | 
|  | { | 
|  | return msa_nlzc_df(df, UNSIGNED((~arg), df)); | 
|  | } | 
|  |  | 
|  | void helper_msa_fill_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t rs) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | switch (df) { | 
|  | case DF_BYTE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { | 
|  | pwd->b[i] = (int8_t)env->active_tc.gpr[rs]; | 
|  | } | 
|  | break; | 
|  | case DF_HALF: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { | 
|  | pwd->h[i] = (int16_t)env->active_tc.gpr[rs]; | 
|  | } | 
|  | break; | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | pwd->w[i] = (int32_t)env->active_tc.gpr[rs]; | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | pwd->d[i] = (int64_t)env->active_tc.gpr[rs]; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define MSA_UNOP_DF(func) \ | 
|  | void helper_msa_ ## func ## _df(CPUMIPSState *env, uint32_t df,         \ | 
|  | uint32_t wd, uint32_t ws)                 \ | 
|  | {                                                                       \ | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr);                          \ | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr);                          \ | 
|  | uint32_t i;                                                         \ | 
|  | \ | 
|  | switch (df) {                                                       \ | 
|  | case DF_BYTE:                                                       \ | 
|  | for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) {                    \ | 
|  | pwd->b[i] = msa_ ## func ## _df(df, pws->b[i]);             \ | 
|  | }                                                               \ | 
|  | break;                                                          \ | 
|  | case DF_HALF:                                                       \ | 
|  | for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) {                    \ | 
|  | pwd->h[i] = msa_ ## func ## _df(df, pws->h[i]);             \ | 
|  | }                                                               \ | 
|  | break;                                                          \ | 
|  | case DF_WORD:                                                       \ | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {                    \ | 
|  | pwd->w[i] = msa_ ## func ## _df(df, pws->w[i]);             \ | 
|  | }                                                               \ | 
|  | break;                                                          \ | 
|  | case DF_DOUBLE:                                                     \ | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {                  \ | 
|  | pwd->d[i] = msa_ ## func ## _df(df, pws->d[i]);             \ | 
|  | }                                                               \ | 
|  | break;                                                          \ | 
|  | default:                                                            \ | 
|  | assert(0);                                                      \ | 
|  | }                                                                   \ | 
|  | } | 
|  |  | 
|  | MSA_UNOP_DF(nlzc) | 
|  | MSA_UNOP_DF(nloc) | 
|  | MSA_UNOP_DF(pcnt) | 
|  | #undef MSA_UNOP_DF | 
|  |  | 
|  | #define FLOAT_ONE32 make_float32(0x3f8 << 20) | 
|  | #define FLOAT_ONE64 make_float64(0x3ffULL << 52) | 
|  |  | 
|  | #define FLOAT_SNAN16 (float16_default_nan ^ 0x0220) | 
|  | /* 0x7c20 */ | 
|  | #define FLOAT_SNAN32 (float32_default_nan ^ 0x00400020) | 
|  | /* 0x7f800020 */ | 
|  | #define FLOAT_SNAN64 (float64_default_nan ^ 0x0008000000000020ULL) | 
|  | /* 0x7ff0000000000020 */ | 
|  |  | 
|  | static inline void clear_msacsr_cause(CPUMIPSState *env) | 
|  | { | 
|  | SET_FP_CAUSE(env->active_tc.msacsr, 0); | 
|  | } | 
|  |  | 
|  | static inline void check_msacsr_cause(CPUMIPSState *env) | 
|  | { | 
|  | if ((GET_FP_CAUSE(env->active_tc.msacsr) & | 
|  | (GET_FP_ENABLE(env->active_tc.msacsr) | FP_UNIMPLEMENTED)) == 0) { | 
|  | UPDATE_FP_FLAGS(env->active_tc.msacsr, | 
|  | GET_FP_CAUSE(env->active_tc.msacsr)); | 
|  | } else { | 
|  | helper_raise_exception(env, EXCP_MSAFPE); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Flush-to-zero use cases for update_msacsr() */ | 
|  | #define CLEAR_FS_UNDERFLOW 1 | 
|  | #define CLEAR_IS_INEXACT   2 | 
|  | #define RECIPROCAL_INEXACT 4 | 
|  |  | 
|  | static inline int update_msacsr(CPUMIPSState *env, int action, int denormal) | 
|  | { | 
|  | int ieee_ex; | 
|  |  | 
|  | int c; | 
|  | int cause; | 
|  | int enable; | 
|  |  | 
|  | ieee_ex = get_float_exception_flags(&env->active_tc.msa_fp_status); | 
|  |  | 
|  | /* QEMU softfloat does not signal all underflow cases */ | 
|  | if (denormal) { | 
|  | ieee_ex |= float_flag_underflow; | 
|  | } | 
|  |  | 
|  | c = ieee_ex_to_mips(ieee_ex); | 
|  | enable = GET_FP_ENABLE(env->active_tc.msacsr) | FP_UNIMPLEMENTED; | 
|  |  | 
|  | /* Set Inexact (I) when flushing inputs to zero */ | 
|  | if ((ieee_ex & float_flag_input_denormal) && | 
|  | (env->active_tc.msacsr & MSACSR_FS_MASK) != 0) { | 
|  | if (action & CLEAR_IS_INEXACT) { | 
|  | c &= ~FP_INEXACT; | 
|  | } else { | 
|  | c |=  FP_INEXACT; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set Inexact (I) and Underflow (U) when flushing outputs to zero */ | 
|  | if ((ieee_ex & float_flag_output_denormal) && | 
|  | (env->active_tc.msacsr & MSACSR_FS_MASK) != 0) { | 
|  | c |= FP_INEXACT; | 
|  | if (action & CLEAR_FS_UNDERFLOW) { | 
|  | c &= ~FP_UNDERFLOW; | 
|  | } else { | 
