|  | /* | 
|  | *  virtual page mapping and translated block handling | 
|  | * | 
|  | *  Copyright (c) 2003 Fabrice Bellard | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  | #include "config.h" | 
|  | #ifdef _WIN32 | 
|  | #include <windows.h> | 
|  | #else | 
|  | #include <sys/types.h> | 
|  | #include <sys/mman.h> | 
|  | #endif | 
|  | #include <stdlib.h> | 
|  | #include <stdio.h> | 
|  | #include <stdarg.h> | 
|  | #include <string.h> | 
|  | #include <errno.h> | 
|  | #include <unistd.h> | 
|  | #include <inttypes.h> | 
|  |  | 
|  | #include "cpu.h" | 
|  | #include "exec-all.h" | 
|  | #include "qemu-common.h" | 
|  | #include "tcg.h" | 
|  | #include "hw/hw.h" | 
|  | #include "hw/qdev.h" | 
|  | #include "osdep.h" | 
|  | #include "kvm.h" | 
|  | #include "qemu-timer.h" | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  | #include <qemu.h> | 
|  | #include <signal.h> | 
|  | #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) | 
|  | #include <sys/param.h> | 
|  | #if __FreeBSD_version >= 700104 | 
|  | #define HAVE_KINFO_GETVMMAP | 
|  | #define sigqueue sigqueue_freebsd  /* avoid redefinition */ | 
|  | #include <sys/time.h> | 
|  | #include <sys/proc.h> | 
|  | #include <machine/profile.h> | 
|  | #define _KERNEL | 
|  | #include <sys/user.h> | 
|  | #undef _KERNEL | 
|  | #undef sigqueue | 
|  | #include <libutil.h> | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | //#define DEBUG_TB_INVALIDATE | 
|  | //#define DEBUG_FLUSH | 
|  | //#define DEBUG_TLB | 
|  | //#define DEBUG_UNASSIGNED | 
|  |  | 
|  | /* make various TB consistency checks */ | 
|  | //#define DEBUG_TB_CHECK | 
|  | //#define DEBUG_TLB_CHECK | 
|  |  | 
|  | //#define DEBUG_IOPORT | 
|  | //#define DEBUG_SUBPAGE | 
|  |  | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | /* TB consistency checks only implemented for usermode emulation.  */ | 
|  | #undef DEBUG_TB_CHECK | 
|  | #endif | 
|  |  | 
|  | #define SMC_BITMAP_USE_THRESHOLD 10 | 
|  |  | 
|  | static TranslationBlock *tbs; | 
|  | static int code_gen_max_blocks; | 
|  | TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; | 
|  | static int nb_tbs; | 
|  | /* any access to the tbs or the page table must use this lock */ | 
|  | spinlock_t tb_lock = SPIN_LOCK_UNLOCKED; | 
|  |  | 
|  | #if defined(__arm__) || defined(__sparc_v9__) | 
|  | /* The prologue must be reachable with a direct jump. ARM and Sparc64 | 
|  | have limited branch ranges (possibly also PPC) so place it in a | 
|  | section close to code segment. */ | 
|  | #define code_gen_section                                \ | 
|  | __attribute__((__section__(".gen_code")))           \ | 
|  | __attribute__((aligned (32))) | 
|  | #elif defined(_WIN32) | 
|  | /* Maximum alignment for Win32 is 16. */ | 
|  | #define code_gen_section                                \ | 
|  | __attribute__((aligned (16))) | 
|  | #else | 
|  | #define code_gen_section                                \ | 
|  | __attribute__((aligned (32))) | 
|  | #endif | 
|  |  | 
|  | uint8_t code_gen_prologue[1024] code_gen_section; | 
|  | static uint8_t *code_gen_buffer; | 
|  | static unsigned long code_gen_buffer_size; | 
|  | /* threshold to flush the translated code buffer */ | 
|  | static unsigned long code_gen_buffer_max_size; | 
|  | static uint8_t *code_gen_ptr; | 
|  |  | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | int phys_ram_fd; | 
|  | static int in_migration; | 
|  |  | 
|  | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) }; | 
|  | #endif | 
|  |  | 
|  | CPUState *first_cpu; | 
|  | /* current CPU in the current thread. It is only valid inside | 
|  | cpu_exec() */ | 
|  | CPUState *cpu_single_env; | 
|  | /* 0 = Do not count executed instructions. | 
|  | 1 = Precise instruction counting. | 
|  | 2 = Adaptive rate instruction counting.  */ | 
|  | int use_icount = 0; | 
|  | /* Current instruction counter.  While executing translated code this may | 
|  | include some instructions that have not yet been executed.  */ | 
|  | int64_t qemu_icount; | 
|  |  | 
|  | typedef struct PageDesc { | 
|  | /* list of TBs intersecting this ram page */ | 
|  | TranslationBlock *first_tb; | 
|  | /* in order to optimize self modifying code, we count the number | 
|  | of lookups we do to a given page to use a bitmap */ | 
|  | unsigned int code_write_count; | 
|  | uint8_t *code_bitmap; | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  | unsigned long flags; | 
|  | #endif | 
|  | } PageDesc; | 
|  |  | 
|  | /* In system mode we want L1_MAP to be based on ram offsets, | 
|  | while in user mode we want it to be based on virtual addresses.  */ | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS | 
|  | # define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS | 
|  | #else | 
|  | # define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS | 
|  | #endif | 
|  | #else | 
|  | # define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS | 
|  | #endif | 
|  |  | 
|  | /* Size of the L2 (and L3, etc) page tables.  */ | 
|  | #define L2_BITS 10 | 
|  | #define L2_SIZE (1 << L2_BITS) | 
|  |  | 
|  | /* The bits remaining after N lower levels of page tables.  */ | 
|  | #define P_L1_BITS_REM \ | 
|  | ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS) | 
|  | #define V_L1_BITS_REM \ | 
|  | ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS) | 
|  |  | 
|  | /* Size of the L1 page table.  Avoid silly small sizes.  */ | 
|  | #if P_L1_BITS_REM < 4 | 
|  | #define P_L1_BITS  (P_L1_BITS_REM + L2_BITS) | 
|  | #else | 
|  | #define P_L1_BITS  P_L1_BITS_REM | 
|  | #endif | 
|  |  | 
|  | #if V_L1_BITS_REM < 4 | 
|  | #define V_L1_BITS  (V_L1_BITS_REM + L2_BITS) | 
|  | #else | 
|  | #define V_L1_BITS  V_L1_BITS_REM | 
|  | #endif | 
|  |  | 
|  | #define P_L1_SIZE  ((target_phys_addr_t)1 << P_L1_BITS) | 
|  | #define V_L1_SIZE  ((target_ulong)1 << V_L1_BITS) | 
|  |  | 
|  | #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS) | 
|  | #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS) | 
|  |  | 
|  | unsigned long qemu_real_host_page_size; | 
|  | unsigned long qemu_host_page_bits; | 
|  | unsigned long qemu_host_page_size; | 
|  | unsigned long qemu_host_page_mask; | 
|  |  | 
|  | /* This is a multi-level map on the virtual address space. | 
|  | The bottom level has pointers to PageDesc.  */ | 
|  | static void *l1_map[V_L1_SIZE]; | 
|  |  | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | typedef struct PhysPageDesc { | 
|  | /* offset in host memory of the page + io_index in the low bits */ | 
|  | ram_addr_t phys_offset; | 
|  | ram_addr_t region_offset; | 
|  | } PhysPageDesc; | 
|  |  | 
|  | /* This is a multi-level map on the physical address space. | 
|  | The bottom level has pointers to PhysPageDesc.  */ | 
|  | static void *l1_phys_map[P_L1_SIZE]; | 
|  |  | 
|  | static void io_mem_init(void); | 
|  |  | 
|  | /* io memory support */ | 
|  | CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4]; | 
|  | CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4]; | 
|  | void *io_mem_opaque[IO_MEM_NB_ENTRIES]; | 
|  | static char io_mem_used[IO_MEM_NB_ENTRIES]; | 
|  | static int io_mem_watch; | 
|  | #endif | 
|  |  | 
|  | /* log support */ | 
|  | #ifdef WIN32 | 
|  | static const char *logfilename = "qemu.log"; | 
|  | #else | 
|  | static const char *logfilename = "/tmp/qemu.log"; | 
|  | #endif | 
|  | FILE *logfile; | 
|  | int loglevel; | 
|  | static int log_append = 0; | 
|  |  | 
|  | /* statistics */ | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | static int tlb_flush_count; | 
|  | #endif | 
|  | static int tb_flush_count; | 
|  | static int tb_phys_invalidate_count; | 
|  |  | 
|  | #ifdef _WIN32 | 
|  | static void map_exec(void *addr, long size) | 
|  | { | 
|  | DWORD old_protect; | 
|  | VirtualProtect(addr, size, | 
|  | PAGE_EXECUTE_READWRITE, &old_protect); | 
|  |  | 
|  | } | 
|  | #else | 
|  | static void map_exec(void *addr, long size) | 
|  | { | 
|  | unsigned long start, end, page_size; | 
|  |  | 
|  | page_size = getpagesize(); | 
|  | start = (unsigned long)addr; | 
|  | start &= ~(page_size - 1); | 
|  |  | 
|  | end = (unsigned long)addr + size; | 
|  | end += page_size - 1; | 
|  | end &= ~(page_size - 1); | 
|  |  | 
|  | mprotect((void *)start, end - start, | 
|  | PROT_READ | PROT_WRITE | PROT_EXEC); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void page_init(void) | 
|  | { | 
|  | /* NOTE: we can always suppose that qemu_host_page_size >= | 
|  | TARGET_PAGE_SIZE */ | 
|  | #ifdef _WIN32 | 
|  | { | 
|  | SYSTEM_INFO system_info; | 
|  |  | 
|  | GetSystemInfo(&system_info); | 
|  | qemu_real_host_page_size = system_info.dwPageSize; | 
|  | } | 
|  | #else | 
|  | qemu_real_host_page_size = getpagesize(); | 
|  | #endif | 
|  | if (qemu_host_page_size == 0) | 
|  | qemu_host_page_size = qemu_real_host_page_size; | 
|  | if (qemu_host_page_size < TARGET_PAGE_SIZE) | 
|  | qemu_host_page_size = TARGET_PAGE_SIZE; | 
|  | qemu_host_page_bits = 0; | 
|  | while ((1 << qemu_host_page_bits) < qemu_host_page_size) | 
|  | qemu_host_page_bits++; | 
|  | qemu_host_page_mask = ~(qemu_host_page_size - 1); | 
|  |  | 
|  | #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) | 
|  | { | 
|  | #ifdef HAVE_KINFO_GETVMMAP | 
|  | struct kinfo_vmentry *freep; | 
|  | int i, cnt; | 
|  |  | 
|  | freep = kinfo_getvmmap(getpid(), &cnt); | 
|  | if (freep) { | 
|  | mmap_lock(); | 
|  | for (i = 0; i < cnt; i++) { | 
|  | unsigned long startaddr, endaddr; | 
|  |  | 
|  | startaddr = freep[i].kve_start; | 
|  | endaddr = freep[i].kve_end; | 
|  | if (h2g_valid(startaddr)) { | 
|  | startaddr = h2g(startaddr) & TARGET_PAGE_MASK; | 
|  |  | 
|  | if (h2g_valid(endaddr)) { | 
|  | endaddr = h2g(endaddr); | 
|  | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | 
|  | } else { | 
|  | #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS | 
|  | endaddr = ~0ul; | 
|  | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  | free(freep); | 
|  | mmap_unlock(); | 
|  | } | 
|  | #else | 
|  | FILE *f; | 
|  |  | 
|  | last_brk = (unsigned long)sbrk(0); | 
|  |  | 
|  | f = fopen("/compat/linux/proc/self/maps", "r"); | 
|  | if (f) { | 
|  | mmap_lock(); | 
|  |  | 
|  | do { | 
|  | unsigned long startaddr, endaddr; | 
|  | int n; | 
|  |  | 
|  | n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); | 
|  |  | 
|  | if (n == 2 && h2g_valid(startaddr)) { | 
|  | startaddr = h2g(startaddr) & TARGET_PAGE_MASK; | 
|  |  | 
|  | if (h2g_valid(endaddr)) { | 
|  | endaddr = h2g(endaddr); | 
|  | } else { | 
|  | endaddr = ~0ul; | 
|  | } | 
|  | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | 
|  | } | 
|  | } while (!feof(f)); | 
|  |  | 
|  | fclose(f); | 
|  | mmap_unlock(); | 
|  | } | 
|  | #endif | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) | 
|  | { | 
|  | PageDesc *pd; | 
|  | void **lp; | 
|  | int i; | 
|  |  | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  | /* We can't use qemu_malloc because it may recurse into a locked mutex. */ | 
|  | # define ALLOC(P, SIZE)                                 \ | 
|  | do {                                                \ | 
|  | P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE,    \ | 
|  | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);   \ | 
|  | } while (0) | 
|  | #else | 
|  | # define ALLOC(P, SIZE) \ | 
|  | do { P = qemu_mallocz(SIZE); } while (0) | 
|  | #endif | 
|  |  | 
|  | /* Level 1.  Always allocated.  */ | 
|  | lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1)); | 
|  |  | 
|  | /* Level 2..N-1.  */ | 
|  | for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) { | 
|  | void **p = *lp; | 
|  |  | 
|  | if (p == NULL) { | 
|  | if (!alloc) { | 
|  | return NULL; | 
|  | } | 
|  | ALLOC(p, sizeof(void *) * L2_SIZE); | 
|  | *lp = p; | 
|  | } | 
|  |  | 
|  | lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1)); | 
|  | } | 
|  |  | 
|  | pd = *lp; | 
|  | if (pd == NULL) { | 
|  | if (!alloc) { | 
|  | return NULL; | 
|  | } | 
|  | ALLOC(pd, sizeof(PageDesc) * L2_SIZE); | 
|  | *lp = pd; | 
|  | } | 
|  |  | 
|  | #undef ALLOC | 
|  |  | 
|  | return pd + (index & (L2_SIZE - 1)); | 
|  | } | 
|  |  | 
|  | static inline PageDesc *page_find(tb_page_addr_t index) | 
|  | { | 
|  | return page_find_alloc(index, 0); | 
|  | } | 
|  |  | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc) | 
|  | { | 
|  | PhysPageDesc *pd; | 
|  | void **lp; | 
|  | int i; | 
|  |  | 
|  | /* Level 1.  Always allocated.  */ | 
|  | lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1)); | 
|  |  | 
|  | /* Level 2..N-1.  */ | 
|  | for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) { | 
|  | void **p = *lp; | 
|  | if (p == NULL) { | 
|  | if (!alloc) { | 
|  | return NULL; | 
|  | } | 
|  | *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE); | 
|  | } | 
|  | lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1)); | 
|  | } | 
|  |  | 
|  | pd = *lp; | 
|  | if (pd == NULL) { | 
|  | int i; | 
|  |  | 
|  | if (!alloc) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE); | 
|  |  | 
|  | for (i = 0; i < L2_SIZE; i++) { | 
|  | pd[i].phys_offset = IO_MEM_UNASSIGNED; | 
|  | pd[i].region_offset = (index + i) << TARGET_PAGE_BITS; | 
|  | } | 
|  | } | 
|  |  | 
|  | return pd + (index & (L2_SIZE - 1)); | 
|  | } | 
|  |  | 
|  | static inline PhysPageDesc *phys_page_find(target_phys_addr_t index) | 
|  | { | 
|  | return phys_page_find_alloc(index, 0); | 
|  | } | 
|  |  | 
|  | static void tlb_protect_code(ram_addr_t ram_addr); | 
|  | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, | 
|  | target_ulong vaddr); | 
|  | #define mmap_lock() do { } while(0) | 
|  | #define mmap_unlock() do { } while(0) | 
|  | #endif | 
|  |  | 
|  | #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024) | 
|  |  | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  | /* Currently it is not recommended to allocate big chunks of data in | 
|  | user mode. It will change when a dedicated libc will be used */ | 
|  | #define USE_STATIC_CODE_GEN_BUFFER | 
|  | #endif | 
|  |  | 
|  | #ifdef USE_STATIC_CODE_GEN_BUFFER | 
|  | static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] | 
|  | __attribute__((aligned (CODE_GEN_ALIGN))); | 
|  | #endif | 
|  |  | 
|  | static void code_gen_alloc(unsigned long tb_size) | 
|  | { | 
|  | #ifdef USE_STATIC_CODE_GEN_BUFFER | 
|  | code_gen_buffer = static_code_gen_buffer; | 
|  | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | 
|  | map_exec(code_gen_buffer, code_gen_buffer_size); | 
|  | #else | 
|  | code_gen_buffer_size = tb_size; | 
|  | if (code_gen_buffer_size == 0) { | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  | /* in user mode, phys_ram_size is not meaningful */ | 
|  | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | 
|  | #else | 
|  | /* XXX: needs adjustments */ | 
|  | code_gen_buffer_size = (unsigned long)(ram_size / 4); | 
|  | #endif | 
|  | } | 
|  | if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE) | 
|  | code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE; | 
|  | /* The code gen buffer location may have constraints depending on | 
|  | the host cpu and OS */ | 
|  | #if defined(__linux__) | 
|  | { | 
|  | int flags; | 
|  | void *start = NULL; | 
|  |  | 
|  | flags = MAP_PRIVATE | MAP_ANONYMOUS; | 
|  | #if defined(__x86_64__) | 
|  | flags |= MAP_32BIT; | 
|  | /* Cannot map more than that */ | 
|  | if (code_gen_buffer_size > (800 * 1024 * 1024)) | 
|  | code_gen_buffer_size = (800 * 1024 * 1024); | 
|  | #elif defined(__sparc_v9__) | 
|  | // Map the buffer below 2G, so we can use direct calls and branches | 
|  | flags |= MAP_FIXED; | 
|  | start = (void *) 0x60000000UL; | 
|  | if (code_gen_buffer_size > (512 * 1024 * 1024)) | 
|  | code_gen_buffer_size = (512 * 1024 * 1024); | 
|  | #elif defined(__arm__) | 
|  | /* Map the buffer below 32M, so we can use direct calls and branches */ | 
|  | flags |= MAP_FIXED; | 
|  | start = (void *) 0x01000000UL; | 
|  | if (code_gen_buffer_size > 16 * 1024 * 1024) | 
|  | code_gen_buffer_size = 16 * 1024 * 1024; | 
|  | #elif defined(__s390x__) | 
|  | /* Map the buffer so that we can use direct calls and branches.  */ | 
|  | /* We have a +- 4GB range on the branches; leave some slop.  */ | 
|  | if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) { | 
|  | code_gen_buffer_size = 3ul * 1024 * 1024 * 1024; | 
|  | } | 
|  | start = (void *)0x90000000UL; | 
