|  | /* | 
|  | * QEMU KVM support | 
|  | * | 
|  | * Copyright IBM, Corp. 2008 | 
|  | *           Red Hat, Inc. 2008 | 
|  | * | 
|  | * Authors: | 
|  | *  Anthony Liguori   <aliguori@us.ibm.com> | 
|  | *  Glauber Costa     <gcosta@redhat.com> | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2 or later. | 
|  | * See the COPYING file in the top-level directory. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <sys/types.h> | 
|  | #include <sys/ioctl.h> | 
|  | #include <sys/mman.h> | 
|  | #include <stdarg.h> | 
|  |  | 
|  | #include <linux/kvm.h> | 
|  |  | 
|  | #include "qemu-common.h" | 
|  | #include "qemu/atomic.h" | 
|  | #include "qemu/option.h" | 
|  | #include "qemu/config-file.h" | 
|  | #include "sysemu/sysemu.h" | 
|  | #include "hw/hw.h" | 
|  | #include "hw/pci/msi.h" | 
|  | #include "exec/gdbstub.h" | 
|  | #include "sysemu/kvm.h" | 
|  | #include "qemu/bswap.h" | 
|  | #include "exec/memory.h" | 
|  | #include "exec/address-spaces.h" | 
|  | #include "qemu/event_notifier.h" | 
|  |  | 
|  | /* This check must be after config-host.h is included */ | 
|  | #ifdef CONFIG_EVENTFD | 
|  | #include <sys/eventfd.h> | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_VALGRIND_H | 
|  | #include <valgrind/memcheck.h> | 
|  | #endif | 
|  |  | 
|  | /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */ | 
|  | #define PAGE_SIZE TARGET_PAGE_SIZE | 
|  |  | 
|  | //#define DEBUG_KVM | 
|  |  | 
|  | #ifdef DEBUG_KVM | 
|  | #define DPRINTF(fmt, ...) \ | 
|  | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) | 
|  | #else | 
|  | #define DPRINTF(fmt, ...) \ | 
|  | do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #define KVM_MSI_HASHTAB_SIZE    256 | 
|  |  | 
|  | typedef struct KVMSlot | 
|  | { | 
|  | hwaddr start_addr; | 
|  | ram_addr_t memory_size; | 
|  | void *ram; | 
|  | int slot; | 
|  | int flags; | 
|  | } KVMSlot; | 
|  |  | 
|  | typedef struct kvm_dirty_log KVMDirtyLog; | 
|  |  | 
|  | struct KVMState | 
|  | { | 
|  | KVMSlot slots[32]; | 
|  | int fd; | 
|  | int vmfd; | 
|  | int coalesced_mmio; | 
|  | struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; | 
|  | bool coalesced_flush_in_progress; | 
|  | int broken_set_mem_region; | 
|  | int migration_log; | 
|  | int vcpu_events; | 
|  | int robust_singlestep; | 
|  | int debugregs; | 
|  | #ifdef KVM_CAP_SET_GUEST_DEBUG | 
|  | struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | 
|  | #endif | 
|  | int pit_state2; | 
|  | int xsave, xcrs; | 
|  | int many_ioeventfds; | 
|  | int intx_set_mask; | 
|  | /* The man page (and posix) say ioctl numbers are signed int, but | 
|  | * they're not.  Linux, glibc and *BSD all treat ioctl numbers as | 
|  | * unsigned, and treating them as signed here can break things */ | 
|  | unsigned irq_set_ioctl; | 
|  | #ifdef KVM_CAP_IRQ_ROUTING | 
|  | struct kvm_irq_routing *irq_routes; | 
|  | int nr_allocated_irq_routes; | 
|  | uint32_t *used_gsi_bitmap; | 
|  | unsigned int gsi_count; | 
|  | QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; | 
|  | bool direct_msi; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | KVMState *kvm_state; | 
|  | bool kvm_kernel_irqchip; | 
|  | bool kvm_async_interrupts_allowed; | 
|  | bool kvm_irqfds_allowed; | 
|  | bool kvm_msi_via_irqfd_allowed; | 
|  | bool kvm_gsi_routing_allowed; | 
|  |  | 
|  | static const KVMCapabilityInfo kvm_required_capabilites[] = { | 
|  | KVM_CAP_INFO(USER_MEMORY), | 
|  | KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), | 
|  | KVM_CAP_LAST_INFO | 
|  | }; | 
|  |  | 
|  | static KVMSlot *kvm_alloc_slot(KVMState *s) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | 
|  | if (s->slots[i].memory_size == 0) { | 
|  | return &s->slots[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | fprintf(stderr, "%s: no free slot available\n", __func__); | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | 