|  | c |=  FP_UNDERFLOW; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set Inexact (I) when Overflow (O) is not enabled */ | 
|  | if ((c & FP_OVERFLOW) != 0 && (enable & FP_OVERFLOW) == 0) { | 
|  | c |= FP_INEXACT; | 
|  | } | 
|  |  | 
|  | /* Clear Exact Underflow when Underflow (U) is not enabled */ | 
|  | if ((c & FP_UNDERFLOW) != 0 && (enable & FP_UNDERFLOW) == 0 && | 
|  | (c & FP_INEXACT) == 0) { | 
|  | c &= ~FP_UNDERFLOW; | 
|  | } | 
|  |  | 
|  | /* Reciprocal operations set only Inexact when valid and not | 
|  | divide by zero */ | 
|  | if ((action & RECIPROCAL_INEXACT) && | 
|  | (c & (FP_INVALID | FP_DIV0)) == 0) { | 
|  | c = FP_INEXACT; | 
|  | } | 
|  |  | 
|  | cause = c & enable;    /* all current enabled exceptions */ | 
|  |  | 
|  | if (cause == 0) { | 
|  | /* No enabled exception, update the MSACSR Cause | 
|  | with all current exceptions */ | 
|  | SET_FP_CAUSE(env->active_tc.msacsr, | 
|  | (GET_FP_CAUSE(env->active_tc.msacsr) | c)); | 
|  | } else { | 
|  | /* Current exceptions are enabled */ | 
|  | if ((env->active_tc.msacsr & MSACSR_NX_MASK) == 0) { | 
|  | /* Exception(s) will trap, update MSACSR Cause | 
|  | with all enabled exceptions */ | 
|  | SET_FP_CAUSE(env->active_tc.msacsr, | 
|  | (GET_FP_CAUSE(env->active_tc.msacsr) | c)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return c; | 
|  | } | 
|  |  | 
|  | static inline int get_enabled_exceptions(const CPUMIPSState *env, int c) | 
|  | { | 
|  | int enable = GET_FP_ENABLE(env->active_tc.msacsr) | FP_UNIMPLEMENTED; | 
|  | return c & enable; | 
|  | } | 
|  |  | 
|  | static inline float16 float16_from_float32(int32 a, flag ieee, | 
|  | float_status *status) | 
|  | { | 
|  | float16 f_val; | 
|  |  | 
|  | f_val = float32_to_float16((float32)a, ieee, status); | 
|  | f_val = float16_maybe_silence_nan(f_val); | 
|  |  | 
|  | return a < 0 ? (f_val | (1 << 15)) : f_val; | 
|  | } | 
|  |  | 
|  | static inline float32 float32_from_float64(int64 a, float_status *status) | 
|  | { | 
|  | float32 f_val; | 
|  |  | 
|  | f_val = float64_to_float32((float64)a, status); | 
|  | f_val = float32_maybe_silence_nan(f_val); | 
|  |  | 
|  | return a < 0 ? (f_val | (1 << 31)) : f_val; | 
|  | } | 
|  |  | 
|  | static inline float32 float32_from_float16(int16_t a, flag ieee, | 
|  | float_status *status) | 
|  | { | 
|  | float32 f_val; | 
|  |  | 
|  | f_val = float16_to_float32((float16)a, ieee, status); | 
|  | f_val = float32_maybe_silence_nan(f_val); | 
|  |  | 
|  | return a < 0 ? (f_val | (1 << 31)) : f_val; | 
|  | } | 
|  |  | 
|  | static inline float64 float64_from_float32(int32 a, float_status *status) | 
|  | { | 
|  | float64 f_val; | 
|  |  | 
|  | f_val = float32_to_float64((float64)a, status); | 
|  | f_val = float64_maybe_silence_nan(f_val); | 
|  |  | 
|  | return a < 0 ? (f_val | (1ULL << 63)) : f_val; | 
|  | } | 
|  |  | 
|  | static inline float32 float32_from_q16(int16_t a, float_status *status) | 
|  | { | 
|  | float32 f_val; | 
|  |  | 
|  | /* conversion as integer and scaling */ | 
|  | f_val = int32_to_float32(a, status); | 
|  | f_val = float32_scalbn(f_val, -15, status); | 
|  |  | 
|  | return f_val; | 
|  | } | 
|  |  | 
|  | static inline float64 float64_from_q32(int32 a, float_status *status) | 
|  | { | 
|  | float64 f_val; | 
|  |  | 
|  | /* conversion as integer and scaling */ | 
|  | f_val = int32_to_float64(a, status); | 
|  | f_val = float64_scalbn(f_val, -31, status); | 
|  |  | 
|  | return f_val; | 
|  | } | 
|  |  | 
|  | static inline int16_t float32_to_q16(float32 a, float_status *status) | 
|  | { | 
|  | int32 q_val; | 
|  | int32 q_min = 0xffff8000; | 
|  | int32 q_max = 0x00007fff; | 
|  |  | 
|  | int ieee_ex; | 
|  |  | 
|  | if (float32_is_any_nan(a)) { | 
|  | float_raise(float_flag_invalid, status); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* scaling */ | 
|  | a = float32_scalbn(a, 15, status); | 
|  |  | 
|  | ieee_ex = get_float_exception_flags(status); | 
|  | set_float_exception_flags(ieee_ex & (~float_flag_underflow) | 
|  | , status); | 
|  |  | 
|  | if (ieee_ex & float_flag_overflow) { | 
|  | float_raise(float_flag_inexact, status); | 
|  | return (int32)a < 0 ? q_min : q_max; | 
|  | } | 
|  |  | 
|  | /* conversion to int */ | 
|  | q_val = float32_to_int32(a, status); | 
|  |  | 
|  | ieee_ex = get_float_exception_flags(status); | 
|  | set_float_exception_flags(ieee_ex & (~float_flag_underflow) | 
|  | , status); | 
|  |  | 
|  | if (ieee_ex & float_flag_invalid) { | 
|  | set_float_exception_flags(ieee_ex & (~float_flag_invalid) | 
|  | , status); | 
|  | float_raise(float_flag_overflow | float_flag_inexact, status); | 
|  | return (int32)a < 0 ? q_min : q_max; | 
|  | } | 
|  |  | 
|  | if (q_val < q_min) { | 
|  | float_raise(float_flag_overflow | float_flag_inexact, status); | 
|  | return (int16_t)q_min; | 
|  | } | 
|  |  | 
|  | if (q_max < q_val) { | 
|  | float_raise(float_flag_overflow | float_flag_inexact, status); | 
|  | return (int16_t)q_max; | 
|  | } | 
|  |  | 
|  | return (int16_t)q_val; | 
|  | } | 
|  |  | 
|  | static inline int32 float64_to_q32(float64 a, float_status *status) | 
|  | { | 
|  | int64 q_val; | 
|  | int64 q_min = 0xffffffff80000000LL; | 
|  | int64 q_max = 0x000000007fffffffLL; | 
|  |  | 
|  | int ieee_ex; | 
|  |  | 
|  | if (float64_is_any_nan(a)) { | 
|  | float_raise(float_flag_invalid, status); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* scaling */ | 
|  | a = float64_scalbn(a, 31, status); | 
|  |  | 
|  | ieee_ex = get_float_exception_flags(status); | 
|  | set_float_exception_flags(ieee_ex & (~float_flag_underflow) | 