|  | #endif | 
|  | code_gen_buffer = mmap(start, code_gen_buffer_size, | 
|  | PROT_WRITE | PROT_READ | PROT_EXEC, | 
|  | flags, -1, 0); | 
|  | if (code_gen_buffer == MAP_FAILED) { | 
|  | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  | #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__) | 
|  | { | 
|  | int flags; | 
|  | void *addr = NULL; | 
|  | flags = MAP_PRIVATE | MAP_ANONYMOUS; | 
|  | #if defined(__x86_64__) | 
|  | /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume | 
|  | * 0x40000000 is free */ | 
|  | flags |= MAP_FIXED; | 
|  | addr = (void *)0x40000000; | 
|  | /* Cannot map more than that */ | 
|  | if (code_gen_buffer_size > (800 * 1024 * 1024)) | 
|  | code_gen_buffer_size = (800 * 1024 * 1024); | 
|  | #endif | 
|  | code_gen_buffer = mmap(addr, code_gen_buffer_size, | 
|  | PROT_WRITE | PROT_READ | PROT_EXEC, | 
|  | flags, -1, 0); | 
|  | if (code_gen_buffer == MAP_FAILED) { | 
|  | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  | #else | 
|  | code_gen_buffer = qemu_malloc(code_gen_buffer_size); | 
|  | map_exec(code_gen_buffer, code_gen_buffer_size); | 
|  | #endif | 
|  | #endif /* !USE_STATIC_CODE_GEN_BUFFER */ | 
|  | map_exec(code_gen_prologue, sizeof(code_gen_prologue)); | 
|  | code_gen_buffer_max_size = code_gen_buffer_size - | 
|  | (TCG_MAX_OP_SIZE * OPC_MAX_SIZE); | 
|  | code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE; | 
|  | tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock)); | 
|  | } | 
|  |  | 
|  | /* Must be called before using the QEMU cpus. 'tb_size' is the size | 
|  | (in bytes) allocated to the translation buffer. Zero means default | 
|  | size. */ | 
|  | void cpu_exec_init_all(unsigned long tb_size) | 
|  | { | 
|  | cpu_gen_init(); | 
|  | code_gen_alloc(tb_size); | 
|  | code_gen_ptr = code_gen_buffer; | 
|  | page_init(); | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | io_mem_init(); | 
|  | #endif | 
|  | #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE) | 
|  | /* There's no guest base to take into account, so go ahead and | 
|  | initialize the prologue now.  */ | 
|  | tcg_prologue_init(&tcg_ctx); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) | 
|  |  | 
|  | static int cpu_common_post_load(void *opaque, int version_id) | 
|  | { | 
|  | CPUState *env = opaque; | 
|  |  | 
|  | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the | 
|  | version_id is increased. */ | 
|  | env->interrupt_request &= ~0x01; | 
|  | tlb_flush(env, 1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const VMStateDescription vmstate_cpu_common = { | 
|  | .name = "cpu_common", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .minimum_version_id_old = 1, | 
|  | .post_load = cpu_common_post_load, | 
|  | .fields      = (VMStateField []) { | 
|  | VMSTATE_UINT32(halted, CPUState), | 
|  | VMSTATE_UINT32(interrupt_request, CPUState), | 
|  | VMSTATE_END_OF_LIST() | 
|  | } | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | CPUState *qemu_get_cpu(int cpu) | 
|  | { | 
|  | CPUState *env = first_cpu; | 
|  |  | 
|  | while (env) { | 
|  | if (env->cpu_index == cpu) | 
|  | break; | 
|  | env = env->next_cpu; | 
|  | } | 
|  |  | 
|  | return env; | 
|  | } | 
|  |  | 
|  | void cpu_exec_init(CPUState *env) | 
|  | { | 
|  | CPUState **penv; | 
|  | int cpu_index; | 
|  |  | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  | cpu_list_lock(); | 
|  | #endif | 
|  | env->next_cpu = NULL; | 
|  | penv = &first_cpu; | 
|  | cpu_index = 0; | 
|  | while (*penv != NULL) { | 
|  | penv = &(*penv)->next_cpu; | 
|  | cpu_index++; | 
|  | } | 
|  | env->cpu_index = cpu_index; | 
|  | env->numa_node = 0; | 
|  | QTAILQ_INIT(&env->breakpoints); | 
|  | QTAILQ_INIT(&env->watchpoints); | 
|  | *penv = env; | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  | cpu_list_unlock(); | 
|  | #endif | 
|  | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY) | 
|  | vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env); | 
|  | register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION, | 
|  | cpu_save, cpu_load, env); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void invalidate_page_bitmap(PageDesc *p) | 
|  | { | 
|  | if (p->code_bitmap) { | 
|  | qemu_free(p->code_bitmap); | 
|  | p->code_bitmap = NULL; | 
|  | } | 
|  | p->code_write_count = 0; | 
|  | } | 
|  |  | 
|  | /* Set to NULL all the 'first_tb' fields in all PageDescs. */ | 
|  |  | 
|  | static void page_flush_tb_1 (int level, void **lp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (*lp == NULL) { | 
|  | return; | 
|  | } | 
|  | if (level == 0) { | 
|  | PageDesc *pd = *lp; | 
|  | for (i = 0; i < L2_SIZE; ++i) { | 
|  | pd[i].first_tb = NULL; | 
|  | invalidate_page_bitmap(pd + i); | 
|  | } | 
|  | } else { | 
|  | void **pp = *lp; | 
|  | for (i = 0; i < L2_SIZE; ++i) { | 
|  | page_flush_tb_1 (level - 1, pp + i); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void page_flush_tb(void) | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < V_L1_SIZE; i++) { | 
|  | page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* flush all the translation blocks */ | 
|  | /* XXX: tb_flush is currently not thread safe */ | 
|  | void tb_flush(CPUState *env1) | 
|  | { | 
|  | CPUState *env; | 
|  | #if defined(DEBUG_FLUSH) | 
|  | printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n", | 
|  | (unsigned long)(code_gen_ptr - code_gen_buffer), | 
|  | nb_tbs, nb_tbs > 0 ? | 
|  | ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0); | 
|  | #endif | 
|  | if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size) | 
|  | cpu_abort(env1, "Internal error: code buffer overflow\n"); | 
|  |  | 
|  | nb_tbs = 0; | 
|  |  | 
|  | for(env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); | 
|  | } | 
|  |  | 
|  | memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *)); | 
|  | page_flush_tb(); | 
|  |  | 
|  | code_gen_ptr = code_gen_buffer; | 
|  | /* XXX: flush processor icache at this point if cache flush is | 
|  | expensive */ | 
|  | tb_flush_count++; | 
|  | } | 
|  |  | 
|  | #ifdef DEBUG_TB_CHECK | 
|  |  | 
|  | static void tb_invalidate_check(target_ulong address) | 
|  | { | 
|  | TranslationBlock *tb; | 
|  | int i; | 
|  | address &= TARGET_PAGE_MASK; | 
|  | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { | 
|  | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | 
|  | if (!(address + TARGET_PAGE_SIZE <= tb->pc || | 
|  | address >= tb->pc + tb->size)) { | 
|  | printf("ERROR invalidate: address=" TARGET_FMT_lx | 
|  | " PC=%08lx size=%04x\n", | 
|  | address, (long)tb->pc, tb->size); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* verify that all the pages have correct rights for code */ | 
|  | static void tb_page_check(void) | 
|  | { | 
|  | TranslationBlock *tb; | 
|  | int i, flags1, flags2; | 
|  |  | 
|  | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) { | 
|  | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { | 
|  | flags1 = page_get_flags(tb->pc); | 
|  | flags2 = page_get_flags(tb->pc + tb->size - 1); | 
|  | if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { | 
|  | printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", | 
|  | (long)tb->pc, tb->size, flags1, flags2); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* invalidate one TB */ | 
|  | static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb, | 
|  | int next_offset) | 
|  | { | 
|  | TranslationBlock *tb1; | 
|  | for(;;) { | 
|  | tb1 = *ptb; | 
|  | if (tb1 == tb) { | 
|  | *ptb = *(TranslationBlock **)((char *)tb1 + next_offset); | 
|  | break; | 
|  | } | 
|  | ptb = (TranslationBlock **)((char *)tb1 + next_offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb) | 
|  | { | 
|  | TranslationBlock *tb1; | 
|  | unsigned int n1; | 
|  |  | 
|  | for(;;) { | 
|  | tb1 = *ptb; | 
|  | n1 = (long)tb1 & 3; | 
|  | tb1 = (TranslationBlock *)((long)tb1 & ~3); | 
|  | if (tb1 == tb) { | 
|  | *ptb = tb1->page_next[n1]; | 
|  | break; | 
|  | } | 
|  | ptb = &tb1->page_next[n1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void tb_jmp_remove(TranslationBlock *tb, int n) | 
|  | { | 
|  | TranslationBlock *tb1, **ptb; | 
|  | unsigned int n1; | 
|  |  | 
|  | ptb = &tb->jmp_next[n]; | 
|  | tb1 = *ptb; | 
|  | if (tb1) { | 
|  | /* find tb(n) in circular list */ | 
|  | for(;;) { | 
|  | tb1 = *ptb; | 
|  | n1 = (long)tb1 & 3; | 
|  | tb1 = (TranslationBlock *)((long)tb1 & ~3); | 
|  | if (n1 == n && tb1 == tb) | 
|  | break; | 
|  | if (n1 == 2) { | 
|  | ptb = &tb1->jmp_first; | 
|  | } else { | 
|  | ptb = &tb1->jmp_next[n1]; | 
|  | } | 
|  | } | 
|  | /* now we can suppress tb(n) from the list */ | 
|  | *ptb = tb->jmp_next[n]; | 
|  |  | 
|  | tb->jmp_next[n] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* reset the jump entry 'n' of a TB so that it is not chained to | 
|  | another TB */ | 
|  | static inline void tb_reset_jump(TranslationBlock *tb, int n) | 
|  | { | 
|  | tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n])); | 
|  | } | 
|  |  | 
|  | void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) | 
|  | { | 
|  | CPUState *env; | 
|  | PageDesc *p; | 
|  | unsigned int h, n1; | 
|  | tb_page_addr_t phys_pc; | 
|  | TranslationBlock *tb1, *tb2; | 
|  |  | 
|  | /* remove the TB from the hash list */ | 
|  | phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | 
|  | h = tb_phys_hash_func(phys_pc); | 
|  | tb_remove(&tb_phys_hash[h], tb, | 
|  | offsetof(TranslationBlock, phys_hash_next)); | 
|  |  | 
|  | /* remove the TB from the page list */ | 
|  | if (tb->page_addr[0] != page_addr) { | 
|  | p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); | 
|  | tb_page_remove(&p->first_tb, tb); | 
|  | invalidate_page_bitmap(p); | 
|  | } | 
|  | if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) { | 
|  | p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); | 
|  | tb_page_remove(&p->first_tb, tb); | 
|  | invalidate_page_bitmap(p); | 
|  | } | 
|  |  | 
|  | tb_invalidated_flag = 1; | 
|  |  | 
|  | /* remove the TB from the hash list */ | 
|  | h = tb_jmp_cache_hash_func(tb->pc); | 
|  | for(env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | if (env->tb_jmp_cache[h] == tb) | 
|  | env->tb_jmp_cache[h] = NULL; | 
|  | } | 
|  |  | 
|  | /* suppress this TB from the two jump lists */ | 
|  | tb_jmp_remove(tb, 0); | 
|  | tb_jmp_remove(tb, 1); | 
|  |  | 
|  | /* suppress any remaining jumps to this TB */ | 
|  | tb1 = tb->jmp_first; | 
|  | for(;;) { | 
|  | n1 = (long)tb1 & 3; | 
|  | if (n1 == 2) | 
|  | break; | 
|  | tb1 = (TranslationBlock *)((long)tb1 & ~3); | 
|  | tb2 = tb1->jmp_next[n1]; | 
|  | tb_reset_jump(tb1, n1); | 
|  | tb1->jmp_next[n1] = NULL; | 
|  | tb1 = tb2; | 
|  | } | 
|  | tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */ | 
|  |  | 
|  | tb_phys_invalidate_count++; | 
|  | } | 
|  |  | 
|  | static inline void set_bits(uint8_t *tab, int start, int len) | 
|  | { | 
|  | int end, mask, end1; | 
|  |  | 
|  | end = start + len; | 
|  | tab += start >> 3; | 
|  | mask = 0xff << (start & 7); | 
|  | if ((start & ~7) == (end & ~7)) { | 
|  | if (start < end) { | 
|  | mask &= ~(0xff << (end & 7)); | 
|  | *tab |= mask; | 
|  | } | 
|  | } else { | 
|  | *tab++ |= mask; | 
|  | start = (start + 8) & ~7; | 
|  | end1 = end & ~7; | 
|  | while (start < end1) { | 
|  | *tab++ = 0xff; | 
|  | start += 8; | 
|  | } | 
|  | if (start < end) { | 
|  | mask = ~(0xff << (end & 7)); | 
|  | *tab |= mask; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void build_page_bitmap(PageDesc *p) | 
|  | { | 
|  | int n, tb_start, tb_end; | 
|  | TranslationBlock *tb; | 
|  |  | 
|  | p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8); | 
|  |  | 
|  | tb = p->first_tb; | 
|  | while (tb != NULL) { | 
|  | n = (long)tb & 3; | 
|  | tb = (TranslationBlock *)((long)tb & ~3); | 
|  | /* NOTE: this is subtle as a TB may span two physical pages */ | 
|  | if (n == 0) { | 
|  | /* NOTE: tb_end may be after the end of the page, but | 
|  | it is not a problem */ | 
|  | tb_start = tb->pc & ~TARGET_PAGE_MASK; | 
|  | tb_end = tb_start + tb->size; | 
|  | if (tb_end > TARGET_PAGE_SIZE) | 
|  | tb_end = TARGET_PAGE_SIZE; | 
|  | } else { | 
|  | tb_start = 0; | 
|  | tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | 
|  | } | 
|  | set_bits(p->code_bitmap, tb_start, tb_end - tb_start); | 
|  | tb = tb->page_next[n]; | 
|  | } | 
|  | } | 
|  |  | 
|  | TranslationBlock *tb_gen_code(CPUState *env, | 
|  | target_ulong pc, target_ulong cs_base, | 
|  | int flags, int cflags) | 
|  | { | 
|  | TranslationBlock *tb; | 
|  | uint8_t *tc_ptr; | 
|  | tb_page_addr_t phys_pc, phys_page2; | 
|  | target_ulong virt_page2; | 
|  | int code_gen_size; | 
|  |  | 
|  | phys_pc = get_page_addr_code(env, pc); | 
|  | tb = tb_alloc(pc); | 
|  | if (!tb) { | 
|  | /* flush must be done */ | 
|  | tb_flush(env); | 
|  | /* cannot fail at this point */ | 
|  | tb = tb_alloc(pc); | 
|  | /* Don't forget to invalidate previous TB info.  */ | 
|  | tb_invalidated_flag = 1; | 
|  | } | 
|  | tc_ptr = code_gen_ptr; | 
|  | tb->tc_ptr = tc_ptr; | 
|  | tb->cs_base = cs_base; | 
|  | tb->flags = flags; | 
|  | tb->cflags = cflags; | 
|  | cpu_gen_code(env, tb, &code_gen_size); | 
|  | code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); | 
|  |  | 
|  | /* check next page if needed */ | 
|  | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; | 
|  | phys_page2 = -1; | 
|  | if ((pc & TARGET_PAGE_MASK) != virt_page2) { | 
|  | phys_page2 = get_page_addr_code(env, virt_page2); | 
|  | } | 
|  | tb_link_page(tb, phys_pc, phys_page2); | 
|  | return tb; | 
|  | } | 
|  |  | 
|  | /* invalidate all TBs which intersect with the target physical page | 
|  | starting in range [start;end[. NOTE: start and end must refer to | 
|  | the same physical page. 'is_cpu_write_access' should be true if called | 
|  | from a real cpu write access: the virtual CPU will exit the current | 
|  | TB if code is modified inside this TB. */ | 
|  | void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end, | 
|  | int is_cpu_write_access) | 
|  | { | 
|  | TranslationBlock *tb, *tb_next, *saved_tb; | 
|  | CPUState *env = cpu_single_env; | 
|  | tb_page_addr_t tb_start, tb_end; | 
|  | PageDesc *p; | 
|  | int n; | 
|  | #ifdef TARGET_HAS_PRECISE_SMC | 
|  | int current_tb_not_found = is_cpu_write_access; | 
|  | TranslationBlock *current_tb = NULL; | 
|  | int current_tb_modified = 0; | 
|  | target_ulong current_pc = 0; | 
|  | target_ulong current_cs_base = 0; | 
|  | int current_flags = 0; | 
|  | #endif /* TARGET_HAS_PRECISE_SMC */ | 
|  |  | 
|  | p = page_find(start >> TARGET_PAGE_BITS); | 
|  | if (!p) | 
|  | return; | 
|  | if (!p->code_bitmap && | 
|  | ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD && | 
|  | is_cpu_write_access) { | 
|  | /* build code bitmap */ | 
|  | build_page_bitmap(p); | 
|  | } | 
|  |  | 
|  | /* we remove all the TBs in the range [start, end[ */ | 
|  | /* XXX: see if in some cases it could be faster to invalidate all the code */ | 
|  | tb = p->first_tb; | 
|  | while (tb != NULL) { | 
|  | n = (long)tb & 3; | 
|  | tb = (TranslationBlock *)((long)tb & ~3); | 
|  | tb_next = tb->page_next[n]; | 
|  | /* NOTE: this is subtle as a TB may span two physical pages */ | 
|  | if (n == 0) { | 
|  | /* NOTE: tb_end may be after the end of the page, but | 
|  | it is not a problem */ | 
|  | tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | 
|  | tb_end = tb_start + tb->size; | 
|  | } else { | 
|  | tb_start = tb->page_addr[1]; | 
|  | tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | 
|  | } | 
|  | if (!(tb_end <= start || tb_start >= end)) { | 
|  | #ifdef TARGET_HAS_PRECISE_SMC | 
|  | if (current_tb_not_found) { | 
|  | current_tb_not_found = 0; | 
|  | current_tb = NULL; | 
|  | if (env->mem_io_pc) { | 
|  | /* now we have a real cpu fault */ | 
|  | current_tb = tb_find_pc(env->mem_io_pc); | 
|  | } | 
|  | } | 
|  | if (current_tb == tb && | 
|  | (current_tb->cflags & CF_COUNT_MASK) != 1) { | 
|  | /* If we are modifying the current TB, we must stop | 
|  | its execution. We could be more precise by checking | 
|  | that the modification is after the current PC, but it | 
|  | would require a specialized function to partially | 
|  | restore the CPU state */ | 
|  |  | 
|  | current_tb_modified = 1; | 
|  | cpu_restore_state(current_tb, env, | 
|  | env->mem_io_pc, NULL); | 