|  | hwaddr start_addr, | 
|  | hwaddr end_addr) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | 
|  | KVMSlot *mem = &s->slots[i]; | 
|  |  | 
|  | if (start_addr == mem->start_addr && | 
|  | end_addr == mem->start_addr + mem->memory_size) { | 
|  | return mem; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find overlapping slot with lowest start address | 
|  | */ | 
|  | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | 
|  | hwaddr start_addr, | 
|  | hwaddr end_addr) | 
|  | { | 
|  | KVMSlot *found = NULL; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | 
|  | KVMSlot *mem = &s->slots[i]; | 
|  |  | 
|  | if (mem->memory_size == 0 || | 
|  | (found && found->start_addr < mem->start_addr)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (end_addr > mem->start_addr && | 
|  | start_addr < mem->start_addr + mem->memory_size) { | 
|  | found = mem; | 
|  | } | 
|  | } | 
|  |  | 
|  | return found; | 
|  | } | 
|  |  | 
|  | int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, | 
|  | hwaddr *phys_addr) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | 
|  | KVMSlot *mem = &s->slots[i]; | 
|  |  | 
|  | if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { | 
|  | *phys_addr = mem->start_addr + (ram - mem->ram); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) | 
|  | { | 
|  | struct kvm_userspace_memory_region mem; | 
|  |  | 
|  | mem.slot = slot->slot; | 
|  | mem.guest_phys_addr = slot->start_addr; | 
|  | mem.memory_size = slot->memory_size; | 
|  | mem.userspace_addr = (unsigned long)slot->ram; | 
|  | mem.flags = slot->flags; | 
|  | if (s->migration_log) { | 
|  | mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; | 
|  | } | 
|  | return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); | 
|  | } | 
|  |  | 
|  | static void kvm_reset_vcpu(void *opaque) | 
|  | { | 
|  | CPUState *cpu = opaque; | 
|  |  | 
|  | kvm_arch_reset_vcpu(cpu); | 
|  | } | 
|  |  | 
|  | int kvm_init_vcpu(CPUState *cpu) | 
|  | { | 
|  | KVMState *s = kvm_state; | 
|  | long mmap_size; | 
|  | int ret; | 
|  |  | 
|  | DPRINTF("kvm_init_vcpu\n"); | 
|  |  | 
|  | ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu)); | 
|  | if (ret < 0) { | 
|  | DPRINTF("kvm_create_vcpu failed\n"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | cpu->kvm_fd = ret; | 
|  | cpu->kvm_state = s; | 
|  | cpu->kvm_vcpu_dirty = true; | 
|  |  | 
|  | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | 
|  | if (mmap_size < 0) { | 
|  | ret = mmap_size; | 
|  | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, | 
|  | cpu->kvm_fd, 0); | 
|  | if (cpu->kvm_run == MAP_FAILED) { | 
|  | ret = -errno; | 
|  | DPRINTF("mmap'ing vcpu state failed\n"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (s->coalesced_mmio && !s->coalesced_mmio_ring) { | 
|  | s->coalesced_mmio_ring = | 
|  | (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | ret = kvm_arch_init_vcpu(cpu); | 
|  | if (ret == 0) { | 
|  | qemu_register_reset(kvm_reset_vcpu, cpu); | 
|  | kvm_arch_reset_vcpu(cpu); | 
|  | } | 
|  | err: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * dirty pages logging control | 
|  | */ | 
|  |  | 
|  | static int kvm_mem_flags(KVMState *s, bool log_dirty) | 
|  | { | 
|  | return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0; | 
|  | } | 
|  |  | 
|  | static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty) | 
|  | { | 
|  | KVMState *s = kvm_state; | 
|  | int flags, mask = KVM_MEM_LOG_DIRTY_PAGES; | 
|  | int old_flags; | 
|  |  | 
|  | old_flags = mem->flags; | 
|  |  | 
|  | flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty); | 
|  | mem->flags = flags; | 
|  |  | 
|  | /* If nothing changed effectively, no need to issue ioctl */ | 
|  | if (s->migration_log) { | 
|  | flags |= KVM_MEM_LOG_DIRTY_PAGES; | 
|  | } | 
|  |  | 