|  | , status); | 
|  |  | 
|  | if (ieee_ex & float_flag_overflow) { | 
|  | float_raise(float_flag_inexact, status); | 
|  | return (int64)a < 0 ? q_min : q_max; | 
|  | } | 
|  |  | 
|  | /* conversion to integer */ | 
|  | q_val = float64_to_int64(a, status); | 
|  |  | 
|  | ieee_ex = get_float_exception_flags(status); | 
|  | set_float_exception_flags(ieee_ex & (~float_flag_underflow) | 
|  | , status); | 
|  |  | 
|  | if (ieee_ex & float_flag_invalid) { | 
|  | set_float_exception_flags(ieee_ex & (~float_flag_invalid) | 
|  | , status); | 
|  | float_raise(float_flag_overflow | float_flag_inexact, status); | 
|  | return (int64)a < 0 ? q_min : q_max; | 
|  | } | 
|  |  | 
|  | if (q_val < q_min) { | 
|  | float_raise(float_flag_overflow | float_flag_inexact, status); | 
|  | return (int32)q_min; | 
|  | } | 
|  |  | 
|  | if (q_max < q_val) { | 
|  | float_raise(float_flag_overflow | float_flag_inexact, status); | 
|  | return (int32)q_max; | 
|  | } | 
|  |  | 
|  | return (int32)q_val; | 
|  | } | 
|  |  | 
|  | #define MSA_FLOAT_COND(DEST, OP, ARG1, ARG2, BITS, QUIET)                   \ | 
|  | do {                                                                    \ | 
|  | float_status *status = &env->active_tc.msa_fp_status;               \ | 
|  | int c;                                                              \ | 
|  | int64_t cond;                                                       \ | 
|  | set_float_exception_flags(0, status);                               \ | 
|  | if (!QUIET) {                                                       \ | 
|  | cond = float ## BITS ## _ ## OP(ARG1, ARG2, status);            \ | 
|  | } else {                                                            \ | 
|  | cond = float ## BITS ## _ ## OP ## _quiet(ARG1, ARG2, status);  \ | 
|  | }                                                                   \ | 
|  | DEST = cond ? M_MAX_UINT(BITS) : 0;                                 \ | 
|  | c = update_msacsr(env, CLEAR_IS_INEXACT, 0);                        \ | 
|  | \ | 
|  | if (get_enabled_exceptions(env, c)) {                               \ | 
|  | DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c;                    \ | 
|  | }                                                                   \ | 
|  | } while (0) | 
|  |  | 
|  | #define MSA_FLOAT_AF(DEST, ARG1, ARG2, BITS, QUIET)                 \ | 
|  | do {                                                            \ | 
|  | MSA_FLOAT_COND(DEST, eq, ARG1, ARG2, BITS, QUIET);          \ | 
|  | if ((DEST & M_MAX_UINT(BITS)) == M_MAX_UINT(BITS)) {        \ | 
|  | DEST = 0;                                               \ | 
|  | }                                                           \ | 
|  | } while (0) | 
|  |  | 
|  | #define MSA_FLOAT_UEQ(DEST, ARG1, ARG2, BITS, QUIET)                \ | 
|  | do {                                                            \ | 
|  | MSA_FLOAT_COND(DEST, unordered, ARG1, ARG2, BITS, QUIET);   \ | 
|  | if (DEST == 0) {                                            \ | 
|  | MSA_FLOAT_COND(DEST, eq, ARG1, ARG2, BITS, QUIET);      \ | 
|  | }                                                           \ | 
|  | } while (0) | 
|  |  | 
|  | #define MSA_FLOAT_NE(DEST, ARG1, ARG2, BITS, QUIET)                 \ | 
|  | do {                                                            \ | 
|  | MSA_FLOAT_COND(DEST, lt, ARG1, ARG2, BITS, QUIET);          \ | 
|  | if (DEST == 0) {                                            \ | 
|  | MSA_FLOAT_COND(DEST, lt, ARG2, ARG1, BITS, QUIET);      \ | 
|  | }                                                           \ | 
|  | } while (0) | 
|  |  | 
|  | #define MSA_FLOAT_UNE(DEST, ARG1, ARG2, BITS, QUIET)                \ | 
|  | do {                                                            \ | 
|  | MSA_FLOAT_COND(DEST, unordered, ARG1, ARG2, BITS, QUIET);   \ | 
|  | if (DEST == 0) {                                            \ | 
|  | MSA_FLOAT_COND(DEST, lt, ARG1, ARG2, BITS, QUIET);      \ | 
|  | if (DEST == 0) {                                        \ | 
|  | MSA_FLOAT_COND(DEST, lt, ARG2, ARG1, BITS, QUIET);  \ | 
|  | }                                                       \ | 
|  | }                                                           \ | 
|  | } while (0) | 
|  |  | 
|  | #define MSA_FLOAT_ULE(DEST, ARG1, ARG2, BITS, QUIET)                \ | 
|  | do {                                                            \ | 
|  | MSA_FLOAT_COND(DEST, unordered, ARG1, ARG2, BITS, QUIET);   \ | 
|  | if (DEST == 0) {                                            \ | 
|  | MSA_FLOAT_COND(DEST, le, ARG1, ARG2, BITS, QUIET);      \ | 
|  | }                                                           \ | 
|  | } while (0) | 
|  |  | 
|  | #define MSA_FLOAT_ULT(DEST, ARG1, ARG2, BITS, QUIET)                \ | 
|  | do {                                                            \ | 
|  | MSA_FLOAT_COND(DEST, unordered, ARG1, ARG2, BITS, QUIET);   \ | 
|  | if (DEST == 0) {                                            \ | 
|  | MSA_FLOAT_COND(DEST, lt, ARG1, ARG2, BITS, QUIET);      \ | 
|  | }                                                           \ | 
|  | } while (0) | 
|  |  | 
|  | #define MSA_FLOAT_OR(DEST, ARG1, ARG2, BITS, QUIET)                 \ | 
|  | do {                                                            \ | 
|  | MSA_FLOAT_COND(DEST, le, ARG1, ARG2, BITS, QUIET);          \ | 
|  | if (DEST == 0) {                                            \ | 