|  | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, | 
|  | ¤t_flags); | 
|  | } | 
|  | #endif /* TARGET_HAS_PRECISE_SMC */ | 
|  | /* we need to do that to handle the case where a signal | 
|  | occurs while doing tb_phys_invalidate() */ | 
|  | saved_tb = NULL; | 
|  | if (env) { | 
|  | saved_tb = env->current_tb; | 
|  | env->current_tb = NULL; | 
|  | } | 
|  | tb_phys_invalidate(tb, -1); | 
|  | if (env) { | 
|  | env->current_tb = saved_tb; | 
|  | if (env->interrupt_request && env->current_tb) | 
|  | cpu_interrupt(env, env->interrupt_request); | 
|  | } | 
|  | } | 
|  | tb = tb_next; | 
|  | } | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | /* if no code remaining, no need to continue to use slow writes */ | 
|  | if (!p->first_tb) { | 
|  | invalidate_page_bitmap(p); | 
|  | if (is_cpu_write_access) { | 
|  | tlb_unprotect_code_phys(env, start, env->mem_io_vaddr); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | #ifdef TARGET_HAS_PRECISE_SMC | 
|  | if (current_tb_modified) { | 
|  | /* we generate a block containing just the instruction | 
|  | modifying the memory. It will ensure that it cannot modify | 
|  | itself */ | 
|  | env->current_tb = NULL; | 
|  | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); | 
|  | cpu_resume_from_signal(env, NULL); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* len must be <= 8 and start must be a multiple of len */ | 
|  | static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len) | 
|  | { | 
|  | PageDesc *p; | 
|  | int offset, b; | 
|  | #if 0 | 
|  | if (1) { | 
|  | qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n", | 
|  | cpu_single_env->mem_io_vaddr, len, | 
|  | cpu_single_env->eip, | 
|  | cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base); | 
|  | } | 
|  | #endif | 
|  | p = page_find(start >> TARGET_PAGE_BITS); | 
|  | if (!p) | 
|  | return; | 
|  | if (p->code_bitmap) { | 
|  | offset = start & ~TARGET_PAGE_MASK; | 
|  | b = p->code_bitmap[offset >> 3] >> (offset & 7); | 
|  | if (b & ((1 << len) - 1)) | 
|  | goto do_invalidate; | 
|  | } else { | 
|  | do_invalidate: | 
|  | tb_invalidate_phys_page_range(start, start + len, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if !defined(CONFIG_SOFTMMU) | 
|  | static void tb_invalidate_phys_page(tb_page_addr_t addr, | 
|  | unsigned long pc, void *puc) | 
|  | { | 
|  | TranslationBlock *tb; | 
|  | PageDesc *p; | 
|  | int n; | 
|  | #ifdef TARGET_HAS_PRECISE_SMC | 
|  | TranslationBlock *current_tb = NULL; | 
|  | CPUState *env = cpu_single_env; | 
|  | int current_tb_modified = 0; | 
|  | target_ulong current_pc = 0; | 
|  | target_ulong current_cs_base = 0; | 
|  | int current_flags = 0; | 
|  | #endif | 
|  |  | 
|  | addr &= TARGET_PAGE_MASK; | 
|  | p = page_find(addr >> TARGET_PAGE_BITS); | 
|  | if (!p) | 
|  | return; | 
|  | tb = p->first_tb; | 
|  | #ifdef TARGET_HAS_PRECISE_SMC | 
|  | if (tb && pc != 0) { | 
|  | current_tb = tb_find_pc(pc); | 
|  | } | 
|  | #endif | 
|  | while (tb != NULL) { | 
|  | n = (long)tb & 3; | 
|  | tb = (TranslationBlock *)((long)tb & ~3); | 
|  | #ifdef TARGET_HAS_PRECISE_SMC | 
|  | if (current_tb == tb && | 
|  | (current_tb->cflags & CF_COUNT_MASK) != 1) { | 
|  | /* If we are modifying the current TB, we must stop | 
|  | its execution. We could be more precise by checking | 
|  | that the modification is after the current PC, but it | 
|  | would require a specialized function to partially | 
|  | restore the CPU state */ | 
|  |  | 
|  | current_tb_modified = 1; | 
|  | cpu_restore_state(current_tb, env, pc, puc); | 
|  | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, | 
|  | ¤t_flags); | 
|  | } | 
|  | #endif /* TARGET_HAS_PRECISE_SMC */ | 
|  | tb_phys_invalidate(tb, addr); | 
|  | tb = tb->page_next[n]; | 
|  | } | 
|  | p->first_tb = NULL; | 
|  | #ifdef TARGET_HAS_PRECISE_SMC | 
|  | if (current_tb_modified) { | 
|  | /* we generate a block containing just the instruction | 
|  | modifying the memory. It will ensure that it cannot modify | 
|  | itself */ | 
|  | env->current_tb = NULL; | 
|  | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1); | 
|  | cpu_resume_from_signal(env, puc); | 
|  | } | 
|  | #endif | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* add the tb in the target page and protect it if necessary */ | 
|  | static inline void tb_alloc_page(TranslationBlock *tb, | 
|  | unsigned int n, tb_page_addr_t page_addr) | 
|  | { | 
|  | PageDesc *p; | 
|  | TranslationBlock *last_first_tb; | 
|  |  | 
|  | tb->page_addr[n] = page_addr; | 
|  | p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1); | 
|  | tb->page_next[n] = p->first_tb; | 
|  | last_first_tb = p->first_tb; | 
|  | p->first_tb = (TranslationBlock *)((long)tb | n); | 
|  | invalidate_page_bitmap(p); | 
|  |  | 
|  | #if defined(TARGET_HAS_SMC) || 1 | 
|  |  | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  | if (p->flags & PAGE_WRITE) { | 
|  | target_ulong addr; | 
|  | PageDesc *p2; | 
|  | int prot; | 
|  |  | 
|  | /* force the host page as non writable (writes will have a | 
|  | page fault + mprotect overhead) */ | 
|  | page_addr &= qemu_host_page_mask; | 
|  | prot = 0; | 
|  | for(addr = page_addr; addr < page_addr + qemu_host_page_size; | 
|  | addr += TARGET_PAGE_SIZE) { | 
|  |  | 
|  | p2 = page_find (addr >> TARGET_PAGE_BITS); | 
|  | if (!p2) | 
|  | continue; | 
|  | prot |= p2->flags; | 
|  | p2->flags &= ~PAGE_WRITE; | 
|  | } | 
|  | mprotect(g2h(page_addr), qemu_host_page_size, | 
|  | (prot & PAGE_BITS) & ~PAGE_WRITE); | 
|  | #ifdef DEBUG_TB_INVALIDATE | 
|  | printf("protecting code page: 0x" TARGET_FMT_lx "\n", | 
|  | page_addr); | 
|  | #endif | 
|  | } | 
|  | #else | 
|  | /* if some code is already present, then the pages are already | 
|  | protected. So we handle the case where only the first TB is | 
|  | allocated in a physical page */ | 
|  | if (!last_first_tb) { | 
|  | tlb_protect_code(page_addr); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #endif /* TARGET_HAS_SMC */ | 
|  | } | 
|  |  | 
|  | /* Allocate a new translation block. Flush the translation buffer if | 
|  | too many translation blocks or too much generated code. */ | 
|  | TranslationBlock *tb_alloc(target_ulong pc) | 
|  | { | 
|  | TranslationBlock *tb; | 
|  |  | 
|  | if (nb_tbs >= code_gen_max_blocks || | 
|  | (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size) | 
|  | return NULL; | 
|  | tb = &tbs[nb_tbs++]; | 
|  | tb->pc = pc; | 
|  | tb->cflags = 0; | 
|  | return tb; | 
|  | } | 
|  |  | 
|  | void tb_free(TranslationBlock *tb) | 
|  | { | 
|  | /* In practice this is mostly used for single use temporary TB | 
|  | Ignore the hard cases and just back up if this TB happens to | 
|  | be the last one generated.  */ | 
|  | if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) { | 
|  | code_gen_ptr = tb->tc_ptr; | 
|  | nb_tbs--; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* add a new TB and link it to the physical page tables. phys_page2 is | 
|  | (-1) to indicate that only one page contains the TB. */ | 
|  | void tb_link_page(TranslationBlock *tb, | 
|  | tb_page_addr_t phys_pc, tb_page_addr_t phys_page2) | 
|  | { | 
|  | unsigned int h; | 
|  | TranslationBlock **ptb; | 
|  |  | 
|  | /* Grab the mmap lock to stop another thread invalidating this TB | 
|  | before we are done.  */ | 
|  | mmap_lock(); | 
|  | /* add in the physical hash table */ | 
|  | h = tb_phys_hash_func(phys_pc); | 
|  | ptb = &tb_phys_hash[h]; | 
|  | tb->phys_hash_next = *ptb; | 
|  | *ptb = tb; | 
|  |  | 
|  | /* add in the page list */ | 
|  | tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK); | 
|  | if (phys_page2 != -1) | 
|  | tb_alloc_page(tb, 1, phys_page2); | 
|  | else | 
|  | tb->page_addr[1] = -1; | 
|  |  | 
|  | tb->jmp_first = (TranslationBlock *)((long)tb | 2); | 
|  | tb->jmp_next[0] = NULL; | 
|  | tb->jmp_next[1] = NULL; | 
|  |  | 
|  | /* init original jump addresses */ | 
|  | if (tb->tb_next_offset[0] != 0xffff) | 
|  | tb_reset_jump(tb, 0); | 
|  | if (tb->tb_next_offset[1] != 0xffff) | 
|  | tb_reset_jump(tb, 1); | 
|  |  | 
|  | #ifdef DEBUG_TB_CHECK | 
|  | tb_page_check(); | 
|  | #endif | 
|  | mmap_unlock(); | 
|  | } | 
|  |  | 
|  | /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr < | 
|  | tb[1].tc_ptr. Return NULL if not found */ | 
|  | TranslationBlock *tb_find_pc(unsigned long tc_ptr) | 
|  | { | 
|  | int m_min, m_max, m; | 
|  | unsigned long v; | 
|  | TranslationBlock *tb; | 
|  |  | 
|  | if (nb_tbs <= 0) | 
|  | return NULL; | 
|  | if (tc_ptr < (unsigned long)code_gen_buffer || | 
|  | tc_ptr >= (unsigned long)code_gen_ptr) | 
|  | return NULL; | 
|  | /* binary search (cf Knuth) */ | 
|  | m_min = 0; | 
|  | m_max = nb_tbs - 1; | 
|  | while (m_min <= m_max) { | 
|  | m = (m_min + m_max) >> 1; | 
|  | tb = &tbs[m]; | 
|  | v = (unsigned long)tb->tc_ptr; | 
|  | if (v == tc_ptr) | 
|  | return tb; | 
|  | else if (tc_ptr < v) { | 
|  | m_max = m - 1; | 
|  | } else { | 
|  | m_min = m + 1; | 
|  | } | 
|  | } | 
|  | return &tbs[m_max]; | 
|  | } | 
|  |  | 
|  | static void tb_reset_jump_recursive(TranslationBlock *tb); | 
|  |  | 
|  | static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n) | 
|  | { | 
|  | TranslationBlock *tb1, *tb_next, **ptb; | 
|  | unsigned int n1; | 
|  |  | 
|  | tb1 = tb->jmp_next[n]; | 
|  | if (tb1 != NULL) { | 
|  | /* find head of list */ | 
|  | for(;;) { | 
|  | n1 = (long)tb1 & 3; | 
|  | tb1 = (TranslationBlock *)((long)tb1 & ~3); | 
|  | if (n1 == 2) | 
|  | break; | 
|  | tb1 = tb1->jmp_next[n1]; | 
|  | } | 
|  | /* we are now sure now that tb jumps to tb1 */ | 
|  | tb_next = tb1; | 
|  |  | 
|  | /* remove tb from the jmp_first list */ | 
|  | ptb = &tb_next->jmp_first; | 
|  | for(;;) { | 
|  | tb1 = *ptb; | 
|  | n1 = (long)tb1 & 3; | 
|  | tb1 = (TranslationBlock *)((long)tb1 & ~3); | 
|  | if (n1 == n && tb1 == tb) | 
|  | break; | 
|  | ptb = &tb1->jmp_next[n1]; | 
|  | } | 
|  | *ptb = tb->jmp_next[n]; | 
|  | tb->jmp_next[n] = NULL; | 
|  |  | 
|  | /* suppress the jump to next tb in generated code */ | 
|  | tb_reset_jump(tb, n); | 
|  |  | 
|  | /* suppress jumps in the tb on which we could have jumped */ | 
|  | tb_reset_jump_recursive(tb_next); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void tb_reset_jump_recursive(TranslationBlock *tb) | 
|  | { | 
|  | tb_reset_jump_recursive2(tb, 0); | 
|  | tb_reset_jump_recursive2(tb, 1); | 
|  | } | 
|  |  | 
|  | #if defined(TARGET_HAS_ICE) | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  | static void breakpoint_invalidate(CPUState *env, target_ulong pc) | 
|  | { | 
|  | tb_invalidate_phys_page_range(pc, pc + 1, 0); | 
|  | } | 
|  | #else | 
|  | static void breakpoint_invalidate(CPUState *env, target_ulong pc) | 
|  | { | 
|  | target_phys_addr_t addr; | 
|  | target_ulong pd; | 
|  | ram_addr_t ram_addr; | 
|  | PhysPageDesc *p; | 
|  |  | 
|  | addr = cpu_get_phys_page_debug(env, pc); | 
|  | p = phys_page_find(addr >> TARGET_PAGE_BITS); | 
|  | if (!p) { | 
|  | pd = IO_MEM_UNASSIGNED; | 
|  | } else { | 
|  | pd = p->phys_offset; | 
|  | } | 
|  | ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK); | 
|  | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); | 
|  | } | 
|  | #endif | 
|  | #endif /* TARGET_HAS_ICE */ | 
|  |  | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  | void cpu_watchpoint_remove_all(CPUState *env, int mask) | 
|  |  | 
|  | { | 
|  | } | 
|  |  | 
|  | int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len, | 
|  | int flags, CPUWatchpoint **watchpoint) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  | #else | 
|  | /* Add a watchpoint.  */ | 
|  | int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len, | 
|  | int flags, CPUWatchpoint **watchpoint) | 
|  | { | 
|  | target_ulong len_mask = ~(len - 1); | 
|  | CPUWatchpoint *wp; | 
|  |  | 
|  | /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */ | 
|  | if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) { | 
|  | fprintf(stderr, "qemu: tried to set invalid watchpoint at " | 
|  | TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len); | 
|  | return -EINVAL; | 
|  | } | 
|  | wp = qemu_malloc(sizeof(*wp)); | 
|  |  | 
|  | wp->vaddr = addr; | 
|  | wp->len_mask = len_mask; | 
|  | wp->flags = flags; | 
|  |  | 
|  | /* keep all GDB-injected watchpoints in front */ | 
|  | if (flags & BP_GDB) | 
|  | QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry); | 
|  | else | 
|  | QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry); | 
|  |  | 
|  | tlb_flush_page(env, addr); | 
|  |  | 
|  | if (watchpoint) | 
|  | *watchpoint = wp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Remove a specific watchpoint.  */ | 
|  | int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len, | 
|  | int flags) | 
|  | { | 
|  | target_ulong len_mask = ~(len - 1); | 
|  | CPUWatchpoint *wp; | 
|  |  | 
|  | QTAILQ_FOREACH(wp, &env->watchpoints, entry) { | 
|  | if (addr == wp->vaddr && len_mask == wp->len_mask | 
|  | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { | 
|  | cpu_watchpoint_remove_by_ref(env, wp); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | /* Remove a specific watchpoint by reference.  */ | 
|  | void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint) | 
|  | { | 
|  | QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry); | 
|  |  | 
|  | tlb_flush_page(env, watchpoint->vaddr); | 
|  |  | 
|  | qemu_free(watchpoint); | 
|  | } | 
|  |  | 
|  | /* Remove all matching watchpoints.  */ | 
|  | void cpu_watchpoint_remove_all(CPUState *env, int mask) | 
|  | { | 
|  | CPUWatchpoint *wp, *next; | 
|  |  | 
|  | QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) { | 
|  | if (wp->flags & mask) | 
|  | cpu_watchpoint_remove_by_ref(env, wp); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Add a breakpoint.  */ | 
|  | int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags, | 
|  | CPUBreakpoint **breakpoint) | 
|  | { | 
|  | #if defined(TARGET_HAS_ICE) | 
|  | CPUBreakpoint *bp; | 
|  |  | 
|  | bp = qemu_malloc(sizeof(*bp)); | 
|  |  | 
|  | bp->pc = pc; | 
|  | bp->flags = flags; | 
|  |  | 
|  | /* keep all GDB-injected breakpoints in front */ | 
|  | if (flags & BP_GDB) | 
|  | QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry); | 
|  | else | 
|  | QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry); | 
|  |  | 
|  | breakpoint_invalidate(env, pc); | 
|  |  | 
|  | if (breakpoint) | 
|  | *breakpoint = bp; | 
|  | return 0; | 
|  | #else | 
|  | return -ENOSYS; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Remove a specific breakpoint.  */ | 
|  | int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags) | 
|  | { | 
|  | #if defined(TARGET_HAS_ICE) | 
|  | CPUBreakpoint *bp; | 
|  |  | 
|  | QTAILQ_FOREACH(bp, &env->breakpoints, entry) { | 
|  | if (bp->pc == pc && bp->flags == flags) { | 
|  | cpu_breakpoint_remove_by_ref(env, bp); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return -ENOENT; | 
|  | #else | 
|  | return -ENOSYS; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Remove a specific breakpoint by reference.  */ | 
|  | void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint) | 
|  | { | 
|  | #if defined(TARGET_HAS_ICE) | 
|  | QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry); | 
|  |  | 
|  | breakpoint_invalidate(env, breakpoint->pc); | 
|  |  | 
|  | qemu_free(breakpoint); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Remove all matching breakpoints. */ | 
|  | void cpu_breakpoint_remove_all(CPUState *env, int mask) | 
|  | { | 
|  | #if defined(TARGET_HAS_ICE) | 
|  | CPUBreakpoint *bp, *next; | 
|  |  | 
|  | QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) { | 
|  | if (bp->flags & mask) | 
|  | cpu_breakpoint_remove_by_ref(env, bp); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* enable or disable single step mode. EXCP_DEBUG is returned by the | 
|  | CPU loop after each instruction */ | 
|  | void cpu_single_step(CPUState *env, int enabled) | 
|  | { | 
|  | #if defined(TARGET_HAS_ICE) | 
|  | if (env->singlestep_enabled != enabled) { | 
|  | env->singlestep_enabled = enabled; | 
|  | if (kvm_enabled()) | 
|  | kvm_update_guest_debug(env, 0); | 
|  | else { | 
|  | /* must flush all the translated code to avoid inconsistencies */ | 
|  | /* XXX: only flush what is necessary */ | 
|  | tb_flush(env); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* enable or disable low levels log */ | 