|  | if (flags == old_flags) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return kvm_set_user_memory_region(s, mem); | 
|  | } | 
|  |  | 
|  | static int kvm_dirty_pages_log_change(hwaddr phys_addr, | 
|  | ram_addr_t size, bool log_dirty) | 
|  | { | 
|  | KVMState *s = kvm_state; | 
|  | KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); | 
|  |  | 
|  | if (mem == NULL)  { | 
|  | fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" | 
|  | TARGET_FMT_plx "\n", __func__, phys_addr, | 
|  | (hwaddr)(phys_addr + size - 1)); | 
|  | return -EINVAL; | 
|  | } | 
|  | return kvm_slot_dirty_pages_log_change(mem, log_dirty); | 
|  | } | 
|  |  | 
|  | static void kvm_log_start(MemoryListener *listener, | 
|  | MemoryRegionSection *section) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | 
|  | section->size, true); | 
|  | if (r < 0) { | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_log_stop(MemoryListener *listener, | 
|  | MemoryRegionSection *section) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = kvm_dirty_pages_log_change(section->offset_within_address_space, | 
|  | section->size, false); | 
|  | if (r < 0) { | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int kvm_set_migration_log(int enable) | 
|  | { | 
|  | KVMState *s = kvm_state; | 
|  | KVMSlot *mem; | 
|  | int i, err; | 
|  |  | 
|  | s->migration_log = enable; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | 
|  | mem = &s->slots[i]; | 
|  |  | 
|  | if (!mem->memory_size) { | 
|  | continue; | 
|  | } | 
|  | if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { | 
|  | continue; | 
|  | } | 
|  | err = kvm_set_user_memory_region(s, mem); | 
|  | if (err) { | 
|  | return err; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* get kvm's dirty pages bitmap and update qemu's */ | 
|  | static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, | 
|  | unsigned long *bitmap) | 
|  | { | 
|  | unsigned int i, j; | 
|  | unsigned long page_number, c; | 
|  | hwaddr addr, addr1; | 
|  | unsigned int len = ((section->size / getpagesize()) + HOST_LONG_BITS - 1) / HOST_LONG_BITS; | 
|  | unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE; | 
|  |  | 
|  | /* | 
|  | * bitmap-traveling is faster than memory-traveling (for addr...) | 
|  | * especially when most of the memory is not dirty. | 
|  | */ | 
|  | for (i = 0; i < len; i++) { | 
|  | if (bitmap[i] != 0) { | 
|  | c = leul_to_cpu(bitmap[i]); | 
|  | do { | 
|  | j = ffsl(c) - 1; | 
|  | c &= ~(1ul << j); | 
|  | page_number = (i * HOST_LONG_BITS + j) * hpratio; | 
|  | addr1 = page_number * TARGET_PAGE_SIZE; | 
|  | addr = section->offset_within_region + addr1; | 
|  | memory_region_set_dirty(section->mr, addr, | 
|  | TARGET_PAGE_SIZE * hpratio); | 
|  | } while (c != 0); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1)) | 
|  |  | 
|  | /** | 
|  | * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | 
|  | * This function updates qemu's dirty bitmap using | 
|  | * memory_region_set_dirty().  This means all bits are set | 
|  | * to dirty. | 
|  | * | 
|  | * @start_add: start of logged region. | 
|  | * @end_addr: end of logged region. | 
|  | */ | 
|  | static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section) | 
|  | { | 
|  | KVMState *s = kvm_state; | 
|  | unsigned long size, allocated_size = 0; | 
|  | KVMDirtyLog d; | 
|  | KVMSlot *mem; | 
|  | int ret = 0; | 
|  | hwaddr start_addr = section->offset_within_address_space; | 
|  | hwaddr end_addr = start_addr + section->size; | 
|  |  | 
|  | d.dirty_bitmap = NULL; | 
|  | while (start_addr < end_addr) { | 
|  | mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); | 
|  | if (mem == NULL) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* XXX bad kernel interface alert | 
|  | * For dirty bitmap, kernel allocates array of size aligned to | 
|  | * bits-per-long.  But for case when the kernel is 64bits and | 