|  | MSA_FLOAT_COND(DEST, le, ARG2, ARG1, BITS, QUIET);      \ | 
|  | }                                                           \ | 
|  | } while (0) | 
|  |  | 
|  | static inline void compare_af(CPUMIPSState *env, wr_t *pwd, wr_t *pws, | 
|  | wr_t *pwt, uint32_t df, int quiet) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_AF(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_AF(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | static inline void compare_un(CPUMIPSState *env, wr_t *pwd, wr_t *pws, | 
|  | wr_t *pwt, uint32_t df, int quiet) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_COND(pwx->w[i], unordered, pws->w[i], pwt->w[i], 32, | 
|  | quiet); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_COND(pwx->d[i], unordered, pws->d[i], pwt->d[i], 64, | 
|  | quiet); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | static inline void compare_eq(CPUMIPSState *env, wr_t *pwd, wr_t *pws, | 
|  | wr_t *pwt, uint32_t df, int quiet) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_COND(pwx->w[i], eq, pws->w[i], pwt->w[i], 32, quiet); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_COND(pwx->d[i], eq, pws->d[i], pwt->d[i], 64, quiet); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | static inline void compare_ueq(CPUMIPSState *env, wr_t *pwd, wr_t *pws, | 
|  | wr_t *pwt, uint32_t df, int quiet) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_UEQ(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_UEQ(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | static inline void compare_lt(CPUMIPSState *env, wr_t *pwd, wr_t *pws, | 
|  | wr_t *pwt, uint32_t df, int quiet) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_COND(pwx->w[i], lt, pws->w[i], pwt->w[i], 32, quiet); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_COND(pwx->d[i], lt, pws->d[i], pwt->d[i], 64, quiet); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | static inline void compare_ult(CPUMIPSState *env, wr_t *pwd, wr_t *pws, | 
|  | wr_t *pwt, uint32_t df, int quiet) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_ULT(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_ULT(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | static inline void compare_le(CPUMIPSState *env, wr_t *pwd, wr_t *pws, | 
|  | wr_t *pwt, uint32_t df, int quiet) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_COND(pwx->w[i], le, pws->w[i], pwt->w[i], 32, quiet); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_COND(pwx->d[i], le, pws->d[i], pwt->d[i], 64, quiet); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | static inline void compare_ule(CPUMIPSState *env, wr_t *pwd, wr_t *pws, | 
|  | wr_t *pwt, uint32_t df, int quiet) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_ULE(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_ULE(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | static inline void compare_or(CPUMIPSState *env, wr_t *pwd, wr_t *pws, | 
|  | wr_t *pwt, uint32_t df, int quiet) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_OR(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_OR(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | static inline void compare_une(CPUMIPSState *env, wr_t *pwd, wr_t *pws, | 
|  | wr_t *pwt, uint32_t df, int quiet) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_UNE(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_UNE(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | static inline void compare_ne(CPUMIPSState *env, wr_t *pwd, wr_t *pws, | 
|  | wr_t *pwt, uint32_t df, int quiet) { | 
|  | wr_t wx, *pwx = &wx; | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_NE(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_NE(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | void helper_msa_fcaf_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | compare_af(env, pwd, pws, pwt, df, 1); | 
|  | } | 
|  |  | 
|  | void helper_msa_fcun_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | compare_un(env, pwd, pws, pwt, df, 1); | 
|  | } | 
|  |  | 
|  | void helper_msa_fceq_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | compare_eq(env, pwd, pws, pwt, df, 1); | 
|  | } | 
|  |  | 
|  | void helper_msa_fcueq_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | compare_ueq(env, pwd, pws, pwt, df, 1); | 
|  | } | 
|  |  | 
|  | void helper_msa_fclt_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | compare_lt(env, pwd, pws, pwt, df, 1); | 
|  | } | 
|  |  | 
|  | void helper_msa_fcult_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | compare_ult(env, pwd, pws, pwt, df, 1); | 
|  | } | 
|  |  | 
|  | void helper_msa_fcle_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | compare_le(env, pwd, pws, pwt, df, 1); | 
|  | } | 
|  |  | 
|  | void helper_msa_fcule_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | compare_ule(env, pwd, pws, pwt, df, 1); | 
|  | } | 
|  |  | 
|  | void helper_msa_fsaf_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | compare_af(env, pwd, pws, pwt, df, 0); | 
|  | } | 
|  |  | 
|  | void helper_msa_fsun_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | compare_un(env, pwd, pws, pwt, df, 0); | 
|  | } | 
|  |  | 
|  | void helper_msa_fseq_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | compare_eq(env, pwd, pws, pwt, df, 0); | 
|  | } | 
|  |  | 
|  | void helper_msa_fsueq_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | compare_ueq(env, pwd, pws, pwt, df, 0); | 
|  | } | 
|  |  | 
|  | void helper_msa_fslt_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | compare_lt(env, pwd, pws, pwt, df, 0); | 
|  | } | 
|  |  | 