|  | void cpu_set_log(int log_flags) | 
|  | { | 
|  | loglevel = log_flags; | 
|  | if (loglevel && !logfile) { | 
|  | logfile = fopen(logfilename, log_append ? "a" : "w"); | 
|  | if (!logfile) { | 
|  | perror(logfilename); | 
|  | _exit(1); | 
|  | } | 
|  | #if !defined(CONFIG_SOFTMMU) | 
|  | /* must avoid mmap() usage of glibc by setting a buffer "by hand" */ | 
|  | { | 
|  | static char logfile_buf[4096]; | 
|  | setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf)); | 
|  | } | 
|  | #elif !defined(_WIN32) | 
|  | /* Win32 doesn't support line-buffering and requires size >= 2 */ | 
|  | setvbuf(logfile, NULL, _IOLBF, 0); | 
|  | #endif | 
|  | log_append = 1; | 
|  | } | 
|  | if (!loglevel && logfile) { | 
|  | fclose(logfile); | 
|  | logfile = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | void cpu_set_log_filename(const char *filename) | 
|  | { | 
|  | logfilename = strdup(filename); | 
|  | if (logfile) { | 
|  | fclose(logfile); | 
|  | logfile = NULL; | 
|  | } | 
|  | cpu_set_log(loglevel); | 
|  | } | 
|  |  | 
|  | static void cpu_unlink_tb(CPUState *env) | 
|  | { | 
|  | /* FIXME: TB unchaining isn't SMP safe.  For now just ignore the | 
|  | problem and hope the cpu will stop of its own accord.  For userspace | 
|  | emulation this often isn't actually as bad as it sounds.  Often | 
|  | signals are used primarily to interrupt blocking syscalls.  */ | 
|  | TranslationBlock *tb; | 
|  | static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED; | 
|  |  | 
|  | spin_lock(&interrupt_lock); | 
|  | tb = env->current_tb; | 
|  | /* if the cpu is currently executing code, we must unlink it and | 
|  | all the potentially executing TB */ | 
|  | if (tb) { | 
|  | env->current_tb = NULL; | 
|  | tb_reset_jump_recursive(tb); | 
|  | } | 
|  | spin_unlock(&interrupt_lock); | 
|  | } | 
|  |  | 
|  | /* mask must never be zero, except for A20 change call */ | 
|  | void cpu_interrupt(CPUState *env, int mask) | 
|  | { | 
|  | int old_mask; | 
|  |  | 
|  | old_mask = env->interrupt_request; | 
|  | env->interrupt_request |= mask; | 
|  |  | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | /* | 
|  | * If called from iothread context, wake the target cpu in | 
|  | * case its halted. | 
|  | */ | 
|  | if (!qemu_cpu_self(env)) { | 
|  | qemu_cpu_kick(env); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (use_icount) { | 
|  | env->icount_decr.u16.high = 0xffff; | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | if (!can_do_io(env) | 
|  | && (mask & ~old_mask) != 0) { | 
|  | cpu_abort(env, "Raised interrupt while not in I/O function"); | 
|  | } | 
|  | #endif | 
|  | } else { | 
|  | cpu_unlink_tb(env); | 
|  | } | 
|  | } | 
|  |  | 
|  | void cpu_reset_interrupt(CPUState *env, int mask) | 
|  | { | 
|  | env->interrupt_request &= ~mask; | 
|  | } | 
|  |  | 
|  | void cpu_exit(CPUState *env) | 
|  | { | 
|  | env->exit_request = 1; | 
|  | cpu_unlink_tb(env); | 
|  | } | 
|  |  | 
|  | const CPULogItem cpu_log_items[] = { | 
|  | { CPU_LOG_TB_OUT_ASM, "out_asm", | 
|  | "show generated host assembly code for each compiled TB" }, | 
|  | { CPU_LOG_TB_IN_ASM, "in_asm", | 
|  | "show target assembly code for each compiled TB" }, | 
|  | { CPU_LOG_TB_OP, "op", | 
|  | "show micro ops for each compiled TB" }, | 
|  | { CPU_LOG_TB_OP_OPT, "op_opt", | 
|  | "show micro ops " | 
|  | #ifdef TARGET_I386 | 
|  | "before eflags optimization and " | 
|  | #endif | 
|  | "after liveness analysis" }, | 
|  | { CPU_LOG_INT, "int", | 
|  | "show interrupts/exceptions in short format" }, | 
|  | { CPU_LOG_EXEC, "exec", | 
|  | "show trace before each executed TB (lots of logs)" }, | 
|  | { CPU_LOG_TB_CPU, "cpu", | 
|  | "show CPU state before block translation" }, | 
|  | #ifdef TARGET_I386 | 
|  | { CPU_LOG_PCALL, "pcall", | 
|  | "show protected mode far calls/returns/exceptions" }, | 
|  | { CPU_LOG_RESET, "cpu_reset", | 
|  | "show CPU state before CPU resets" }, | 
|  | #endif | 
|  | #ifdef DEBUG_IOPORT | 
|  | { CPU_LOG_IOPORT, "ioport", | 
|  | "show all i/o ports accesses" }, | 
|  | #endif | 
|  | { 0, NULL, NULL }, | 
|  | }; | 
|  |  | 
|  | #ifndef CONFIG_USER_ONLY | 
|  | static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list | 
|  | = QLIST_HEAD_INITIALIZER(memory_client_list); | 
|  |  | 
|  | static void cpu_notify_set_memory(target_phys_addr_t start_addr, | 
|  | ram_addr_t size, | 
|  | ram_addr_t phys_offset) | 
|  | { | 
|  | CPUPhysMemoryClient *client; | 
|  | QLIST_FOREACH(client, &memory_client_list, list) { | 
|  | client->set_memory(client, start_addr, size, phys_offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start, | 
|  | target_phys_addr_t end) | 
|  | { | 
|  | CPUPhysMemoryClient *client; | 
|  | QLIST_FOREACH(client, &memory_client_list, list) { | 
|  | int r = client->sync_dirty_bitmap(client, start, end); | 
|  | if (r < 0) | 
|  | return r; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cpu_notify_migration_log(int enable) | 
|  | { | 
|  | CPUPhysMemoryClient *client; | 
|  | QLIST_FOREACH(client, &memory_client_list, list) { | 
|  | int r = client->migration_log(client, enable); | 
|  | if (r < 0) | 
|  | return r; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void phys_page_for_each_1(CPUPhysMemoryClient *client, | 
|  | int level, void **lp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (*lp == NULL) { | 
|  | return; | 
|  | } | 
|  | if (level == 0) { | 
|  | PhysPageDesc *pd = *lp; | 
|  | for (i = 0; i < L2_SIZE; ++i) { | 
|  | if (pd[i].phys_offset != IO_MEM_UNASSIGNED) { | 
|  | client->set_memory(client, pd[i].region_offset, | 
|  | TARGET_PAGE_SIZE, pd[i].phys_offset); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | void **pp = *lp; | 
|  | for (i = 0; i < L2_SIZE; ++i) { | 
|  | phys_page_for_each_1(client, level - 1, pp + i); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void phys_page_for_each(CPUPhysMemoryClient *client) | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < P_L1_SIZE; ++i) { | 
|  | phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1, | 
|  | l1_phys_map + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | void cpu_register_phys_memory_client(CPUPhysMemoryClient *client) | 
|  | { | 
|  | QLIST_INSERT_HEAD(&memory_client_list, client, list); | 
|  | phys_page_for_each(client); | 
|  | } | 
|  |  | 
|  | void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client) | 
|  | { | 
|  | QLIST_REMOVE(client, list); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int cmp1(const char *s1, int n, const char *s2) | 
|  | { | 
|  | if (strlen(s2) != n) | 
|  | return 0; | 
|  | return memcmp(s1, s2, n) == 0; | 
|  | } | 
|  |  | 
|  | /* takes a comma separated list of log masks. Return 0 if error. */ | 
|  | int cpu_str_to_log_mask(const char *str) | 
|  | { | 
|  | const CPULogItem *item; | 
|  | int mask; | 
|  | const char *p, *p1; | 
|  |  | 
|  | p = str; | 
|  | mask = 0; | 
|  | for(;;) { | 
|  | p1 = strchr(p, ','); | 
|  | if (!p1) | 
|  | p1 = p + strlen(p); | 
|  | if(cmp1(p,p1-p,"all")) { | 
|  | for(item = cpu_log_items; item->mask != 0; item++) { | 
|  | mask |= item->mask; | 
|  | } | 
|  | } else { | 
|  | for(item = cpu_log_items; item->mask != 0; item++) { | 
|  | if (cmp1(p, p1 - p, item->name)) | 
|  | goto found; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | found: | 
|  | mask |= item->mask; | 
|  | if (*p1 != ',') | 
|  | break; | 
|  | p = p1 + 1; | 
|  | } | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | void cpu_abort(CPUState *env, const char *fmt, ...) | 
|  | { | 
|  | va_list ap; | 
|  | va_list ap2; | 
|  |  | 
|  | va_start(ap, fmt); | 
|  | va_copy(ap2, ap); | 
|  | fprintf(stderr, "qemu: fatal: "); | 
|  | vfprintf(stderr, fmt, ap); | 
|  | fprintf(stderr, "\n"); | 
|  | #ifdef TARGET_I386 | 
|  | cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP); | 
|  | #else | 
|  | cpu_dump_state(env, stderr, fprintf, 0); | 
|  | #endif | 
|  | if (qemu_log_enabled()) { | 
|  | qemu_log("qemu: fatal: "); | 
|  | qemu_log_vprintf(fmt, ap2); | 
|  | qemu_log("\n"); | 
|  | #ifdef TARGET_I386 | 
|  | log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP); | 
|  | #else | 
|  | log_cpu_state(env, 0); | 
|  | #endif | 
|  | qemu_log_flush(); | 
|  | qemu_log_close(); | 
|  | } | 
|  | va_end(ap2); | 
|  | va_end(ap); | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  | { | 
|  | struct sigaction act; | 
|  | sigfillset(&act.sa_mask); | 
|  | act.sa_handler = SIG_DFL; | 
|  | sigaction(SIGABRT, &act, NULL); | 
|  | } | 
|  | #endif | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | CPUState *cpu_copy(CPUState *env) | 
|  | { | 
|  | CPUState *new_env = cpu_init(env->cpu_model_str); | 
|  | CPUState *next_cpu = new_env->next_cpu; | 
|  | int cpu_index = new_env->cpu_index; | 
|  | #if defined(TARGET_HAS_ICE) | 
|  | CPUBreakpoint *bp; | 
|  | CPUWatchpoint *wp; | 
|  | #endif | 
|  |  | 
|  | memcpy(new_env, env, sizeof(CPUState)); | 
|  |  | 
|  | /* Preserve chaining and index. */ | 
|  | new_env->next_cpu = next_cpu; | 
|  | new_env->cpu_index = cpu_index; | 
|  |  | 
|  | /* Clone all break/watchpoints. | 
|  | Note: Once we support ptrace with hw-debug register access, make sure | 
|  | BP_CPU break/watchpoints are handled correctly on clone. */ | 
|  | QTAILQ_INIT(&env->breakpoints); | 
|  | QTAILQ_INIT(&env->watchpoints); | 
|  | #if defined(TARGET_HAS_ICE) | 
|  | QTAILQ_FOREACH(bp, &env->breakpoints, entry) { | 
|  | cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL); | 
|  | } | 
|  | QTAILQ_FOREACH(wp, &env->watchpoints, entry) { | 
|  | cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1, | 
|  | wp->flags, NULL); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return new_env; | 
|  | } | 
|  |  | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  |  | 
|  | static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | /* Discard jump cache entries for any tb which might potentially | 
|  | overlap the flushed page.  */ | 
|  | i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE); | 
|  | memset (&env->tb_jmp_cache[i], 0, | 
|  | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | 
|  |  | 
|  | i = tb_jmp_cache_hash_page(addr); | 
|  | memset (&env->tb_jmp_cache[i], 0, | 
|  | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); | 
|  | } | 
|  |  | 
|  | static CPUTLBEntry s_cputlb_empty_entry = { | 
|  | .addr_read  = -1, | 
|  | .addr_write = -1, | 
|  | .addr_code  = -1, | 
|  | .addend     = -1, | 
|  | }; | 
|  |  | 
|  | /* NOTE: if flush_global is true, also flush global entries (not | 
|  | implemented yet) */ | 
|  | void tlb_flush(CPUState *env, int flush_global) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | #if defined(DEBUG_TLB) | 
|  | printf("tlb_flush:\n"); | 
|  | #endif | 
|  | /* must reset current TB so that interrupts cannot modify the | 
|  | links while we are modifying them */ | 
|  | env->current_tb = NULL; | 
|  |  | 
|  | for(i = 0; i < CPU_TLB_SIZE; i++) { | 
|  | int mmu_idx; | 
|  | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | 
|  | env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry; | 
|  | } | 
|  | } | 
|  |  | 
|  | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); | 
|  |  | 
|  | env->tlb_flush_addr = -1; | 
|  | env->tlb_flush_mask = 0; | 
|  | tlb_flush_count++; | 
|  | } | 
|  |  | 
|  | static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) | 
|  | { | 
|  | if (addr == (tlb_entry->addr_read & | 
|  | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || | 
|  | addr == (tlb_entry->addr_write & | 
|  | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || | 
|  | addr == (tlb_entry->addr_code & | 
|  | (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | 
|  | *tlb_entry = s_cputlb_empty_entry; | 
|  | } | 
|  | } | 
|  |  | 
|  | void tlb_flush_page(CPUState *env, target_ulong addr) | 
|  | { | 
|  | int i; | 
|  | int mmu_idx; | 
|  |  | 
|  | #if defined(DEBUG_TLB) | 
|  | printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr); | 
|  | #endif | 
|  | /* Check if we need to flush due to large pages.  */ | 
|  | if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) { | 
|  | #if defined(DEBUG_TLB) | 
|  | printf("tlb_flush_page: forced full flush (" | 
|  | TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", | 
|  | env->tlb_flush_addr, env->tlb_flush_mask); | 
|  | #endif | 
|  | tlb_flush(env, 1); | 
|  | return; | 
|  | } | 
|  | /* must reset current TB so that interrupts cannot modify the | 
|  | links while we are modifying them */ | 
|  | env->current_tb = NULL; | 
|  |  | 
|  | addr &= TARGET_PAGE_MASK; | 
|  | i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | 
|  | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) | 
|  | tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr); | 
|  |  | 
|  | tlb_flush_jmp_cache(env, addr); | 
|  | } | 
|  |  | 
|  | /* update the TLBs so that writes to code in the virtual page 'addr' | 
|  | can be detected */ | 
|  | static void tlb_protect_code(ram_addr_t ram_addr) | 
|  | { | 
|  | cpu_physical_memory_reset_dirty(ram_addr, | 
|  | ram_addr + TARGET_PAGE_SIZE, | 
|  | CODE_DIRTY_FLAG); | 
|  | } | 
|  |  | 
|  | /* update the TLB so that writes in physical page 'phys_addr' are no longer | 
|  | tested for self modifying code */ | 
|  | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr, | 
|  | target_ulong vaddr) | 
|  | { | 
|  | cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG); | 
|  | } | 
|  |  | 
|  | static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, | 
|  | unsigned long start, unsigned long length) | 
|  | { | 
|  | unsigned long addr; | 
|  | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { | 
|  | addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; | 
|  | if ((addr - start) < length) { | 
|  | tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Note: start and end must be within the same ram block.  */ | 
|  | void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, | 
|  | int dirty_flags) | 
|  | { | 
|  | CPUState *env; | 
|  | unsigned long length, start1; | 
|  | int i; | 
|  |  | 
|  | start &= TARGET_PAGE_MASK; | 
|  | end = TARGET_PAGE_ALIGN(end); | 
|  |  | 
|  | length = end - start; | 
|  | if (length == 0) | 
|  | return; | 
|  | cpu_physical_memory_mask_dirty_range(start, length, dirty_flags); | 
|  |  | 
|  | /* we modify the TLB cache so that the dirty bit will be set again | 
|  | when accessing the range */ | 
|  | start1 = (unsigned long)qemu_get_ram_ptr(start); | 
|  | /* Chek that we don't span multiple blocks - this breaks the | 
|  | address comparisons below.  */ | 
|  | if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1 | 
|  | != (end - 1) - start) { | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | for(env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | int mmu_idx; | 
|  | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | 
|  | for(i = 0; i < CPU_TLB_SIZE; i++) | 
|  | tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i], | 
|  | start1, length); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int cpu_physical_memory_set_dirty_tracking(int enable) | 
|  | { | 
|  | int ret = 0; | 
|  | in_migration = enable; | 
|  | ret = cpu_notify_migration_log(!!enable); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int cpu_physical_memory_get_dirty_tracking(void) | 
|  | { | 
|  | return in_migration; | 
|  | } | 
|  |  | 
|  | int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, | 
|  | target_phys_addr_t end_addr) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry) | 
|  | { | 
|  | ram_addr_t ram_addr; | 
|  | void *p; | 
|  |  | 
|  | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) { | 
|  | p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK) | 
|  | + tlb_entry->addend); | 
|  | ram_addr = qemu_ram_addr_from_host_nofail(p); | 
|  | if (!cpu_physical_memory_is_dirty(ram_addr)) { | 
|  | tlb_entry->addr_write |= TLB_NOTDIRTY; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* update the TLB according to the current state of the dirty bits */ | 
|  | void cpu_tlb_update_dirty(CPUState *env) | 
|  | { | 
|  | int i; | 
|  | int mmu_idx; | 
|  | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | 
|  | for(i = 0; i < CPU_TLB_SIZE; i++) | 
|  | tlb_update_dirty(&env->tlb_table[mmu_idx][i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) | 
|  | { | 
|  | if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) | 