|  | * the userspace is 32bits, userspace can't align to the same | 
|  | * bits-per-long, since sizeof(long) is different between kernel | 
|  | * and user space.  This way, userspace will provide buffer which | 
|  | * may be 4 bytes less than the kernel will use, resulting in | 
|  | * userspace memory corruption (which is not detectable by valgrind | 
|  | * too, in most cases). | 
|  | * So for now, let's align to 64 instead of HOST_LONG_BITS here, in | 
|  | * a hope that sizeof(long) wont become >8 any time soon. | 
|  | */ | 
|  | size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), | 
|  | /*HOST_LONG_BITS*/ 64) / 8; | 
|  | if (!d.dirty_bitmap) { | 
|  | d.dirty_bitmap = g_malloc(size); | 
|  | } else if (size > allocated_size) { | 
|  | d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); | 
|  | } | 
|  | allocated_size = size; | 
|  | memset(d.dirty_bitmap, 0, allocated_size); | 
|  |  | 
|  | d.slot = mem->slot; | 
|  |  | 
|  | if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { | 
|  | DPRINTF("ioctl failed %d\n", errno); | 
|  | ret = -1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); | 
|  | start_addr = mem->start_addr + mem->memory_size; | 
|  | } | 
|  | g_free(d.dirty_bitmap); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void kvm_coalesce_mmio_region(MemoryListener *listener, | 
|  | MemoryRegionSection *secion, | 
|  | hwaddr start, hwaddr size) | 
|  | { | 
|  | KVMState *s = kvm_state; | 
|  |  | 
|  | if (s->coalesced_mmio) { | 
|  | struct kvm_coalesced_mmio_zone zone; | 
|  |  | 
|  | zone.addr = start; | 
|  | zone.size = size; | 
|  | zone.pad = 0; | 
|  |  | 
|  | (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_uncoalesce_mmio_region(MemoryListener *listener, | 
|  | MemoryRegionSection *secion, | 
|  | hwaddr start, hwaddr size) | 
|  | { | 
|  | KVMState *s = kvm_state; | 
|  |  | 
|  | if (s->coalesced_mmio) { | 
|  | struct kvm_coalesced_mmio_zone zone; | 
|  |  | 
|  | zone.addr = start; | 
|  | zone.size = size; | 
|  | zone.pad = 0; | 
|  |  | 
|  | (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); | 
|  | } | 
|  | } | 
|  |  | 
|  | int kvm_check_extension(KVMState *s, unsigned int extension) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | 
|  | if (ret < 0) { | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int kvm_check_many_ioeventfds(void) | 
|  | { | 
|  | /* Userspace can use ioeventfd for io notification.  This requires a host | 
|  | * that supports eventfd(2) and an I/O thread; since eventfd does not | 
|  | * support SIGIO it cannot interrupt the vcpu. | 
|  | * | 
|  | * Older kernels have a 6 device limit on the KVM io bus.  Find out so we | 
|  | * can avoid creating too many ioeventfds. | 
|  | */ | 
|  | #if defined(CONFIG_EVENTFD) | 
|  | int ioeventfds[7]; | 
|  | int i, ret = 0; | 
|  | for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { | 
|  | ioeventfds[i] = eventfd(0, EFD_CLOEXEC); | 
|  | if (ioeventfds[i] < 0) { | 
|  | break; | 
|  | } | 
|  | ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true); | 
|  | if (ret < 0) { | 
|  | close(ioeventfds[i]); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Decide whether many devices are supported or not */ | 
|  | ret = i == ARRAY_SIZE(ioeventfds); | 
|  |  | 
|  | while (i-- > 0) { | 
|  | kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false); | 
|  | close(ioeventfds[i]); | 
|  | } | 
|  | return ret; | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static const KVMCapabilityInfo * | 
|  | kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) | 
|  | { | 
|  | while (list->name) { | 
|  | if (!kvm_check_extension(s, list->value)) { | 
|  | return list; | 
|  | } | 
|  | list++; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void kvm_set_phys_mem(MemoryRegionSection *section, bool add) | 
|  | { | 
|  | KVMState *s = kvm_state; | 
|  | KVMSlot *mem, old; | 