|  | void helper_msa_fsult_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | compare_ult(env, pwd, pws, pwt, df, 0); | 
|  | } | 
|  |  | 
|  | void helper_msa_fsle_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | compare_le(env, pwd, pws, pwt, df, 0); | 
|  | } | 
|  |  | 
|  | void helper_msa_fsule_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | compare_ule(env, pwd, pws, pwt, df, 0); | 
|  | } | 
|  |  | 
|  | void helper_msa_fcor_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | compare_or(env, pwd, pws, pwt, df, 1); | 
|  | } | 
|  |  | 
|  | void helper_msa_fcune_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | compare_une(env, pwd, pws, pwt, df, 1); | 
|  | } | 
|  |  | 
|  | void helper_msa_fcne_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | compare_ne(env, pwd, pws, pwt, df, 1); | 
|  | } | 
|  |  | 
|  | void helper_msa_fsor_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | compare_or(env, pwd, pws, pwt, df, 0); | 
|  | } | 
|  |  | 
|  | void helper_msa_fsune_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | compare_une(env, pwd, pws, pwt, df, 0); | 
|  | } | 
|  |  | 
|  | void helper_msa_fsne_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | compare_ne(env, pwd, pws, pwt, df, 0); | 
|  | } | 
|  |  | 
|  | #define float16_is_zero(ARG) 0 | 
|  | #define float16_is_zero_or_denormal(ARG) 0 | 
|  |  | 
|  | #define IS_DENORMAL(ARG, BITS)                      \ | 
|  | (!float ## BITS ## _is_zero(ARG)                \ | 
|  | && float ## BITS ## _is_zero_or_denormal(ARG)) | 
|  |  | 
|  | #define MSA_FLOAT_BINOP(DEST, OP, ARG1, ARG2, BITS)                         \ | 
|  | do {                                                                    \ | 
|  | float_status *status = &env->active_tc.msa_fp_status;               \ | 
|  | int c;                                                              \ | 
|  | \ | 
|  | set_float_exception_flags(0, status);                               \ | 
|  | DEST = float ## BITS ## _ ## OP(ARG1, ARG2, status);                \ | 
|  | c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS));                 \ | 
|  | \ | 
|  | if (get_enabled_exceptions(env, c)) {                               \ | 
|  | DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c;                    \ | 
|  | }                                                                   \ | 
|  | } while (0) | 
|  |  | 
|  | void helper_msa_fadd_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_BINOP(pwx->w[i], add, pws->w[i], pwt->w[i], 32); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_BINOP(pwx->d[i], add, pws->d[i], pwt->d[i], 64); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | void helper_msa_fsub_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_BINOP(pwx->w[i], sub, pws->w[i], pwt->w[i], 32); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_BINOP(pwx->d[i], sub, pws->d[i], pwt->d[i], 64); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | void helper_msa_fmul_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_BINOP(pwx->w[i], mul, pws->w[i], pwt->w[i], 32); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_BINOP(pwx->d[i], mul, pws->d[i], pwt->d[i], 64); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | void helper_msa_fdiv_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_BINOP(pwx->w[i], div, pws->w[i], pwt->w[i], 32); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_BINOP(pwx->d[i], div, pws->d[i], pwt->d[i], 64); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | #define MSA_FLOAT_MULADD(DEST, ARG1, ARG2, ARG3, NEGATE, BITS)              \ | 
|  | do {                                                                    \ | 
|  | float_status *status = &env->active_tc.msa_fp_status;               \ | 
|  | int c;                                                              \ | 
|  | \ | 
|  | set_float_exception_flags(0, status);                               \ | 
|  | DEST = float ## BITS ## _muladd(ARG2, ARG3, ARG1, NEGATE, status);  \ | 
|  | c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS));                 \ | 
|  | \ | 
|  | if (get_enabled_exceptions(env, c)) {                               \ | 
|  | DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c;                    \ | 
|  | }                                                                   \ | 
|  | } while (0) | 
|  |  | 
|  | void helper_msa_fmadd_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_MULADD(pwx->w[i], pwd->w[i], | 
|  | pws->w[i], pwt->w[i], 0, 32); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_MULADD(pwx->d[i], pwd->d[i], | 
|  | pws->d[i], pwt->d[i], 0, 64); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | void helper_msa_fmsub_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_MULADD(pwx->w[i], pwd->w[i], | 
|  | pws->w[i], pwt->w[i], | 
|  | float_muladd_negate_product, 32); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_MULADD(pwx->d[i], pwd->d[i], | 
|  | pws->d[i], pwt->d[i], | 
|  | float_muladd_negate_product, 64); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | void helper_msa_fexp2_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_BINOP(pwx->w[i], scalbn, pws->w[i], | 
|  | pwt->w[i] >  0x200 ?  0x200 : | 
|  | pwt->w[i] < -0x200 ? -0x200 : pwt->w[i], | 
|  | 32); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_BINOP(pwx->d[i], scalbn, pws->d[i], | 
|  | pwt->d[i] >  0x1000 ?  0x1000 : | 
|  | pwt->d[i] < -0x1000 ? -0x1000 : pwt->d[i], | 
|  | 64); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | #define MSA_FLOAT_UNOP(DEST, OP, ARG, BITS)                                 \ | 