|  | tlb_entry->addr_write = vaddr; | 
|  | } | 
|  |  | 
|  | /* update the TLB corresponding to virtual page vaddr | 
|  | so that it is no longer dirty */ | 
|  | static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr) | 
|  | { | 
|  | int i; | 
|  | int mmu_idx; | 
|  |  | 
|  | vaddr &= TARGET_PAGE_MASK; | 
|  | i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | 
|  | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) | 
|  | tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr); | 
|  | } | 
|  |  | 
|  | /* Our TLB does not support large pages, so remember the area covered by | 
|  | large pages and trigger a full TLB flush if these are invalidated.  */ | 
|  | static void tlb_add_large_page(CPUState *env, target_ulong vaddr, | 
|  | target_ulong size) | 
|  | { | 
|  | target_ulong mask = ~(size - 1); | 
|  |  | 
|  | if (env->tlb_flush_addr == (target_ulong)-1) { | 
|  | env->tlb_flush_addr = vaddr & mask; | 
|  | env->tlb_flush_mask = mask; | 
|  | return; | 
|  | } | 
|  | /* Extend the existing region to include the new page. | 
|  | This is a compromise between unnecessary flushes and the cost | 
|  | of maintaining a full variable size TLB.  */ | 
|  | mask &= env->tlb_flush_mask; | 
|  | while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) { | 
|  | mask <<= 1; | 
|  | } | 
|  | env->tlb_flush_addr &= mask; | 
|  | env->tlb_flush_mask = mask; | 
|  | } | 
|  |  | 
|  | /* Add a new TLB entry. At most one entry for a given virtual address | 
|  | is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the | 
|  | supplied size is only used by tlb_flush_page.  */ | 
|  | void tlb_set_page(CPUState *env, target_ulong vaddr, | 
|  | target_phys_addr_t paddr, int prot, | 
|  | int mmu_idx, target_ulong size) | 
|  | { | 
|  | PhysPageDesc *p; | 
|  | unsigned long pd; | 
|  | unsigned int index; | 
|  | target_ulong address; | 
|  | target_ulong code_address; | 
|  | unsigned long addend; | 
|  | CPUTLBEntry *te; | 
|  | CPUWatchpoint *wp; | 
|  | target_phys_addr_t iotlb; | 
|  |  | 
|  | assert(size >= TARGET_PAGE_SIZE); | 
|  | if (size != TARGET_PAGE_SIZE) { | 
|  | tlb_add_large_page(env, vaddr, size); | 
|  | } | 
|  | p = phys_page_find(paddr >> TARGET_PAGE_BITS); | 
|  | if (!p) { | 
|  | pd = IO_MEM_UNASSIGNED; | 
|  | } else { | 
|  | pd = p->phys_offset; | 
|  | } | 
|  | #if defined(DEBUG_TLB) | 
|  | printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx | 
|  | " prot=%x idx=%d pd=0x%08lx\n", | 
|  | vaddr, paddr, prot, mmu_idx, pd); | 
|  | #endif | 
|  |  | 
|  | address = vaddr; | 
|  | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) { | 
|  | /* IO memory case (romd handled later) */ | 
|  | address |= TLB_MMIO; | 
|  | } | 
|  | addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK); | 
|  | if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) { | 
|  | /* Normal RAM.  */ | 
|  | iotlb = pd & TARGET_PAGE_MASK; | 
|  | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM) | 
|  | iotlb |= IO_MEM_NOTDIRTY; | 
|  | else | 
|  | iotlb |= IO_MEM_ROM; | 
|  | } else { | 
|  | /* IO handlers are currently passed a physical address. | 
|  | It would be nice to pass an offset from the base address | 
|  | of that region.  This would avoid having to special case RAM, | 
|  | and avoid full address decoding in every device. | 
|  | We can't use the high bits of pd for this because | 
|  | IO_MEM_ROMD uses these as a ram address.  */ | 
|  | iotlb = (pd & ~TARGET_PAGE_MASK); | 
|  | if (p) { | 
|  | iotlb += p->region_offset; | 
|  | } else { | 
|  | iotlb += paddr; | 
|  | } | 
|  | } | 
|  |  | 
|  | code_address = address; | 
|  | /* Make accesses to pages with watchpoints go via the | 
|  | watchpoint trap routines.  */ | 
|  | QTAILQ_FOREACH(wp, &env->watchpoints, entry) { | 
|  | if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) { | 
|  | /* Avoid trapping reads of pages with a write breakpoint. */ | 
|  | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { | 
|  | iotlb = io_mem_watch + paddr; | 
|  | address |= TLB_MMIO; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | 
|  | env->iotlb[mmu_idx][index] = iotlb - vaddr; | 
|  | te = &env->tlb_table[mmu_idx][index]; | 
|  | te->addend = addend - vaddr; | 
|  | if (prot & PAGE_READ) { | 
|  | te->addr_read = address; | 
|  | } else { | 
|  | te->addr_read = -1; | 
|  | } | 
|  |  | 
|  | if (prot & PAGE_EXEC) { | 
|  | te->addr_code = code_address; | 
|  | } else { | 
|  | te->addr_code = -1; | 
|  | } | 
|  | if (prot & PAGE_WRITE) { | 
|  | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM || | 
|  | (pd & IO_MEM_ROMD)) { | 
|  | /* Write access calls the I/O callback.  */ | 
|  | te->addr_write = address | TLB_MMIO; | 
|  | } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM && | 
|  | !cpu_physical_memory_is_dirty(pd)) { | 
|  | te->addr_write = address | TLB_NOTDIRTY; | 
|  | } else { | 
|  | te->addr_write = address; | 
|  | } | 
|  | } else { | 
|  | te->addr_write = -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | void tlb_flush(CPUState *env, int flush_global) | 
|  | { | 
|  | } | 
|  |  | 
|  | void tlb_flush_page(CPUState *env, target_ulong addr) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Walks guest process memory "regions" one by one | 
|  | * and calls callback function 'fn' for each region. | 
|  | */ | 
|  |  | 
|  | struct walk_memory_regions_data | 
|  | { | 
|  | walk_memory_regions_fn fn; | 
|  | void *priv; | 
|  | unsigned long start; | 
|  | int prot; | 
|  | }; | 
|  |  | 
|  | static int walk_memory_regions_end(struct walk_memory_regions_data *data, | 
|  | abi_ulong end, int new_prot) | 
|  | { | 
|  | if (data->start != -1ul) { | 
|  | int rc = data->fn(data->priv, data->start, end, data->prot); | 
|  | if (rc != 0) { | 
|  | return rc; | 
|  | } | 
|  | } | 
|  |  | 
|  | data->start = (new_prot ? end : -1ul); | 
|  | data->prot = new_prot; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int walk_memory_regions_1(struct walk_memory_regions_data *data, | 
|  | abi_ulong base, int level, void **lp) | 
|  | { | 
|  | abi_ulong pa; | 
|  | int i, rc; | 
|  |  | 
|  | if (*lp == NULL) { | 
|  | return walk_memory_regions_end(data, base, 0); | 
|  | } | 
|  |  | 
|  | if (level == 0) { | 
|  | PageDesc *pd = *lp; | 
|  | for (i = 0; i < L2_SIZE; ++i) { | 
|  | int prot = pd[i].flags; | 
|  |  | 
|  | pa = base | (i << TARGET_PAGE_BITS); | 
|  | if (prot != data->prot) { | 
|  | rc = walk_memory_regions_end(data, pa, prot); | 
|  | if (rc != 0) { | 
|  | return rc; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | void **pp = *lp; | 
|  | for (i = 0; i < L2_SIZE; ++i) { | 
|  | pa = base | ((abi_ulong)i << | 
|  | (TARGET_PAGE_BITS + L2_BITS * level)); | 
|  | rc = walk_memory_regions_1(data, pa, level - 1, pp + i); | 
|  | if (rc != 0) { | 
|  | return rc; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int walk_memory_regions(void *priv, walk_memory_regions_fn fn) | 
|  | { | 
|  | struct walk_memory_regions_data data; | 
|  | unsigned long i; | 
|  |  | 
|  | data.fn = fn; | 
|  | data.priv = priv; | 
|  | data.start = -1ul; | 
|  | data.prot = 0; | 
|  |  | 
|  | for (i = 0; i < V_L1_SIZE; i++) { | 
|  | int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT, | 
|  | V_L1_SHIFT / L2_BITS - 1, l1_map + i); | 
|  | if (rc != 0) { | 
|  | return rc; | 
|  | } | 
|  | } | 
|  |  | 
|  | return walk_memory_regions_end(&data, 0, 0); | 
|  | } | 
|  |  | 
|  | static int dump_region(void *priv, abi_ulong start, | 
|  | abi_ulong end, unsigned long prot) | 
|  | { | 
|  | FILE *f = (FILE *)priv; | 
|  |  | 
|  | (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx | 
|  | " "TARGET_ABI_FMT_lx" %c%c%c\n", | 
|  | start, end, end - start, | 
|  | ((prot & PAGE_READ) ? 'r' : '-'), | 
|  | ((prot & PAGE_WRITE) ? 'w' : '-'), | 
|  | ((prot & PAGE_EXEC) ? 'x' : '-')); | 
|  |  | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | /* dump memory mappings */ | 
|  | void page_dump(FILE *f) | 
|  | { | 
|  | (void) fprintf(f, "%-8s %-8s %-8s %s\n", | 
|  | "start", "end", "size", "prot"); | 
|  | walk_memory_regions(f, dump_region); | 
|  | } | 
|  |  | 
|  | int page_get_flags(target_ulong address) | 
|  | { | 
|  | PageDesc *p; | 
|  |  | 
|  | p = page_find(address >> TARGET_PAGE_BITS); | 
|  | if (!p) | 
|  | return 0; | 
|  | return p->flags; | 
|  | } | 
|  |  | 
|  | /* Modify the flags of a page and invalidate the code if necessary. | 
|  | The flag PAGE_WRITE_ORG is positioned automatically depending | 
|  | on PAGE_WRITE.  The mmap_lock should already be held.  */ | 
|  | void page_set_flags(target_ulong start, target_ulong end, int flags) | 
|  | { | 
|  | target_ulong addr, len; | 
|  |  | 
|  | /* This function should never be called with addresses outside the | 
|  | guest address space.  If this assert fires, it probably indicates | 
|  | a missing call to h2g_valid.  */ | 
|  | #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS | 
|  | assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); | 
|  | #endif | 
|  | assert(start < end); | 
|  |  | 
|  | start = start & TARGET_PAGE_MASK; | 
|  | end = TARGET_PAGE_ALIGN(end); | 
|  |  | 
|  | if (flags & PAGE_WRITE) { | 
|  | flags |= PAGE_WRITE_ORG; | 
|  | } | 
|  |  | 
|  | for (addr = start, len = end - start; | 
|  | len != 0; | 
|  | len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | 
|  | PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1); | 
|  |  | 
|  | /* If the write protection bit is set, then we invalidate | 
|  | the code inside.  */ | 
|  | if (!(p->flags & PAGE_WRITE) && | 
|  | (flags & PAGE_WRITE) && | 
|  | p->first_tb) { | 
|  | tb_invalidate_phys_page(addr, 0, NULL); | 
|  | } | 
|  | p->flags = flags; | 
|  | } | 
|  | } | 
|  |  | 
|  | int page_check_range(target_ulong start, target_ulong len, int flags) | 
|  | { | 
|  | PageDesc *p; | 
|  | target_ulong end; | 
|  | target_ulong addr; | 
|  |  | 
|  | /* This function should never be called with addresses outside the | 
|  | guest address space.  If this assert fires, it probably indicates | 
|  | a missing call to h2g_valid.  */ | 
|  | #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS | 
|  | assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); | 
|  | #endif | 
|  |  | 
|  | if (len == 0) { | 
|  | return 0; | 
|  | } | 
|  | if (start + len - 1 < start) { | 
|  | /* We've wrapped around.  */ | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */ | 
|  | start = start & TARGET_PAGE_MASK; | 
|  |  | 
|  | for (addr = start, len = end - start; | 
|  | len != 0; | 
|  | len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | 
|  | p = page_find(addr >> TARGET_PAGE_BITS); | 
|  | if( !p ) | 
|  | return -1; | 
|  | if( !(p->flags & PAGE_VALID) ) | 
|  | return -1; | 
|  |  | 
|  | if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) | 
|  | return -1; | 
|  | if (flags & PAGE_WRITE) { | 
|  | if (!(p->flags & PAGE_WRITE_ORG)) | 
|  | return -1; | 
|  | /* unprotect the page if it was put read-only because it | 
|  | contains translated code */ | 
|  | if (!(p->flags & PAGE_WRITE)) { | 
|  | if (!page_unprotect(addr, 0, NULL)) | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* called from signal handler: invalidate the code and unprotect the | 
|  | page. Return TRUE if the fault was successfully handled. */ | 
|  | int page_unprotect(target_ulong address, unsigned long pc, void *puc) | 
|  | { | 
|  | unsigned int prot; | 
|  | PageDesc *p; | 
|  | target_ulong host_start, host_end, addr; | 
|  |  | 
|  | /* Technically this isn't safe inside a signal handler.  However we | 
|  | know this only ever happens in a synchronous SEGV handler, so in | 
|  | practice it seems to be ok.  */ | 
|  | mmap_lock(); | 
|  |  | 
|  | p = page_find(address >> TARGET_PAGE_BITS); | 
|  | if (!p) { | 
|  | mmap_unlock(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* if the page was really writable, then we change its | 
|  | protection back to writable */ | 
|  | if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) { | 
|  | host_start = address & qemu_host_page_mask; | 
|  | host_end = host_start + qemu_host_page_size; | 
|  |  | 
|  | prot = 0; | 
|  | for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) { | 
|  | p = page_find(addr >> TARGET_PAGE_BITS); | 
|  | p->flags |= PAGE_WRITE; | 
|  | prot |= p->flags; | 
|  |  | 
|  | /* and since the content will be modified, we must invalidate | 
|  | the corresponding translated code. */ | 
|  | tb_invalidate_phys_page(addr, pc, puc); | 
|  | #ifdef DEBUG_TB_CHECK | 
|  | tb_invalidate_check(addr); | 
|  | #endif | 
|  | } | 
|  | mprotect((void *)g2h(host_start), qemu_host_page_size, | 
|  | prot & PAGE_BITS); | 
|  |  | 
|  | mmap_unlock(); | 
|  | return 1; | 
|  | } | 
|  | mmap_unlock(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void tlb_set_dirty(CPUState *env, | 
|  | unsigned long addr, target_ulong vaddr) | 
|  | { | 
|  | } | 
|  | #endif /* defined(CONFIG_USER_ONLY) */ | 
|  |  | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  |  | 
|  | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) | 
|  | typedef struct subpage_t { | 
|  | target_phys_addr_t base; | 
|  | ram_addr_t sub_io_index[TARGET_PAGE_SIZE]; | 
|  | ram_addr_t region_offset[TARGET_PAGE_SIZE]; | 
|  | } subpage_t; | 
|  |  | 
|  | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | 
|  | ram_addr_t memory, ram_addr_t region_offset); | 
|  | static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys, | 
|  | ram_addr_t orig_memory, | 
|  | ram_addr_t region_offset); | 
|  | #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \ | 
|  | need_subpage)                                     \ | 
|  | do {                                                                \ | 
|  | if (addr > start_addr)                                          \ | 
|  | start_addr2 = 0;                                            \ | 
|  | else {                                                          \ | 
|  | start_addr2 = start_addr & ~TARGET_PAGE_MASK;               \ | 
|  | if (start_addr2 > 0)                                        \ | 
|  | need_subpage = 1;                                       \ | 
|  | }                                                               \ | 
|  | \ | 
|  | if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE)        \ | 
|  | end_addr2 = TARGET_PAGE_SIZE - 1;                           \ | 
|  | else {                                                          \ | 
|  | end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \ | 
|  | if (end_addr2 < TARGET_PAGE_SIZE - 1)                       \ | 
|  | need_subpage = 1;                                       \ | 
|  | }                                                               \ | 
|  | } while (0) | 
|  |  | 
|  | /* register physical memory. | 
|  | For RAM, 'size' must be a multiple of the target page size. | 
|  | If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an | 
|  | io memory page.  The address used when calling the IO function is | 
|  | the offset from the start of the region, plus region_offset.  Both | 
|  | start_addr and region_offset are rounded down to a page boundary | 
|  | before calculating this offset.  This should not be a problem unless | 
|  | the low bits of start_addr and region_offset differ.  */ | 
|  | void cpu_register_physical_memory_offset(target_phys_addr_t start_addr, | 
|  | ram_addr_t size, | 
|  | ram_addr_t phys_offset, | 
|  | ram_addr_t region_offset) | 
|  | { | 
|  | target_phys_addr_t addr, end_addr; | 
|  | PhysPageDesc *p; | 
|  | CPUState *env; | 
|  | ram_addr_t orig_size = size; | 
|  | subpage_t *subpage; | 
|  |  | 
|  | cpu_notify_set_memory(start_addr, size, phys_offset); | 
|  |  | 
|  | if (phys_offset == IO_MEM_UNASSIGNED) { | 
|  | region_offset = start_addr; | 
|  | } | 
|  | region_offset &= TARGET_PAGE_MASK; | 
|  | size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK; | 
|  | end_addr = start_addr + (target_phys_addr_t)size; | 
|  | for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) { | 
|  | p = phys_page_find(addr >> TARGET_PAGE_BITS); | 
|  | if (p && p->phys_offset != IO_MEM_UNASSIGNED) { | 
|  | ram_addr_t orig_memory = p->phys_offset; | 
|  | target_phys_addr_t start_addr2, end_addr2; | 
|  | int need_subpage = 0; | 
|  |  | 
|  | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, | 
|  | need_subpage); | 
|  | if (need_subpage) { | 