|  | int err; | 
|  | MemoryRegion *mr = section->mr; | 
|  | bool log_dirty = memory_region_is_logging(mr); | 
|  | hwaddr start_addr = section->offset_within_address_space; | 
|  | ram_addr_t size = section->size; | 
|  | void *ram = NULL; | 
|  | unsigned delta; | 
|  |  | 
|  | /* kvm works in page size chunks, but the function may be called | 
|  | with sub-page size and unaligned start address. */ | 
|  | delta = TARGET_PAGE_ALIGN(size) - size; | 
|  | if (delta > size) { | 
|  | return; | 
|  | } | 
|  | start_addr += delta; | 
|  | size -= delta; | 
|  | size &= TARGET_PAGE_MASK; | 
|  | if (!size || (start_addr & ~TARGET_PAGE_MASK)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!memory_region_is_ram(mr)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta; | 
|  |  | 
|  | while (1) { | 
|  | mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | 
|  | if (!mem) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (add && start_addr >= mem->start_addr && | 
|  | (start_addr + size <= mem->start_addr + mem->memory_size) && | 
|  | (ram - start_addr == mem->ram - mem->start_addr)) { | 
|  | /* The new slot fits into the existing one and comes with | 
|  | * identical parameters - update flags and done. */ | 
|  | kvm_slot_dirty_pages_log_change(mem, log_dirty); | 
|  | return; | 
|  | } | 
|  |  | 
|  | old = *mem; | 
|  |  | 
|  | if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { | 
|  | kvm_physical_sync_dirty_bitmap(section); | 
|  | } | 
|  |  | 
|  | /* unregister the overlapping slot */ | 
|  | mem->memory_size = 0; | 
|  | err = kvm_set_user_memory_region(s, mem); | 
|  | if (err) { | 
|  | fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | 
|  | __func__, strerror(-err)); | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | /* Workaround for older KVM versions: we can't join slots, even not by | 
|  | * unregistering the previous ones and then registering the larger | 
|  | * slot. We have to maintain the existing fragmentation. Sigh. | 
|  | * | 
|  | * This workaround assumes that the new slot starts at the same | 
|  | * address as the first existing one. If not or if some overlapping | 
|  | * slot comes around later, we will fail (not seen in practice so far) | 
|  | * - and actually require a recent KVM version. */ | 
|  | if (s->broken_set_mem_region && | 
|  | old.start_addr == start_addr && old.memory_size < size && add) { | 
|  | mem = kvm_alloc_slot(s); | 
|  | mem->memory_size = old.memory_size; | 
|  | mem->start_addr = old.start_addr; | 
|  | mem->ram = old.ram; | 
|  | mem->flags = kvm_mem_flags(s, log_dirty); | 
|  |  | 
|  | err = kvm_set_user_memory_region(s, mem); | 
|  | if (err) { | 
|  | fprintf(stderr, "%s: error updating slot: %s\n", __func__, | 
|  | strerror(-err)); | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | start_addr += old.memory_size; | 
|  | ram += old.memory_size; | 
|  | size -= old.memory_size; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* register prefix slot */ | 
|  | if (old.start_addr < start_addr) { | 
|  | mem = kvm_alloc_slot(s); | 
|  | mem->memory_size = start_addr - old.start_addr; | 
|  | mem->start_addr = old.start_addr; | 
|  | mem->ram = old.ram; | 
|  | mem->flags =  kvm_mem_flags(s, log_dirty); | 
|  |  | 
|  | err = kvm_set_user_memory_region(s, mem); | 
|  | if (err) { | 
|  | fprintf(stderr, "%s: error registering prefix slot: %s\n", | 
|  | __func__, strerror(-err)); | 
|  | #ifdef TARGET_PPC | 
|  | fprintf(stderr, "%s: This is probably because your kernel's " \ | 
|  | "PAGE_SIZE is too big. Please try to use 4k " \ | 
|  | "PAGE_SIZE!\n", __func__); | 
|  | #endif | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* register suffix slot */ | 
|  | if (old.start_addr + old.memory_size > start_addr + size) { | 
|  | ram_addr_t size_delta; | 
|  |  | 
|  | mem = kvm_alloc_slot(s); | 