|  | do {                                                                    \ | 
|  | float_status *status = &env->active_tc.msa_fp_status;               \ | 
|  | int c;                                                              \ | 
|  | \ | 
|  | set_float_exception_flags(0, status);                               \ | 
|  | DEST = float ## BITS ## _ ## OP(ARG, status);                       \ | 
|  | c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS));                 \ | 
|  | \ | 
|  | if (get_enabled_exceptions(env, c)) {                               \ | 
|  | DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c;                    \ | 
|  | }                                                                   \ | 
|  | } while (0) | 
|  |  | 
|  | void helper_msa_fexdo_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | /* Half precision floats come in two formats: standard | 
|  | IEEE and "ARM" format.  The latter gains extra exponent | 
|  | range by omitting the NaN/Inf encodings.  */ | 
|  | flag ieee = 1; | 
|  |  | 
|  | MSA_FLOAT_BINOP(Lh(pwx, i), from_float32, pws->w[i], ieee, 16); | 
|  | MSA_FLOAT_BINOP(Rh(pwx, i), from_float32, pwt->w[i], ieee, 16); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_UNOP(Lw(pwx, i), from_float64, pws->d[i], 32); | 
|  | MSA_FLOAT_UNOP(Rw(pwx, i), from_float64, pwt->d[i], 32); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | #define MSA_FLOAT_UNOP_XD(DEST, OP, ARG, BITS, XBITS)                       \ | 
|  | do {                                                                    \ | 
|  | float_status *status = &env->active_tc.msa_fp_status;               \ | 
|  | int c;                                                              \ | 
|  | \ | 
|  | set_float_exception_flags(0, status);                               \ | 
|  | DEST = float ## BITS ## _ ## OP(ARG, status);                       \ | 
|  | c = update_msacsr(env, CLEAR_FS_UNDERFLOW, 0);                      \ | 
|  | \ | 
|  | if (get_enabled_exceptions(env, c)) {                               \ | 
|  | DEST = ((FLOAT_SNAN ## XBITS >> 6) << 6) | c;                   \ | 
|  | }                                                                   \ | 
|  | } while (0) | 
|  |  | 
|  | void helper_msa_ftq_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_UNOP_XD(Lh(pwx, i), to_q16, pws->w[i], 32, 16); | 
|  | MSA_FLOAT_UNOP_XD(Rh(pwx, i), to_q16, pwt->w[i], 32, 16); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_UNOP_XD(Lw(pwx, i), to_q32, pws->d[i], 64, 32); | 
|  | MSA_FLOAT_UNOP_XD(Rw(pwx, i), to_q32, pwt->d[i], 64, 32); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | #define NUMBER_QNAN_PAIR(ARG1, ARG2, BITS)      \ | 
|  | !float ## BITS ## _is_any_nan(ARG1)         \ | 
|  | && float ## BITS ## _is_quiet_nan(ARG2) | 
|  |  | 
|  | #define MSA_FLOAT_MAXOP(DEST, OP, ARG1, ARG2, BITS)                         \ | 
|  | do {                                                                    \ | 
|  | float_status *status = &env->active_tc.msa_fp_status;               \ | 
|  | int c;                                                              \ | 
|  | \ | 
|  | set_float_exception_flags(0, status);                               \ | 
|  | DEST = float ## BITS ## _ ## OP(ARG1, ARG2, status);                \ | 
|  | c = update_msacsr(env, 0, 0);                                       \ | 
|  | \ | 
|  | if (get_enabled_exceptions(env, c)) {                               \ | 
|  | DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c;                    \ | 
|  | }                                                                   \ | 
|  | } while (0) | 
|  |  | 
|  | #define FMAXMIN_A(F, G, X, _S, _T, BITS)                            \ | 
|  | do {                                                            \ | 
|  | uint## BITS ##_t S = _S, T = _T;                            \ | 
|  | uint## BITS ##_t as, at, xs, xt, xd;                        \ | 
|  | if (NUMBER_QNAN_PAIR(S, T, BITS)) {                         \ | 
|  | T = S;                                                  \ | 
|  | }                                                           \ | 
|  | else if (NUMBER_QNAN_PAIR(T, S, BITS)) {                    \ | 
|  | S = T;                                                  \ | 
|  | }                                                           \ | 
|  | as = float## BITS ##_abs(S);                                \ | 
|  | at = float## BITS ##_abs(T);                                \ | 
|  | MSA_FLOAT_MAXOP(xs, F,  S,  T, BITS);                       \ | 
|  | MSA_FLOAT_MAXOP(xt, G,  S,  T, BITS);                       \ | 
|  | MSA_FLOAT_MAXOP(xd, F, as, at, BITS);                       \ | 
|  | X = (as == at || xd == float## BITS ##_abs(xs)) ? xs : xt;  \ | 
|  | } while (0) | 
|  |  | 
|  | void helper_msa_fmin_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | if (NUMBER_QNAN_PAIR(pws->w[i], pwt->w[i], 32)) { | 
|  | MSA_FLOAT_MAXOP(pwx->w[i], min, pws->w[i], pws->w[i], 32); | 
|  | } else if (NUMBER_QNAN_PAIR(pwt->w[i], pws->w[i], 32)) { | 
|  | MSA_FLOAT_MAXOP(pwx->w[i], min, pwt->w[i], pwt->w[i], 32); | 
|  | } else { | 
|  | MSA_FLOAT_MAXOP(pwx->w[i], min, pws->w[i], pwt->w[i], 32); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | if (NUMBER_QNAN_PAIR(pws->d[i], pwt->d[i], 64)) { | 
|  | MSA_FLOAT_MAXOP(pwx->d[i], min, pws->d[i], pws->d[i], 64); | 
|  | } else if (NUMBER_QNAN_PAIR(pwt->d[i], pws->d[i], 64)) { | 
|  | MSA_FLOAT_MAXOP(pwx->d[i], min, pwt->d[i], pwt->d[i], 64); | 