|  | if (!(orig_memory & IO_MEM_SUBPAGE)) { | 
|  | subpage = subpage_init((addr & TARGET_PAGE_MASK), | 
|  | &p->phys_offset, orig_memory, | 
|  | p->region_offset); | 
|  | } else { | 
|  | subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK) | 
|  | >> IO_MEM_SHIFT]; | 
|  | } | 
|  | subpage_register(subpage, start_addr2, end_addr2, phys_offset, | 
|  | region_offset); | 
|  | p->region_offset = 0; | 
|  | } else { | 
|  | p->phys_offset = phys_offset; | 
|  | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || | 
|  | (phys_offset & IO_MEM_ROMD)) | 
|  | phys_offset += TARGET_PAGE_SIZE; | 
|  | } | 
|  | } else { | 
|  | p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1); | 
|  | p->phys_offset = phys_offset; | 
|  | p->region_offset = region_offset; | 
|  | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM || | 
|  | (phys_offset & IO_MEM_ROMD)) { | 
|  | phys_offset += TARGET_PAGE_SIZE; | 
|  | } else { | 
|  | target_phys_addr_t start_addr2, end_addr2; | 
|  | int need_subpage = 0; | 
|  |  | 
|  | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, | 
|  | end_addr2, need_subpage); | 
|  |  | 
|  | if (need_subpage) { | 
|  | subpage = subpage_init((addr & TARGET_PAGE_MASK), | 
|  | &p->phys_offset, IO_MEM_UNASSIGNED, | 
|  | addr & TARGET_PAGE_MASK); | 
|  | subpage_register(subpage, start_addr2, end_addr2, | 
|  | phys_offset, region_offset); | 
|  | p->region_offset = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | region_offset += TARGET_PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | /* since each CPU stores ram addresses in its TLB cache, we must | 
|  | reset the modified entries */ | 
|  | /* XXX: slow ! */ | 
|  | for(env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | tlb_flush(env, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* XXX: temporary until new memory mapping API */ | 
|  | ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr) | 
|  | { | 
|  | PhysPageDesc *p; | 
|  |  | 
|  | p = phys_page_find(addr >> TARGET_PAGE_BITS); | 
|  | if (!p) | 
|  | return IO_MEM_UNASSIGNED; | 
|  | return p->phys_offset; | 
|  | } | 
|  |  | 
|  | void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size) | 
|  | { | 
|  | if (kvm_enabled()) | 
|  | kvm_coalesce_mmio_region(addr, size); | 
|  | } | 
|  |  | 
|  | void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size) | 
|  | { | 
|  | if (kvm_enabled()) | 
|  | kvm_uncoalesce_mmio_region(addr, size); | 
|  | } | 
|  |  | 
|  | void qemu_flush_coalesced_mmio_buffer(void) | 
|  | { | 
|  | if (kvm_enabled()) | 
|  | kvm_flush_coalesced_mmio_buffer(); | 
|  | } | 
|  |  | 
|  | #if defined(__linux__) && !defined(TARGET_S390X) | 
|  |  | 
|  | #include <sys/vfs.h> | 
|  |  | 
|  | #define HUGETLBFS_MAGIC       0x958458f6 | 
|  |  | 
|  | static long gethugepagesize(const char *path) | 
|  | { | 
|  | struct statfs fs; | 
|  | int ret; | 
|  |  | 
|  | do { | 
|  | ret = statfs(path, &fs); | 
|  | } while (ret != 0 && errno == EINTR); | 
|  |  | 
|  | if (ret != 0) { | 
|  | perror(path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (fs.f_type != HUGETLBFS_MAGIC) | 
|  | fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path); | 
|  |  | 
|  | return fs.f_bsize; | 
|  | } | 
|  |  | 
|  | static void *file_ram_alloc(RAMBlock *block, | 
|  | ram_addr_t memory, | 
|  | const char *path) | 
|  | { | 
|  | char *filename; | 
|  | void *area; | 
|  | int fd; | 
|  | #ifdef MAP_POPULATE | 
|  | int flags; | 
|  | #endif | 
|  | unsigned long hpagesize; | 
|  |  | 
|  | hpagesize = gethugepagesize(path); | 
|  | if (!hpagesize) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (memory < hpagesize) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (kvm_enabled() && !kvm_has_sync_mmu()) { | 
|  | fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | fd = mkstemp(filename); | 
|  | if (fd < 0) { | 
|  | perror("unable to create backing store for hugepages"); | 
|  | free(filename); | 
|  | return NULL; | 
|  | } | 
|  | unlink(filename); | 
|  | free(filename); | 
|  |  | 
|  | memory = (memory+hpagesize-1) & ~(hpagesize-1); | 
|  |  | 
|  | /* | 
|  | * ftruncate is not supported by hugetlbfs in older | 
|  | * hosts, so don't bother bailing out on errors. | 
|  | * If anything goes wrong with it under other filesystems, | 
|  | * mmap will fail. | 
|  | */ | 
|  | if (ftruncate(fd, memory)) | 
|  | perror("ftruncate"); | 
|  |  | 
|  | #ifdef MAP_POPULATE | 
|  | /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case | 
|  | * MAP_PRIVATE is requested.  For mem_prealloc we mmap as MAP_SHARED | 
|  | * to sidestep this quirk. | 
|  | */ | 
|  | flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE; | 
|  | area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0); | 
|  | #else | 
|  | area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0); | 
|  | #endif | 
|  | if (area == MAP_FAILED) { | 
|  | perror("file_ram_alloc: can't mmap RAM pages"); | 
|  | close(fd); | 
|  | return (NULL); | 
|  | } | 
|  | block->fd = fd; | 
|  | return area; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static ram_addr_t find_ram_offset(ram_addr_t size) | 
|  | { | 
|  | RAMBlock *block, *next_block; | 
|  | ram_addr_t offset = 0, mingap = ULONG_MAX; | 
|  |  | 
|  | if (QLIST_EMPTY(&ram_list.blocks)) | 
|  | return 0; | 
|  |  | 
|  | QLIST_FOREACH(block, &ram_list.blocks, next) { | 
|  | ram_addr_t end, next = ULONG_MAX; | 
|  |  | 
|  | end = block->offset + block->length; | 
|  |  | 
|  | QLIST_FOREACH(next_block, &ram_list.blocks, next) { | 
|  | if (next_block->offset >= end) { | 
|  | next = MIN(next, next_block->offset); | 
|  | } | 
|  | } | 
|  | if (next - end >= size && next - end < mingap) { | 
|  | offset =  end; | 
|  | mingap = next - end; | 
|  | } | 
|  | } | 
|  | return offset; | 
|  | } | 
|  |  | 
|  | static ram_addr_t last_ram_offset(void) | 
|  | { | 
|  | RAMBlock *block; | 
|  | ram_addr_t last = 0; | 
|  |  | 
|  | QLIST_FOREACH(block, &ram_list.blocks, next) | 
|  | last = MAX(last, block->offset + block->length); | 
|  |  | 
|  | return last; | 
|  | } | 
|  |  | 
|  | ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name, | 
|  | ram_addr_t size, void *host) | 
|  | { | 
|  | RAMBlock *new_block, *block; | 
|  |  | 
|  | size = TARGET_PAGE_ALIGN(size); | 
|  | new_block = qemu_mallocz(sizeof(*new_block)); | 
|  |  | 
|  | if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) { | 
|  | char *id = dev->parent_bus->info->get_dev_path(dev); | 
|  | if (id) { | 
|  | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); | 
|  | qemu_free(id); | 
|  | } | 
|  | } | 
|  | pstrcat(new_block->idstr, sizeof(new_block->idstr), name); | 
|  |  | 
|  | QLIST_FOREACH(block, &ram_list.blocks, next) { | 
|  | if (!strcmp(block->idstr, new_block->idstr)) { | 
|  | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", | 
|  | new_block->idstr); | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (host) { | 
|  | new_block->host = host; | 
|  | } else { | 
|  | if (mem_path) { | 
|  | #if defined (__linux__) && !defined(TARGET_S390X) | 
|  | new_block->host = file_ram_alloc(new_block, size, mem_path); | 
|  | if (!new_block->host) { | 
|  | new_block->host = qemu_vmalloc(size); | 
|  | qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE); | 
|  | } | 
|  | #else | 
|  | fprintf(stderr, "-mem-path option unsupported\n"); | 
|  | exit(1); | 
|  | #endif | 
|  | } else { | 
|  | #if defined(TARGET_S390X) && defined(CONFIG_KVM) | 
|  | /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */ | 
|  | new_block->host = mmap((void*)0x1000000, size, | 
|  | PROT_EXEC|PROT_READ|PROT_WRITE, | 
|  | MAP_SHARED | MAP_ANONYMOUS, -1, 0); | 
|  | #else | 
|  | new_block->host = qemu_vmalloc(size); | 
|  | #endif | 
|  | qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE); | 
|  | } | 
|  | } | 
|  |  | 
|  | new_block->offset = find_ram_offset(size); | 
|  | new_block->length = size; | 
|  |  | 
|  | QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next); | 
|  |  | 
|  | ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty, | 
|  | last_ram_offset() >> TARGET_PAGE_BITS); | 
|  | memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS), | 
|  | 0xff, size >> TARGET_PAGE_BITS); | 
|  |  | 
|  | if (kvm_enabled()) | 
|  | kvm_setup_guest_memory(new_block->host, size); | 
|  |  | 
|  | return new_block->offset; | 
|  | } | 
|  |  | 
|  | ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size) | 
|  | { | 
|  | return qemu_ram_alloc_from_ptr(dev, name, size, NULL); | 
|  | } | 
|  |  | 
|  | void qemu_ram_free(ram_addr_t addr) | 
|  | { | 
|  | RAMBlock *block; | 
|  |  | 
|  | QLIST_FOREACH(block, &ram_list.blocks, next) { | 
|  | if (addr == block->offset) { | 
|  | QLIST_REMOVE(block, next); | 
|  | if (mem_path) { | 
|  | #if defined (__linux__) && !defined(TARGET_S390X) | 
|  | if (block->fd) { | 
|  | munmap(block->host, block->length); | 
|  | close(block->fd); | 
|  | } else { | 
|  | qemu_vfree(block->host); | 
|  | } | 
|  | #endif | 
|  | } else { | 
|  | #if defined(TARGET_S390X) && defined(CONFIG_KVM) | 
|  | munmap(block->host, block->length); | 
|  | #else | 
|  | qemu_vfree(block->host); | 
|  | #endif | 
|  | } | 
|  | qemu_free(block); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Return a host pointer to ram allocated with qemu_ram_alloc. | 
|  | With the exception of the softmmu code in this file, this should | 
|  | only be used for local memory (e.g. video ram) that the device owns, | 
|  | and knows it isn't going to access beyond the end of the block. | 
|  |  | 
|  | It should not be used for general purpose DMA. | 
|  | Use cpu_physical_memory_map/cpu_physical_memory_rw instead. | 
|  | */ | 
|  | void *qemu_get_ram_ptr(ram_addr_t addr) | 
|  | { | 
|  | RAMBlock *block; | 
|  |  | 
|  | QLIST_FOREACH(block, &ram_list.blocks, next) { | 
|  | if (addr - block->offset < block->length) { | 
|  | QLIST_REMOVE(block, next); | 
|  | QLIST_INSERT_HEAD(&ram_list.blocks, block, next); | 
|  | return block->host + (addr - block->offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); | 
|  | abort(); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr) | 
|  | { | 
|  | RAMBlock *block; | 
|  | uint8_t *host = ptr; | 
|  |  | 
|  | QLIST_FOREACH(block, &ram_list.blocks, next) { | 
|  | if (host - block->host < block->length) { | 
|  | *ram_addr = block->offset + (host - block->host); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Some of the softmmu routines need to translate from a host pointer | 
|  | (typically a TLB entry) back to a ram offset.  */ | 
|  | ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) | 
|  | { | 
|  | ram_addr_t ram_addr; | 
|  |  | 
|  | if (qemu_ram_addr_from_host(ptr, &ram_addr)) { | 
|  | fprintf(stderr, "Bad ram pointer %p\n", ptr); | 
|  | abort(); | 
|  | } | 
|  | return ram_addr; | 
|  | } | 
|  |  | 
|  | static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr) | 
|  | { | 
|  | #ifdef DEBUG_UNASSIGNED | 
|  | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | 
|  | #endif | 
|  | #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE) | 
|  | do_unassigned_access(addr, 0, 0, 0, 1); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr) | 
|  | { | 
|  | #ifdef DEBUG_UNASSIGNED | 
|  | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | 
|  | #endif | 
|  | #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE) | 
|  | do_unassigned_access(addr, 0, 0, 0, 2); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr) | 
|  | { | 
|  | #ifdef DEBUG_UNASSIGNED | 
|  | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); | 
|  | #endif | 
|  | #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE) | 
|  | do_unassigned_access(addr, 0, 0, 0, 4); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) | 
|  | { | 
|  | #ifdef DEBUG_UNASSIGNED | 
|  | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); | 
|  | #endif | 
|  | #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE) | 
|  | do_unassigned_access(addr, 1, 0, 0, 1); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val) | 
|  | { | 
|  | #ifdef DEBUG_UNASSIGNED | 
|  | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); | 
|  | #endif | 
|  | #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE) | 
|  | do_unassigned_access(addr, 1, 0, 0, 2); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) | 
|  | { | 
|  | #ifdef DEBUG_UNASSIGNED | 
|  | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val); | 
|  | #endif | 
|  | #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE) | 
|  | do_unassigned_access(addr, 1, 0, 0, 4); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static CPUReadMemoryFunc * const unassigned_mem_read[3] = { | 
|  | unassigned_mem_readb, | 
|  | unassigned_mem_readw, | 
|  | unassigned_mem_readl, | 
|  | }; | 
|  |  | 
|  | static CPUWriteMemoryFunc * const unassigned_mem_write[3] = { | 
|  | unassigned_mem_writeb, | 
|  | unassigned_mem_writew, | 
|  | unassigned_mem_writel, | 
|  | }; | 
|  |  | 
|  | static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr, | 
|  | uint32_t val) | 
|  | { | 
|  | int dirty_flags; | 
|  | dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr); | 
|  | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | tb_invalidate_phys_page_fast(ram_addr, 1); | 
|  | dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr); | 
|  | #endif | 
|  | } | 
|  | stb_p(qemu_get_ram_ptr(ram_addr), val); | 
|  | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); | 
|  | cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags); | 
|  | /* we remove the notdirty callback only if the code has been | 
|  | flushed */ | 
|  | if (dirty_flags == 0xff) | 
|  | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); | 
|  | } | 
|  |  | 
|  | static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr, | 
|  | uint32_t val) | 
|  | { | 
|  | int dirty_flags; | 
|  | dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr); | 
|  | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | tb_invalidate_phys_page_fast(ram_addr, 2); | 
|  | dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr); | 
|  | #endif | 
|  | } | 
|  | stw_p(qemu_get_ram_ptr(ram_addr), val); | 
|  | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); | 
|  | cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags); | 
|  | /* we remove the notdirty callback only if the code has been | 
|  | flushed */ | 
|  | if (dirty_flags == 0xff) | 
|  | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); | 
|  | } | 
|  |  | 
|  | static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr, | 
|  | uint32_t val) | 
|  | { | 
|  | int dirty_flags; | 
|  | dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr); | 
|  | if (!(dirty_flags & CODE_DIRTY_FLAG)) { | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  | tb_invalidate_phys_page_fast(ram_addr, 4); | 
|  | dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr); | 
|  | #endif | 
|  | } | 
|  | stl_p(qemu_get_ram_ptr(ram_addr), val); | 
|  | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); | 
|  | cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags); | 
|  | /* we remove the notdirty callback only if the code has been | 
|  | flushed */ | 
|  | if (dirty_flags == 0xff) | 
|  | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); | 
|  | } | 
|  |  | 
|  | static CPUReadMemoryFunc * const error_mem_read[3] = { | 
|  | NULL, /* never used */ | 
|  | NULL, /* never used */ | 
|  | NULL, /* never used */ | 
|  | }; | 
|  |  | 
|  | static CPUWriteMemoryFunc * const notdirty_mem_write[3] = { | 
|  | notdirty_mem_writeb, | 
|  | notdirty_mem_writew, | 
|  | notdirty_mem_writel, | 
|  | }; | 
|  |  | 
|  | /* Generate a debug exception if a watchpoint has been hit.  */ | 
|  | static void check_watchpoint(int offset, int len_mask, int flags) | 
|  | { | 
|  | CPUState *env = cpu_single_env; | 
|  | target_ulong pc, cs_base; | 
|  | TranslationBlock *tb; | 
|  | target_ulong vaddr; | 
|  | CPUWatchpoint *wp; | 
|  | int cpu_flags; | 
|  |  | 
|  | if (env->watchpoint_hit) { | 
|  | /* We re-entered the check after replacing the TB. Now raise | 
|  | * the debug interrupt so that is will trigger after the | 
|  | * current instruction. */ | 
|  | cpu_interrupt(env, CPU_INTERRUPT_DEBUG); | 
|  | return; | 
|  | } | 
|  | vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset; | 
|  | QTAILQ_FOREACH(wp, &env->watchpoints, entry) { | 
|  | if ((vaddr == (wp->vaddr & len_mask) || | 