|  | mem->start_addr = start_addr + size; | 
|  | size_delta = mem->start_addr - old.start_addr; | 
|  | mem->memory_size = old.memory_size - size_delta; | 
|  | mem->ram = old.ram + size_delta; | 
|  | mem->flags = kvm_mem_flags(s, log_dirty); | 
|  |  | 
|  | err = kvm_set_user_memory_region(s, mem); | 
|  | if (err) { | 
|  | fprintf(stderr, "%s: error registering suffix slot: %s\n", | 
|  | __func__, strerror(-err)); | 
|  | abort(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* in case the KVM bug workaround already "consumed" the new slot */ | 
|  | if (!size) { | 
|  | return; | 
|  | } | 
|  | if (!add) { | 
|  | return; | 
|  | } | 
|  | mem = kvm_alloc_slot(s); | 
|  | mem->memory_size = size; | 
|  | mem->start_addr = start_addr; | 
|  | mem->ram = ram; | 
|  | mem->flags = kvm_mem_flags(s, log_dirty); | 
|  |  | 
|  | err = kvm_set_user_memory_region(s, mem); | 
|  | if (err) { | 
|  | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | 
|  | strerror(-err)); | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_region_add(MemoryListener *listener, | 
|  | MemoryRegionSection *section) | 
|  | { | 
|  | kvm_set_phys_mem(section, true); | 
|  | } | 
|  |  | 
|  | static void kvm_region_del(MemoryListener *listener, | 
|  | MemoryRegionSection *section) | 
|  | { | 
|  | kvm_set_phys_mem(section, false); | 
|  | } | 
|  |  | 
|  | static void kvm_log_sync(MemoryListener *listener, | 
|  | MemoryRegionSection *section) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = kvm_physical_sync_dirty_bitmap(section); | 
|  | if (r < 0) { | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_log_global_start(struct MemoryListener *listener) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = kvm_set_migration_log(1); | 
|  | assert(r >= 0); | 
|  | } | 
|  |  | 
|  | static void kvm_log_global_stop(struct MemoryListener *listener) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = kvm_set_migration_log(0); | 
|  | assert(r >= 0); | 
|  | } | 
|  |  | 
|  | static void kvm_mem_ioeventfd_add(MemoryListener *listener, | 
|  | MemoryRegionSection *section, | 
|  | bool match_data, uint64_t data, | 
|  | EventNotifier *e) | 
|  | { | 
|  | int fd = event_notifier_get_fd(e); | 
|  | int r; | 
|  |  | 
|  | assert(match_data && section->size <= 8); | 
|  |  | 
|  | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, | 
|  | data, true, section->size); | 
|  | if (r < 0) { | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_mem_ioeventfd_del(MemoryListener *listener, | 
|  | MemoryRegionSection *section, | 
|  | bool match_data, uint64_t data, | 
|  | EventNotifier *e) | 
|  | { | 
|  | int fd = event_notifier_get_fd(e); | 
|  | int r; | 
|  |  | 
|  | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, | 
|  | data, false, section->size); | 
|  | if (r < 0) { | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_io_ioeventfd_add(MemoryListener *listener, | 
|  | MemoryRegionSection *section, | 
|  | bool match_data, uint64_t data, | 
|  | EventNotifier *e) | 
|  | { | 
|  | int fd = event_notifier_get_fd(e); | 
|  | int r; | 
|  |  | 
|  | assert(match_data && section->size == 2); | 
|  |  | 
|  | r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space, | 
|  | data, true); | 
|  | if (r < 0) { | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_io_ioeventfd_del(MemoryListener *listener, | 
|  | MemoryRegionSection *section, | 
|  | bool match_data, uint64_t data, | 
|  | EventNotifier *e) | 
|  |  | 
|  | { | 
|  | int fd = event_notifier_get_fd(e); | 
|  | int r; | 
|  |  | 
|  | r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space, | 
|  | data, false); | 
|  | if (r < 0) { | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static MemoryListener kvm_memory_listener = { | 
|  | .region_add = kvm_region_add, | 
|  | .region_del = kvm_region_del, | 
|  | .log_start = kvm_log_start, | 
|  | .log_stop = kvm_log_stop, | 