|  | } else { | 
|  | MSA_FLOAT_MAXOP(pwx->d[i], min, pws->d[i], pwt->d[i], 64); | 
|  | } | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | void helper_msa_fmin_a_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | FMAXMIN_A(min, max, pwx->w[i], pws->w[i], pwt->w[i], 32); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | FMAXMIN_A(min, max, pwx->d[i], pws->d[i], pwt->d[i], 64); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | void helper_msa_fmax_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | if (NUMBER_QNAN_PAIR(pws->w[i], pwt->w[i], 32)) { | 
|  | MSA_FLOAT_MAXOP(pwx->w[i], max, pws->w[i], pws->w[i], 32); | 
|  | } else if (NUMBER_QNAN_PAIR(pwt->w[i], pws->w[i], 32)) { | 
|  | MSA_FLOAT_MAXOP(pwx->w[i], max, pwt->w[i], pwt->w[i], 32); | 
|  | } else { | 
|  | MSA_FLOAT_MAXOP(pwx->w[i], max, pws->w[i], pwt->w[i], 32); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | if (NUMBER_QNAN_PAIR(pws->d[i], pwt->d[i], 64)) { | 
|  | MSA_FLOAT_MAXOP(pwx->d[i], max, pws->d[i], pws->d[i], 64); | 
|  | } else if (NUMBER_QNAN_PAIR(pwt->d[i], pws->d[i], 64)) { | 
|  | MSA_FLOAT_MAXOP(pwx->d[i], max, pwt->d[i], pwt->d[i], 64); | 
|  | } else { | 
|  | MSA_FLOAT_MAXOP(pwx->d[i], max, pws->d[i], pwt->d[i], 64); | 
|  | } | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | void helper_msa_fmax_a_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws, uint32_t wt) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | wr_t *pwt = &(env->active_fpu.fpr[wt].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | FMAXMIN_A(max, min, pwx->w[i], pws->w[i], pwt->w[i], 32); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | FMAXMIN_A(max, min, pwx->d[i], pws->d[i], pwt->d[i], 64); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | void helper_msa_fclass_df(CPUMIPSState *env, uint32_t df, | 
|  | uint32_t wd, uint32_t ws) | 
|  | { | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | if (df == DF_WORD) { | 
|  | pwd->w[0] = helper_float_class_s(pws->w[0]); | 
|  | pwd->w[1] = helper_float_class_s(pws->w[1]); | 
|  | pwd->w[2] = helper_float_class_s(pws->w[2]); | 
|  | pwd->w[3] = helper_float_class_s(pws->w[3]); | 
|  | } else { | 
|  | pwd->d[0] = helper_float_class_d(pws->d[0]); | 
|  | pwd->d[1] = helper_float_class_d(pws->d[1]); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define MSA_FLOAT_UNOP0(DEST, OP, ARG, BITS)                                \ | 
|  | do {                                                                    \ | 
|  | float_status *status = &env->active_tc.msa_fp_status;               \ | 
|  | int c;                                                              \ | 
|  | \ | 
|  | set_float_exception_flags(0, status);                               \ | 
|  | DEST = float ## BITS ## _ ## OP(ARG, status);                       \ | 
|  | c = update_msacsr(env, CLEAR_FS_UNDERFLOW, 0);                      \ | 
|  | \ | 
|  | if (get_enabled_exceptions(env, c)) {                               \ | 
|  | DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c;                    \ | 
|  | } else if (float ## BITS ## _is_any_nan(ARG)) {                     \ | 
|  | DEST = 0;                                                       \ | 
|  | }                                                                   \ | 
|  | } while (0) | 
|  |  | 
|  | void helper_msa_ftrunc_s_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_UNOP0(pwx->w[i], to_int32_round_to_zero, pws->w[i], 32); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_UNOP0(pwx->d[i], to_int64_round_to_zero, pws->d[i], 64); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | void helper_msa_ftrunc_u_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_UNOP0(pwx->w[i], to_uint32_round_to_zero, pws->w[i], 32); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_UNOP0(pwx->d[i], to_uint64_round_to_zero, pws->d[i], 64); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | void helper_msa_fsqrt_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_UNOP(pwx->w[i], sqrt, pws->w[i], 32); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_UNOP(pwx->d[i], sqrt, pws->d[i], 64); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | #define MSA_FLOAT_RECIPROCAL(DEST, ARG, BITS)                               \ | 
|  | do {                                                                    \ | 
|  | float_status *status = &env->active_tc.msa_fp_status;               \ | 
|  | int c;                                                              \ | 
|  | \ | 
|  | set_float_exception_flags(0, status);                               \ | 
|  | DEST = float ## BITS ## _ ## div(FLOAT_ONE ## BITS, ARG, status);   \ | 
|  | c = update_msacsr(env, float ## BITS ## _is_infinity(ARG) ||        \ | 
|  | float ## BITS ## _is_quiet_nan(DEST) ?            \ | 
|  | 0 : RECIPROCAL_INEXACT,                           \ | 
|  | IS_DENORMAL(DEST, BITS));                         \ | 
|  | \ | 
|  | if (get_enabled_exceptions(env, c)) {                               \ | 
|  | DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c;                    \ | 
|  | }                                                                   \ | 
|  | } while (0) | 
|  |  | 
|  | void helper_msa_frsqrt_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_RECIPROCAL(pwx->w[i], float32_sqrt(pws->w[i], | 
|  | &env->active_tc.msa_fp_status), 32); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_RECIPROCAL(pwx->d[i], float64_sqrt(pws->d[i], | 