|  | (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) { | 
|  | wp->flags |= BP_WATCHPOINT_HIT; | 
|  | if (!env->watchpoint_hit) { | 
|  | env->watchpoint_hit = wp; | 
|  | tb = tb_find_pc(env->mem_io_pc); | 
|  | if (!tb) { | 
|  | cpu_abort(env, "check_watchpoint: could not find TB for " | 
|  | "pc=%p", (void *)env->mem_io_pc); | 
|  | } | 
|  | cpu_restore_state(tb, env, env->mem_io_pc, NULL); | 
|  | tb_phys_invalidate(tb, -1); | 
|  | if (wp->flags & BP_STOP_BEFORE_ACCESS) { | 
|  | env->exception_index = EXCP_DEBUG; | 
|  | } else { | 
|  | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags); | 
|  | tb_gen_code(env, pc, cs_base, cpu_flags, 1); | 
|  | } | 
|  | cpu_resume_from_signal(env, NULL); | 
|  | } | 
|  | } else { | 
|  | wp->flags &= ~BP_WATCHPOINT_HIT; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Watchpoint access routines.  Watchpoints are inserted using TLB tricks, | 
|  | so these check for a hit then pass through to the normal out-of-line | 
|  | phys routines.  */ | 
|  | static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr) | 
|  | { | 
|  | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ); | 
|  | return ldub_phys(addr); | 
|  | } | 
|  |  | 
|  | static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr) | 
|  | { | 
|  | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ); | 
|  | return lduw_phys(addr); | 
|  | } | 
|  |  | 
|  | static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr) | 
|  | { | 
|  | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ); | 
|  | return ldl_phys(addr); | 
|  | } | 
|  |  | 
|  | static void watch_mem_writeb(void *opaque, target_phys_addr_t addr, | 
|  | uint32_t val) | 
|  | { | 
|  | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE); | 
|  | stb_phys(addr, val); | 
|  | } | 
|  |  | 
|  | static void watch_mem_writew(void *opaque, target_phys_addr_t addr, | 
|  | uint32_t val) | 
|  | { | 
|  | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE); | 
|  | stw_phys(addr, val); | 
|  | } | 
|  |  | 
|  | static void watch_mem_writel(void *opaque, target_phys_addr_t addr, | 
|  | uint32_t val) | 
|  | { | 
|  | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE); | 
|  | stl_phys(addr, val); | 
|  | } | 
|  |  | 
|  | static CPUReadMemoryFunc * const watch_mem_read[3] = { | 
|  | watch_mem_readb, | 
|  | watch_mem_readw, | 
|  | watch_mem_readl, | 
|  | }; | 
|  |  | 
|  | static CPUWriteMemoryFunc * const watch_mem_write[3] = { | 
|  | watch_mem_writeb, | 
|  | watch_mem_writew, | 
|  | watch_mem_writel, | 
|  | }; | 
|  |  | 
|  | static inline uint32_t subpage_readlen (subpage_t *mmio, | 
|  | target_phys_addr_t addr, | 
|  | unsigned int len) | 
|  | { | 
|  | unsigned int idx = SUBPAGE_IDX(addr); | 
|  | #if defined(DEBUG_SUBPAGE) | 
|  | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__, | 
|  | mmio, len, addr, idx); | 
|  | #endif | 
|  |  | 
|  | addr += mmio->region_offset[idx]; | 
|  | idx = mmio->sub_io_index[idx]; | 
|  | return io_mem_read[idx][len](io_mem_opaque[idx], addr); | 
|  | } | 
|  |  | 
|  | static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr, | 
|  | uint32_t value, unsigned int len) | 
|  | { | 
|  | unsigned int idx = SUBPAGE_IDX(addr); | 
|  | #if defined(DEBUG_SUBPAGE) | 
|  | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", | 
|  | __func__, mmio, len, addr, idx, value); | 
|  | #endif | 
|  |  | 
|  | addr += mmio->region_offset[idx]; | 
|  | idx = mmio->sub_io_index[idx]; | 
|  | io_mem_write[idx][len](io_mem_opaque[idx], addr, value); | 
|  | } | 
|  |  | 
|  | static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr) | 
|  | { | 
|  | return subpage_readlen(opaque, addr, 0); | 
|  | } | 
|  |  | 
|  | static void subpage_writeb (void *opaque, target_phys_addr_t addr, | 
|  | uint32_t value) | 
|  | { | 
|  | subpage_writelen(opaque, addr, value, 0); | 
|  | } | 
|  |  | 
|  | static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr) | 
|  | { | 
|  | return subpage_readlen(opaque, addr, 1); | 
|  | } | 
|  |  | 
|  | static void subpage_writew (void *opaque, target_phys_addr_t addr, | 
|  | uint32_t value) | 
|  | { | 
|  | subpage_writelen(opaque, addr, value, 1); | 
|  | } | 
|  |  | 
|  | static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr) | 
|  | { | 
|  | return subpage_readlen(opaque, addr, 2); | 
|  | } | 
|  |  | 
|  | static void subpage_writel (void *opaque, target_phys_addr_t addr, | 
|  | uint32_t value) | 
|  | { | 
|  | subpage_writelen(opaque, addr, value, 2); | 
|  | } | 
|  |  | 
|  | static CPUReadMemoryFunc * const subpage_read[] = { | 
|  | &subpage_readb, | 
|  | &subpage_readw, | 
|  | &subpage_readl, | 
|  | }; | 
|  |  | 
|  | static CPUWriteMemoryFunc * const subpage_write[] = { | 
|  | &subpage_writeb, | 
|  | &subpage_writew, | 
|  | &subpage_writel, | 
|  | }; | 
|  |  | 
|  | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, | 
|  | ram_addr_t memory, ram_addr_t region_offset) | 
|  | { | 
|  | int idx, eidx; | 
|  |  | 
|  | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) | 
|  | return -1; | 
|  | idx = SUBPAGE_IDX(start); | 
|  | eidx = SUBPAGE_IDX(end); | 
|  | #if defined(DEBUG_SUBPAGE) | 
|  | printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__, | 
|  | mmio, start, end, idx, eidx, memory); | 
|  | #endif | 
|  | if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM) | 
|  | memory = IO_MEM_UNASSIGNED; | 
|  | memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | 
|  | for (; idx <= eidx; idx++) { | 
|  | mmio->sub_io_index[idx] = memory; | 
|  | mmio->region_offset[idx] = region_offset; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys, | 
|  | ram_addr_t orig_memory, | 
|  | ram_addr_t region_offset) | 
|  | { | 
|  | subpage_t *mmio; | 
|  | int subpage_memory; | 
|  |  | 
|  | mmio = qemu_mallocz(sizeof(subpage_t)); | 
|  |  | 
|  | mmio->base = base; | 
|  | subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio); | 
|  | #if defined(DEBUG_SUBPAGE) | 
|  | printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__, | 
|  | mmio, base, TARGET_PAGE_SIZE, subpage_memory); | 
|  | #endif | 
|  | *phys = subpage_memory | IO_MEM_SUBPAGE; | 
|  | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset); | 
|  |  | 
|  | return mmio; | 
|  | } | 
|  |  | 
|  | static int get_free_io_mem_idx(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i<IO_MEM_NB_ENTRIES; i++) | 
|  | if (!io_mem_used[i]) { | 
|  | io_mem_used[i] = 1; | 
|  | return i; | 
|  | } | 
|  | fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* mem_read and mem_write are arrays of functions containing the | 
|  | function to access byte (index 0), word (index 1) and dword (index | 
|  | 2). Functions can be omitted with a NULL function pointer. | 
|  | If io_index is non zero, the corresponding io zone is | 
|  | modified. If it is zero, a new io zone is allocated. The return | 
|  | value can be used with cpu_register_physical_memory(). (-1) is | 
|  | returned if error. */ | 
|  | static int cpu_register_io_memory_fixed(int io_index, | 
|  | CPUReadMemoryFunc * const *mem_read, | 
|  | CPUWriteMemoryFunc * const *mem_write, | 
|  | void *opaque) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (io_index <= 0) { | 
|  | io_index = get_free_io_mem_idx(); | 
|  | if (io_index == -1) | 
|  | return io_index; | 
|  | } else { | 
|  | io_index >>= IO_MEM_SHIFT; | 
|  | if (io_index >= IO_MEM_NB_ENTRIES) | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 3; ++i) { | 
|  | io_mem_read[io_index][i] | 
|  | = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]); | 
|  | } | 
|  | for (i = 0; i < 3; ++i) { | 
|  | io_mem_write[io_index][i] | 
|  | = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]); | 
|  | } | 
|  | io_mem_opaque[io_index] = opaque; | 
|  |  | 
|  | return (io_index << IO_MEM_SHIFT); | 
|  | } | 
|  |  | 
|  | int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read, | 
|  | CPUWriteMemoryFunc * const *mem_write, | 
|  | void *opaque) | 
|  | { | 
|  | return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque); | 
|  | } | 
|  |  | 
|  | void cpu_unregister_io_memory(int io_table_address) | 
|  | { | 
|  | int i; | 
|  | int io_index = io_table_address >> IO_MEM_SHIFT; | 
|  |  | 
|  | for (i=0;i < 3; i++) { | 
|  | io_mem_read[io_index][i] = unassigned_mem_read[i]; | 
|  | io_mem_write[io_index][i] = unassigned_mem_write[i]; | 
|  | } | 
|  | io_mem_opaque[io_index] = NULL; | 
|  | io_mem_used[io_index] = 0; | 
|  | } | 
|  |  | 
|  | static void io_mem_init(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL); | 
|  | cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL); | 
|  | cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL); | 
|  | for (i=0; i<5; i++) | 
|  | io_mem_used[i] = 1; | 
|  |  | 
|  | io_mem_watch = cpu_register_io_memory(watch_mem_read, | 
|  | watch_mem_write, NULL); | 
|  | } | 
|  |  | 
|  | #endif /* !defined(CONFIG_USER_ONLY) */ | 
|  |  | 
|  | /* physical memory access (slow version, mainly for debug) */ | 
|  | #if defined(CONFIG_USER_ONLY) | 
|  | int cpu_memory_rw_debug(CPUState *env, target_ulong addr, | 
|  | uint8_t *buf, int len, int is_write) | 
|  | { | 
|  | int l, flags; | 
|  | target_ulong page; | 
|  | void * p; | 
|  |  | 
|  | while (len > 0) { | 
|  | page = addr & TARGET_PAGE_MASK; | 
|  | l = (page + TARGET_PAGE_SIZE) - addr; | 
|  | if (l > len) | 
|  | l = len; | 
|  | flags = page_get_flags(page); | 
|  | if (!(flags & PAGE_VALID)) | 
|  | return -1; | 
|  | if (is_write) { | 
|  | if (!(flags & PAGE_WRITE)) | 
|  | return -1; | 
|  | /* XXX: this code should not depend on lock_user */ | 
|  | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) | 
|  | return -1; | 
|  | memcpy(p, buf, l); | 
|  | unlock_user(p, addr, l); | 
|  | } else { | 
|  | if (!(flags & PAGE_READ)) | 
|  | return -1; | 
|  | /* XXX: this code should not depend on lock_user */ | 
|  | if (!(p = lock_user(VERIFY_READ, addr, l, 1))) | 
|  | return -1; | 
|  | memcpy(buf, p, l); | 
|  | unlock_user(p, addr, 0); | 
|  | } | 
|  | len -= l; | 
|  | buf += l; | 
|  | addr += l; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #else | 
|  | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, | 
|  | int len, int is_write) | 
|  | { | 
|  | int l, io_index; | 
|  | uint8_t *ptr; | 
|  | uint32_t val; | 
|  | target_phys_addr_t page; | 
|  | unsigned long pd; | 
|  | PhysPageDesc *p; | 
|  |  | 
|  | while (len > 0) { | 
|  | page = addr & TARGET_PAGE_MASK; | 
|  | l = (page + TARGET_PAGE_SIZE) - addr; | 
|  | if (l > len) | 
|  | l = len; | 
|  | p = phys_page_find(page >> TARGET_PAGE_BITS); | 
|  | if (!p) { | 
|  | pd = IO_MEM_UNASSIGNED; | 
|  | } else { | 
|  | pd = p->phys_offset; | 
|  | } | 
|  |  | 
|  | if (is_write) { | 
|  | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { | 
|  | target_phys_addr_t addr1 = addr; | 
|  | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | 
|  | if (p) | 
|  | addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | 
|  | /* XXX: could force cpu_single_env to NULL to avoid | 
|  | potential bugs */ | 
|  | if (l >= 4 && ((addr1 & 3) == 0)) { | 
|  | /* 32 bit write access */ | 
|  | val = ldl_p(buf); | 
|  | io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val); | 
|  | l = 4; | 
|  | } else if (l >= 2 && ((addr1 & 1) == 0)) { | 
|  | /* 16 bit write access */ | 
|  | val = lduw_p(buf); | 
|  | io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val); | 
|  | l = 2; | 
|  | } else { | 
|  | /* 8 bit write access */ | 
|  | val = ldub_p(buf); | 
|  | io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val); | 
|  | l = 1; | 
|  | } | 
|  | } else { | 
|  | unsigned long addr1; | 
|  | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | 
|  | /* RAM case */ | 
|  | ptr = qemu_get_ram_ptr(addr1); | 
|  | memcpy(ptr, buf, l); | 
|  | if (!cpu_physical_memory_is_dirty(addr1)) { | 
|  | /* invalidate code */ | 
|  | tb_invalidate_phys_page_range(addr1, addr1 + l, 0); | 
|  | /* set dirty bit */ | 
|  | cpu_physical_memory_set_dirty_flags( | 
|  | addr1, (0xff & ~CODE_DIRTY_FLAG)); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && | 
|  | !(pd & IO_MEM_ROMD)) { | 
|  | target_phys_addr_t addr1 = addr; | 
|  | /* I/O case */ | 
|  | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | 
|  | if (p) | 
|  | addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | 
|  | if (l >= 4 && ((addr1 & 3) == 0)) { | 
|  | /* 32 bit read access */ | 
|  | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1); | 
|  | stl_p(buf, val); | 
|  | l = 4; | 
|  | } else if (l >= 2 && ((addr1 & 1) == 0)) { | 
|  | /* 16 bit read access */ | 
|  | val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1); | 
|  | stw_p(buf, val); | 
|  | l = 2; | 
|  | } else { | 
|  | /* 8 bit read access */ | 
|  | val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1); | 
|  | stb_p(buf, val); | 
|  | l = 1; | 
|  | } | 
|  | } else { | 
|  | /* RAM case */ | 
|  | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + | 
|  | (addr & ~TARGET_PAGE_MASK); | 
|  | memcpy(buf, ptr, l); | 
|  | } | 
|  | } | 
|  | len -= l; | 
|  | buf += l; | 
|  | addr += l; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* used for ROM loading : can write in RAM and ROM */ | 
|  | void cpu_physical_memory_write_rom(target_phys_addr_t addr, | 
|  | const uint8_t *buf, int len) | 
|  | { | 
|  | int l; | 
|  | uint8_t *ptr; | 
|  | target_phys_addr_t page; | 
|  | unsigned long pd; | 
|  | PhysPageDesc *p; | 
|  |  | 
|  | while (len > 0) { | 
|  | page = addr & TARGET_PAGE_MASK; | 
|  | l = (page + TARGET_PAGE_SIZE) - addr; | 
|  | if (l > len) | 
|  | l = len; | 
|  | p = phys_page_find(page >> TARGET_PAGE_BITS); | 
|  | if (!p) { | 
|  | pd = IO_MEM_UNASSIGNED; | 
|  | } else { | 
|  | pd = p->phys_offset; | 
|  | } | 
|  |  | 
|  | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM && | 
|  | (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM && | 
|  | !(pd & IO_MEM_ROMD)) { | 
|  | /* do nothing */ | 
|  | } else { | 
|  | unsigned long addr1; | 
|  | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | 
|  | /* ROM/RAM case */ | 
|  | ptr = qemu_get_ram_ptr(addr1); | 
|  | memcpy(ptr, buf, l); | 
|  | } | 
|  | len -= l; | 
|  | buf += l; | 
|  | addr += l; | 
|  | } | 
|  | } | 
|  |  | 
|  | typedef struct { | 
|  | void *buffer; | 
|  | target_phys_addr_t addr; | 
|  | target_phys_addr_t len; | 
|  | } BounceBuffer; | 
|  |  | 
|  | static BounceBuffer bounce; | 
|  |  | 
|  | typedef struct MapClient { | 
|  | void *opaque; | 
|  | void (*callback)(void *opaque); | 
|  | QLIST_ENTRY(MapClient) link; | 
|  | } MapClient; | 
|  |  | 
|  | static QLIST_HEAD(map_client_list, MapClient) map_client_list | 
|  | = QLIST_HEAD_INITIALIZER(map_client_list); | 
|  |  | 
|  | void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque)) | 
|  | { | 
|  | MapClient *client = qemu_malloc(sizeof(*client)); | 
|  |  | 
|  | client->opaque = opaque; | 
|  | client->callback = callback; | 
|  | QLIST_INSERT_HEAD(&map_client_list, client, link); | 
|  | return client; | 
|  | } | 
|  |  | 
|  | void cpu_unregister_map_client(void *_client) | 
|  | { | 
|  | MapClient *client = (MapClient *)_client; | 
|  |  | 
|  | QLIST_REMOVE(client, link); | 
|  | qemu_free(client); | 
|  | } | 
|  |  | 
|  | static void cpu_notify_map_clients(void) | 
|  | { | 
|  | MapClient *client; | 
|  |  | 
|  | while (!QLIST_EMPTY(&map_client_list)) { | 
|  | client = QLIST_FIRST(&map_client_list); | 
|  | client->callback(client->opaque); | 
|  | cpu_unregister_map_client(client); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Map a physical memory region into a host virtual address. | 
|  | * May map a subset of the requested range, given by and returned in *plen. | 
|  | * May return NULL if resources needed to perform the mapping are exhausted. | 
|  | * Use only for reads OR writes - not for read-modify-write operations. | 
|  | * Use cpu_register_map_client() to know when retrying the map operation is | 
|  | * likely to succeed. | 
|  | */ | 
|  | void *cpu_physical_memory_map(target_phys_addr_t addr, | 
|  | target_phys_addr_t *plen, | 
|  | int is_write) | 
|  | { | 
|  | target_phys_addr_t len = *plen; | 
|  | target_phys_addr_t done = 0; | 
|  | int l; | 
|  | uint8_t *ret = NULL; | 
|  | uint8_t *ptr; | 
|  | target_phys_addr_t page; | 
|  | unsigned long pd; | 
|  | PhysPageDesc *p; | 
|  | unsigned long addr1; | 