|  | .log_sync = kvm_log_sync, | 
|  | .log_global_start = kvm_log_global_start, | 
|  | .log_global_stop = kvm_log_global_stop, | 
|  | .eventfd_add = kvm_mem_ioeventfd_add, | 
|  | .eventfd_del = kvm_mem_ioeventfd_del, | 
|  | .coalesced_mmio_add = kvm_coalesce_mmio_region, | 
|  | .coalesced_mmio_del = kvm_uncoalesce_mmio_region, | 
|  | .priority = 10, | 
|  | }; | 
|  |  | 
|  | static MemoryListener kvm_io_listener = { | 
|  | .eventfd_add = kvm_io_ioeventfd_add, | 
|  | .eventfd_del = kvm_io_ioeventfd_del, | 
|  | .priority = 10, | 
|  | }; | 
|  |  | 
|  | static void kvm_handle_interrupt(CPUArchState *env, int mask) | 
|  | { | 
|  | CPUState *cpu = ENV_GET_CPU(env); | 
|  |  | 
|  | env->interrupt_request |= mask; | 
|  |  | 
|  | if (!qemu_cpu_is_self(cpu)) { | 
|  | qemu_cpu_kick(cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | int kvm_set_irq(KVMState *s, int irq, int level) | 
|  | { | 
|  | struct kvm_irq_level event; | 
|  | int ret; | 
|  |  | 
|  | assert(kvm_async_interrupts_enabled()); | 
|  |  | 
|  | event.level = level; | 
|  | event.irq = irq; | 
|  | ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); | 
|  | if (ret < 0) { | 
|  | perror("kvm_set_irq"); | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; | 
|  | } | 
|  |  | 
|  | #ifdef KVM_CAP_IRQ_ROUTING | 
|  | typedef struct KVMMSIRoute { | 
|  | struct kvm_irq_routing_entry kroute; | 
|  | QTAILQ_ENTRY(KVMMSIRoute) entry; | 
|  | } KVMMSIRoute; | 
|  |  | 
|  | static void set_gsi(KVMState *s, unsigned int gsi) | 
|  | { | 
|  | s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32); | 
|  | } | 
|  |  | 
|  | static void clear_gsi(KVMState *s, unsigned int gsi) | 
|  | { | 
|  | s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32)); | 
|  | } | 
|  |  | 
|  | static void kvm_init_irq_routing(KVMState *s) | 
|  | { | 
|  | int gsi_count, i; | 
|  |  | 
|  | gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING); | 
|  | if (gsi_count > 0) { | 
|  | unsigned int gsi_bits, i; | 
|  |  | 
|  | /* Round up so we can search ints using ffs */ | 
|  | gsi_bits = ALIGN(gsi_count, 32); | 
|  | s->used_gsi_bitmap = g_malloc0(gsi_bits / 8); | 
|  | s->gsi_count = gsi_count; | 
|  |  | 
|  | /* Mark any over-allocated bits as already in use */ | 
|  | for (i = gsi_count; i < gsi_bits; i++) { | 
|  | set_gsi(s, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); | 
|  | s->nr_allocated_irq_routes = 0; | 
|  |  | 
|  | if (!s->direct_msi) { | 
|  | for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { | 
|  | QTAILQ_INIT(&s->msi_hashtab[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | kvm_arch_init_irq_routing(s); | 
|  | } | 
|  |  | 
|  | static void kvm_irqchip_commit_routes(KVMState *s) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | s->irq_routes->flags = 0; | 
|  | ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); | 
|  | assert(ret == 0); | 
|  | } | 
|  |  | 
|  | static void kvm_add_routing_entry(KVMState *s, | 
|  | struct kvm_irq_routing_entry *entry) | 
|  | { | 
|  | struct kvm_irq_routing_entry *new; | 
|  | int n, size; | 
|  |  | 
|  | if (s->irq_routes->nr == s->nr_allocated_irq_routes) { | 
|  | n = s->nr_allocated_irq_routes * 2; | 
|  | if (n < 64) { | 
|  | n = 64; | 
|  | } | 
|  | size = sizeof(struct kvm_irq_routing); | 
|  | size += n * sizeof(*new); | 
|  | s->irq_routes = g_realloc(s->irq_routes, size); | 
|  | s->nr_allocated_irq_routes = n; | 
|  | } | 
|  | n = s->irq_routes->nr++; | 
|  | new = &s->irq_routes->entries[n]; | 
|  | memset(new, 0, sizeof(*new)); | 
|  | new->gsi = entry->gsi; | 
|  | new->type = entry->type; | 
|  | new->flags = entry->flags; | 
|  | new->u = entry->u; | 
|  |  | 
|  | set_gsi(s, entry->gsi); | 
|  |  | 
|  | kvm_irqchip_commit_routes(s); | 
|  | } | 
|  |  | 
|  | static int kvm_update_routing_entry(KVMState *s, | 
|  | struct kvm_irq_routing_entry *new_entry) | 