|  | &env->active_tc.msa_fp_status), 64); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | void helper_msa_frcp_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_RECIPROCAL(pwx->w[i], pws->w[i], 32); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_RECIPROCAL(pwx->d[i], pws->d[i], 64); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | void helper_msa_frint_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_UNOP(pwx->w[i], round_to_int, pws->w[i], 32); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_UNOP(pwx->d[i], round_to_int, pws->d[i], 64); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | #define MSA_FLOAT_LOGB(DEST, ARG, BITS)                                     \ | 
|  | do {                                                                    \ | 
|  | float_status *status = &env->active_tc.msa_fp_status;               \ | 
|  | int c;                                                              \ | 
|  | \ | 
|  | set_float_exception_flags(0, status);                               \ | 
|  | set_float_rounding_mode(float_round_down, status);                  \ | 
|  | DEST = float ## BITS ## _ ## log2(ARG, status);                     \ | 
|  | DEST = float ## BITS ## _ ## round_to_int(DEST, status);            \ | 
|  | set_float_rounding_mode(ieee_rm[(env->active_tc.msacsr &            \ | 
|  | MSACSR_RM_MASK) >> MSACSR_RM],     \ | 
|  | status);                                    \ | 
|  | \ | 
|  | set_float_exception_flags(get_float_exception_flags(status) &       \ | 
|  | (~float_flag_inexact),                    \ | 
|  | status);                                  \ | 
|  | \ | 
|  | c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS));                 \ | 
|  | \ | 
|  | if (get_enabled_exceptions(env, c)) {                               \ | 
|  | DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c;                    \ | 
|  | }                                                                   \ | 
|  | } while (0) | 
|  |  | 
|  | void helper_msa_flog2_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_LOGB(pwx->w[i], pws->w[i], 32); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_LOGB(pwx->d[i], pws->d[i], 64); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | void helper_msa_fexupl_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | /* Half precision floats come in two formats: standard | 
|  | IEEE and "ARM" format.  The latter gains extra exponent | 
|  | range by omitting the NaN/Inf encodings.  */ | 
|  | flag ieee = 1; | 
|  |  | 
|  | MSA_FLOAT_BINOP(pwx->w[i], from_float16, Lh(pws, i), ieee, 32); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_UNOP(pwx->d[i], from_float32, Lw(pws, i), 64); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | void helper_msa_fexupr_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | /* Half precision floats come in two formats: standard | 
|  | IEEE and "ARM" format.  The latter gains extra exponent | 
|  | range by omitting the NaN/Inf encodings.  */ | 
|  | flag ieee = 1; | 
|  |  | 
|  | MSA_FLOAT_BINOP(pwx->w[i], from_float16, Rh(pws, i), ieee, 32); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_UNOP(pwx->d[i], from_float32, Rw(pws, i), 64); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | void helper_msa_ffql_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_UNOP(pwx->w[i], from_q16, Lh(pws, i), 32); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_UNOP(pwx->d[i], from_q32, Lw(pws, i), 64); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | void helper_msa_ffqr_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_UNOP(pwx->w[i], from_q16, Rh(pws, i), 32); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_UNOP(pwx->d[i], from_q32, Rw(pws, i), 64); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | void helper_msa_ftint_s_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_UNOP0(pwx->w[i], to_int32, pws->w[i], 32); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_UNOP0(pwx->d[i], to_int64, pws->d[i], 64); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | void helper_msa_ftint_u_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_UNOP0(pwx->w[i], to_uint32, pws->w[i], 32); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_UNOP0(pwx->d[i], to_uint64, pws->d[i], 64); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | #define float32_from_int32 int32_to_float32 | 
|  | #define float32_from_uint32 uint32_to_float32 | 
|  |  | 
|  | #define float64_from_int64 int64_to_float64 | 
|  | #define float64_from_uint64 uint64_to_float64 | 
|  |  | 
|  | void helper_msa_ffint_s_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_UNOP(pwx->w[i], from_int32, pws->w[i], 32); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_UNOP(pwx->d[i], from_int64, pws->d[i], 64); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } | 
|  |  | 
|  | void helper_msa_ffint_u_df(CPUMIPSState *env, uint32_t df, uint32_t wd, | 
|  | uint32_t ws) | 
|  | { | 
|  | wr_t wx, *pwx = &wx; | 
|  | wr_t *pwd = &(env->active_fpu.fpr[wd].wr); | 
|  | wr_t *pws = &(env->active_fpu.fpr[ws].wr); | 
|  | uint32_t i; | 
|  |  | 
|  | clear_msacsr_cause(env); | 
|  |  | 
|  | switch (df) { | 
|  | case DF_WORD: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { | 
|  | MSA_FLOAT_UNOP(pwx->w[i], from_uint32, pws->w[i], 32); | 
|  | } | 
|  | break; | 
|  | case DF_DOUBLE: | 
|  | for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { | 
|  | MSA_FLOAT_UNOP(pwx->d[i], from_uint64, pws->d[i], 64); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | check_msacsr_cause(env); | 
|  |  | 
|  | msa_move_v(pwd, pwx); | 
|  | } |