|  |  | 
|  | while (len > 0) { | 
|  | page = addr & TARGET_PAGE_MASK; | 
|  | l = (page + TARGET_PAGE_SIZE) - addr; | 
|  | if (l > len) | 
|  | l = len; | 
|  | p = phys_page_find(page >> TARGET_PAGE_BITS); | 
|  | if (!p) { | 
|  | pd = IO_MEM_UNASSIGNED; | 
|  | } else { | 
|  | pd = p->phys_offset; | 
|  | } | 
|  |  | 
|  | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { | 
|  | if (done || bounce.buffer) { | 
|  | break; | 
|  | } | 
|  | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE); | 
|  | bounce.addr = addr; | 
|  | bounce.len = l; | 
|  | if (!is_write) { | 
|  | cpu_physical_memory_rw(addr, bounce.buffer, l, 0); | 
|  | } | 
|  | ptr = bounce.buffer; | 
|  | } else { | 
|  | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | 
|  | ptr = qemu_get_ram_ptr(addr1); | 
|  | } | 
|  | if (!done) { | 
|  | ret = ptr; | 
|  | } else if (ret + done != ptr) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | len -= l; | 
|  | addr += l; | 
|  | done += l; | 
|  | } | 
|  | *plen = done; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Unmaps a memory region previously mapped by cpu_physical_memory_map(). | 
|  | * Will also mark the memory as dirty if is_write == 1.  access_len gives | 
|  | * the amount of memory that was actually read or written by the caller. | 
|  | */ | 
|  | void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len, | 
|  | int is_write, target_phys_addr_t access_len) | 
|  | { | 
|  | if (buffer != bounce.buffer) { | 
|  | if (is_write) { | 
|  | ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer); | 
|  | while (access_len) { | 
|  | unsigned l; | 
|  | l = TARGET_PAGE_SIZE; | 
|  | if (l > access_len) | 
|  | l = access_len; | 
|  | if (!cpu_physical_memory_is_dirty(addr1)) { | 
|  | /* invalidate code */ | 
|  | tb_invalidate_phys_page_range(addr1, addr1 + l, 0); | 
|  | /* set dirty bit */ | 
|  | cpu_physical_memory_set_dirty_flags( | 
|  | addr1, (0xff & ~CODE_DIRTY_FLAG)); | 
|  | } | 
|  | addr1 += l; | 
|  | access_len -= l; | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  | if (is_write) { | 
|  | cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len); | 
|  | } | 
|  | qemu_vfree(bounce.buffer); | 
|  | bounce.buffer = NULL; | 
|  | cpu_notify_map_clients(); | 
|  | } | 
|  |  | 
|  | /* warning: addr must be aligned */ | 
|  | uint32_t ldl_phys(target_phys_addr_t addr) | 
|  | { | 
|  | int io_index; | 
|  | uint8_t *ptr; | 
|  | uint32_t val; | 
|  | unsigned long pd; | 
|  | PhysPageDesc *p; | 
|  |  | 
|  | p = phys_page_find(addr >> TARGET_PAGE_BITS); | 
|  | if (!p) { | 
|  | pd = IO_MEM_UNASSIGNED; | 
|  | } else { | 
|  | pd = p->phys_offset; | 
|  | } | 
|  |  | 
|  | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && | 
|  | !(pd & IO_MEM_ROMD)) { | 
|  | /* I/O case */ | 
|  | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | 
|  | if (p) | 
|  | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | 
|  | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); | 
|  | } else { | 
|  | /* RAM case */ | 
|  | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + | 
|  | (addr & ~TARGET_PAGE_MASK); | 
|  | val = ldl_p(ptr); | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* warning: addr must be aligned */ | 
|  | uint64_t ldq_phys(target_phys_addr_t addr) | 
|  | { | 
|  | int io_index; | 
|  | uint8_t *ptr; | 
|  | uint64_t val; | 
|  | unsigned long pd; | 
|  | PhysPageDesc *p; | 
|  |  | 
|  | p = phys_page_find(addr >> TARGET_PAGE_BITS); | 
|  | if (!p) { | 
|  | pd = IO_MEM_UNASSIGNED; | 
|  | } else { | 
|  | pd = p->phys_offset; | 
|  | } | 
|  |  | 
|  | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && | 
|  | !(pd & IO_MEM_ROMD)) { | 
|  | /* I/O case */ | 
|  | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | 
|  | if (p) | 
|  | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | 
|  | #ifdef TARGET_WORDS_BIGENDIAN | 
|  | val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32; | 
|  | val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4); | 
|  | #else | 
|  | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr); | 
|  | val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32; | 
|  | #endif | 
|  | } else { | 
|  | /* RAM case */ | 
|  | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + | 
|  | (addr & ~TARGET_PAGE_MASK); | 
|  | val = ldq_p(ptr); | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* XXX: optimize */ | 
|  | uint32_t ldub_phys(target_phys_addr_t addr) | 
|  | { | 
|  | uint8_t val; | 
|  | cpu_physical_memory_read(addr, &val, 1); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* warning: addr must be aligned */ | 
|  | uint32_t lduw_phys(target_phys_addr_t addr) | 
|  | { | 
|  | int io_index; | 
|  | uint8_t *ptr; | 
|  | uint64_t val; | 
|  | unsigned long pd; | 
|  | PhysPageDesc *p; | 
|  |  | 
|  | p = phys_page_find(addr >> TARGET_PAGE_BITS); | 
|  | if (!p) { | 
|  | pd = IO_MEM_UNASSIGNED; | 
|  | } else { | 
|  | pd = p->phys_offset; | 
|  | } | 
|  |  | 
|  | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && | 
|  | !(pd & IO_MEM_ROMD)) { | 
|  | /* I/O case */ | 
|  | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | 
|  | if (p) | 
|  | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | 
|  | val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr); | 
|  | } else { | 
|  | /* RAM case */ | 
|  | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + | 
|  | (addr & ~TARGET_PAGE_MASK); | 
|  | val = lduw_p(ptr); | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* warning: addr must be aligned. The ram page is not masked as dirty | 
|  | and the code inside is not invalidated. It is useful if the dirty | 
|  | bits are used to track modified PTEs */ | 
|  | void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val) | 
|  | { | 
|  | int io_index; | 
|  | uint8_t *ptr; | 
|  | unsigned long pd; | 
|  | PhysPageDesc *p; | 
|  |  | 
|  | p = phys_page_find(addr >> TARGET_PAGE_BITS); | 
|  | if (!p) { | 
|  | pd = IO_MEM_UNASSIGNED; | 
|  | } else { | 
|  | pd = p->phys_offset; | 
|  | } | 
|  |  | 
|  | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { | 
|  | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | 
|  | if (p) | 
|  | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | 
|  | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | 
|  | } else { | 
|  | unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | 
|  | ptr = qemu_get_ram_ptr(addr1); | 
|  | stl_p(ptr, val); | 
|  |  | 
|  | if (unlikely(in_migration)) { | 
|  | if (!cpu_physical_memory_is_dirty(addr1)) { | 
|  | /* invalidate code */ | 
|  | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | 
|  | /* set dirty bit */ | 
|  | cpu_physical_memory_set_dirty_flags( | 
|  | addr1, (0xff & ~CODE_DIRTY_FLAG)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val) | 
|  | { | 
|  | int io_index; | 
|  | uint8_t *ptr; | 
|  | unsigned long pd; | 
|  | PhysPageDesc *p; | 
|  |  | 
|  | p = phys_page_find(addr >> TARGET_PAGE_BITS); | 
|  | if (!p) { | 
|  | pd = IO_MEM_UNASSIGNED; | 
|  | } else { | 
|  | pd = p->phys_offset; | 
|  | } | 
|  |  | 
|  | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { | 
|  | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | 
|  | if (p) | 
|  | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | 
|  | #ifdef TARGET_WORDS_BIGENDIAN | 
|  | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32); | 
|  | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val); | 
|  | #else | 
|  | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | 
|  | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32); | 
|  | #endif | 
|  | } else { | 
|  | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) + | 
|  | (addr & ~TARGET_PAGE_MASK); | 
|  | stq_p(ptr, val); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* warning: addr must be aligned */ | 
|  | void stl_phys(target_phys_addr_t addr, uint32_t val) | 
|  | { | 
|  | int io_index; | 
|  | uint8_t *ptr; | 
|  | unsigned long pd; | 
|  | PhysPageDesc *p; | 
|  |  | 
|  | p = phys_page_find(addr >> TARGET_PAGE_BITS); | 
|  | if (!p) { | 
|  | pd = IO_MEM_UNASSIGNED; | 
|  | } else { | 
|  | pd = p->phys_offset; | 
|  | } | 
|  |  | 
|  | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { | 
|  | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | 
|  | if (p) | 
|  | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | 
|  | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val); | 
|  | } else { | 
|  | unsigned long addr1; | 
|  | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | 
|  | /* RAM case */ | 
|  | ptr = qemu_get_ram_ptr(addr1); | 
|  | stl_p(ptr, val); | 
|  | if (!cpu_physical_memory_is_dirty(addr1)) { | 
|  | /* invalidate code */ | 
|  | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0); | 
|  | /* set dirty bit */ | 
|  | cpu_physical_memory_set_dirty_flags(addr1, | 
|  | (0xff & ~CODE_DIRTY_FLAG)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* XXX: optimize */ | 
|  | void stb_phys(target_phys_addr_t addr, uint32_t val) | 
|  | { | 
|  | uint8_t v = val; | 
|  | cpu_physical_memory_write(addr, &v, 1); | 
|  | } | 
|  |  | 
|  | /* warning: addr must be aligned */ | 
|  | void stw_phys(target_phys_addr_t addr, uint32_t val) | 
|  | { | 
|  | int io_index; | 
|  | uint8_t *ptr; | 
|  | unsigned long pd; | 
|  | PhysPageDesc *p; | 
|  |  | 
|  | p = phys_page_find(addr >> TARGET_PAGE_BITS); | 
|  | if (!p) { | 
|  | pd = IO_MEM_UNASSIGNED; | 
|  | } else { | 
|  | pd = p->phys_offset; | 
|  | } | 
|  |  | 
|  | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { | 
|  | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1); | 
|  | if (p) | 
|  | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset; | 
|  | io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val); | 
|  | } else { | 
|  | unsigned long addr1; | 
|  | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK); | 
|  | /* RAM case */ | 
|  | ptr = qemu_get_ram_ptr(addr1); | 
|  | stw_p(ptr, val); | 
|  | if (!cpu_physical_memory_is_dirty(addr1)) { | 
|  | /* invalidate code */ | 
|  | tb_invalidate_phys_page_range(addr1, addr1 + 2, 0); | 
|  | /* set dirty bit */ | 
|  | cpu_physical_memory_set_dirty_flags(addr1, | 
|  | (0xff & ~CODE_DIRTY_FLAG)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* XXX: optimize */ | 
|  | void stq_phys(target_phys_addr_t addr, uint64_t val) | 
|  | { | 
|  | val = tswap64(val); | 
|  | cpu_physical_memory_write(addr, (const uint8_t *)&val, 8); | 
|  | } | 
|  |  | 
|  | /* virtual memory access for debug (includes writing to ROM) */ | 
|  | int cpu_memory_rw_debug(CPUState *env, target_ulong addr, | 
|  | uint8_t *buf, int len, int is_write) | 
|  | { | 
|  | int l; | 
|  | target_phys_addr_t phys_addr; | 
|  | target_ulong page; | 
|  |  | 
|  | while (len > 0) { | 
|  | page = addr & TARGET_PAGE_MASK; | 
|  | phys_addr = cpu_get_phys_page_debug(env, page); | 
|  | /* if no physical page mapped, return an error */ | 
|  | if (phys_addr == -1) | 
|  | return -1; | 
|  | l = (page + TARGET_PAGE_SIZE) - addr; | 
|  | if (l > len) | 
|  | l = len; | 
|  | phys_addr += (addr & ~TARGET_PAGE_MASK); | 
|  | if (is_write) | 
|  | cpu_physical_memory_write_rom(phys_addr, buf, l); | 
|  | else | 
|  | cpu_physical_memory_rw(phys_addr, buf, l, is_write); | 
|  | len -= l; | 
|  | buf += l; | 
|  | addr += l; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* in deterministic execution mode, instructions doing device I/Os | 
|  | must be at the end of the TB */ | 
|  | void cpu_io_recompile(CPUState *env, void *retaddr) | 
|  | { | 
|  | TranslationBlock *tb; | 
|  | uint32_t n, cflags; | 
|  | target_ulong pc, cs_base; | 
|  | uint64_t flags; | 
|  |  | 
|  | tb = tb_find_pc((unsigned long)retaddr); | 
|  | if (!tb) { | 
|  | cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", | 
|  | retaddr); | 
|  | } | 
|  | n = env->icount_decr.u16.low + tb->icount; | 
|  | cpu_restore_state(tb, env, (unsigned long)retaddr, NULL); | 
|  | /* Calculate how many instructions had been executed before the fault | 
|  | occurred.  */ | 
|  | n = n - env->icount_decr.u16.low; | 
|  | /* Generate a new TB ending on the I/O insn.  */ | 
|  | n++; | 
|  | /* On MIPS and SH, delay slot instructions can only be restarted if | 
|  | they were already the first instruction in the TB.  If this is not | 
|  | the first instruction in a TB then re-execute the preceding | 
|  | branch.  */ | 
|  | #if defined(TARGET_MIPS) | 
|  | if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) { | 
|  | env->active_tc.PC -= 4; | 
|  | env->icount_decr.u16.low++; | 
|  | env->hflags &= ~MIPS_HFLAG_BMASK; | 
|  | } | 
|  | #elif defined(TARGET_SH4) | 
|  | if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 | 
|  | && n > 1) { | 
|  | env->pc -= 2; | 
|  | env->icount_decr.u16.low++; | 
|  | env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); | 
|  | } | 
|  | #endif | 
|  | /* This should never happen.  */ | 
|  | if (n > CF_COUNT_MASK) | 
|  | cpu_abort(env, "TB too big during recompile"); | 
|  |  | 
|  | cflags = n | CF_LAST_IO; | 
|  | pc = tb->pc; | 
|  | cs_base = tb->cs_base; | 
|  | flags = tb->flags; | 
|  | tb_phys_invalidate(tb, -1); | 
|  | /* FIXME: In theory this could raise an exception.  In practice | 
|  | we have already translated the block once so it's probably ok.  */ | 
|  | tb_gen_code(env, pc, cs_base, flags, cflags); | 
|  | /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not | 
|  | the first in the TB) then we end up generating a whole new TB and | 
|  | repeating the fault, which is horribly inefficient. | 
|  | Better would be to execute just this insn uncached, or generate a | 
|  | second new TB.  */ | 
|  | cpu_resume_from_signal(env, NULL); | 
|  | } | 
|  |  | 
|  | #if !defined(CONFIG_USER_ONLY) | 
|  |  | 
|  | void dump_exec_info(FILE *f, | 
|  | int (*cpu_fprintf)(FILE *f, const char *fmt, ...)) | 
|  | { | 
|  | int i, target_code_size, max_target_code_size; | 
|  | int direct_jmp_count, direct_jmp2_count, cross_page; | 
|  | TranslationBlock *tb; | 
|  |  | 
|  | target_code_size = 0; | 
|  | max_target_code_size = 0; | 
|  | cross_page = 0; | 
|  | direct_jmp_count = 0; | 
|  | direct_jmp2_count = 0; | 
|  | for(i = 0; i < nb_tbs; i++) { | 
|  | tb = &tbs[i]; | 
|  | target_code_size += tb->size; | 
|  | if (tb->size > max_target_code_size) | 
|  | max_target_code_size = tb->size; | 
|  | if (tb->page_addr[1] != -1) | 
|  | cross_page++; | 
|  | if (tb->tb_next_offset[0] != 0xffff) { | 
|  | direct_jmp_count++; | 
|  | if (tb->tb_next_offset[1] != 0xffff) { | 
|  | direct_jmp2_count++; | 
|  | } | 
|  | } | 
|  | } | 
|  | /* XXX: avoid using doubles ? */ | 
|  | cpu_fprintf(f, "Translation buffer state:\n"); | 
|  | cpu_fprintf(f, "gen code size       %ld/%ld\n", | 
|  | code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size); | 
|  | cpu_fprintf(f, "TB count            %d/%d\n", | 
|  | nb_tbs, code_gen_max_blocks); | 
|  | cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n", | 
|  | nb_tbs ? target_code_size / nb_tbs : 0, | 
|  | max_target_code_size); | 
|  | cpu_fprintf(f, "TB avg host size    %d bytes (expansion ratio: %0.1f)\n", | 
|  | nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0, | 
|  | target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0); | 
|  | cpu_fprintf(f, "cross page TB count %d (%d%%)\n", | 
|  | cross_page, | 
|  | nb_tbs ? (cross_page * 100) / nb_tbs : 0); | 
|  | cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n", | 
|  | direct_jmp_count, | 
|  | nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0, | 
|  | direct_jmp2_count, | 
|  | nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0); | 
|  | cpu_fprintf(f, "\nStatistics:\n"); | 
|  | cpu_fprintf(f, "TB flush count      %d\n", tb_flush_count); | 
|  | cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count); | 
|  | cpu_fprintf(f, "TLB flush count     %d\n", tlb_flush_count); | 
|  | tcg_dump_info(f, cpu_fprintf); | 
|  | } | 
|  |  | 
|  | #define MMUSUFFIX _cmmu | 
|  | #define GETPC() NULL | 
|  | #define env cpu_single_env | 
|  | #define SOFTMMU_CODE_ACCESS | 
|  |  | 
|  | #define SHIFT 0 | 
|  | #include "softmmu_template.h" | 
|  |  | 
|  | #define SHIFT 1 | 
|  | #include "softmmu_template.h" | 
|  |  | 
|  | #define SHIFT 2 | 
|  | #include "softmmu_template.h" | 
|  |  | 
|  | #define SHIFT 3 | 
|  | #include "softmmu_template.h" | 
|  |  | 
|  | #undef env | 
|  |  | 
|  | #endif |