|  | { | 
|  | struct kvm_irq_routing_entry *entry; | 
|  | int n; | 
|  |  | 
|  | for (n = 0; n < s->irq_routes->nr; n++) { | 
|  | entry = &s->irq_routes->entries[n]; | 
|  | if (entry->gsi != new_entry->gsi) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | entry->type = new_entry->type; | 
|  | entry->flags = new_entry->flags; | 
|  | entry->u = new_entry->u; | 
|  |  | 
|  | kvm_irqchip_commit_routes(s); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -ESRCH; | 
|  | } | 
|  |  | 
|  | void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) | 
|  | { | 
|  | struct kvm_irq_routing_entry e; | 
|  |  | 
|  | assert(pin < s->gsi_count); | 
|  |  | 
|  | e.gsi = irq; | 
|  | e.type = KVM_IRQ_ROUTING_IRQCHIP; | 
|  | e.flags = 0; | 
|  | e.u.irqchip.irqchip = irqchip; | 
|  | e.u.irqchip.pin = pin; | 
|  | kvm_add_routing_entry(s, &e); | 
|  | } | 
|  |  | 
|  | void kvm_irqchip_release_virq(KVMState *s, int virq) | 
|  | { | 
|  | struct kvm_irq_routing_entry *e; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < s->irq_routes->nr; i++) { | 
|  | e = &s->irq_routes->entries[i]; | 
|  | if (e->gsi == virq) { | 
|  | s->irq_routes->nr--; | 
|  | *e = s->irq_routes->entries[s->irq_routes->nr]; | 
|  | } | 
|  | } | 
|  | clear_gsi(s, virq); | 
|  | } | 
|  |  | 
|  | static unsigned int kvm_hash_msi(uint32_t data) | 
|  | { | 
|  | /* This is optimized for IA32 MSI layout. However, no other arch shall | 
|  | * repeat the mistake of not providing a direct MSI injection API. */ | 
|  | return data & 0xff; | 
|  | } | 
|  |  | 
|  | static void kvm_flush_dynamic_msi_routes(KVMState *s) | 
|  | { | 
|  | KVMMSIRoute *route, *next; | 
|  | unsigned int hash; | 
|  |  | 
|  | for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { | 
|  | QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { | 
|  | kvm_irqchip_release_virq(s, route->kroute.gsi); | 
|  | QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); | 
|  | g_free(route); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int kvm_irqchip_get_virq(KVMState *s) | 
|  | { | 
|  | uint32_t *word = s->used_gsi_bitmap; | 
|  | int max_words = ALIGN(s->gsi_count, 32) / 32; | 
|  | int i, bit; | 
|  | bool retry = true; | 
|  |  | 
|  | again: | 
|  | /* Return the lowest unused GSI in the bitmap */ | 
|  | for (i = 0; i < max_words; i++) { | 
|  | bit = ffs(~word[i]); | 
|  | if (!bit) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | return bit - 1 + i * 32; | 
|  | } | 
|  | if (!s->direct_msi && retry) { | 
|  | retry = false; | 
|  | kvm_flush_dynamic_msi_routes(s); | 
|  | goto again; | 
|  | } | 
|  | return -ENOSPC; | 
|  |  | 
|  | } | 
|  |  | 
|  | static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) | 
|  | { | 
|  | unsigned int hash = kvm_hash_msi(msg.data); | 
|  | KVMMSIRoute *route; | 
|  |  | 
|  | QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { | 
|  | if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && | 
|  | route->kroute.u.msi.address_hi == (msg.address >> 32) && | 
|  | route->kroute.u.msi.data == msg.data) { | 
|  | return route; | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) | 
|  | { | 
|  | struct kvm_msi msi; | 
|  | KVMMSIRoute *route; | 
|  |  | 
|  | if (s->direct_msi) { | 
|  | msi.address_lo = (uint32_t)msg.address; | 
|  | msi.address_hi = msg.address >> 32; | 
|  | msi.data = msg.data; | 
|  | msi.flags = 0; | 
|  | memset(msi.pad, 0, sizeof(msi.pad)); | 
|  |  | 
|  | return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); | 
|  | } | 
|  |  | 
|  | route = kvm_lookup_msi_route(s, msg); | 
|  | if (!route) { | 
|  | int virq; | 
|  |  | 
|  | virq = kvm_irqchip_get_virq(s); | 
|  | if (virq < 0) { | 
|  | return virq; | 
|  | } | 
|  |  | 
|  | route = g_malloc(sizeof(KVMMSIRoute)); | 
|  | route->kroute.gsi = virq; | 
|  | route->kroute.type = KVM_IRQ_ROUTING_MSI; | 
|  | route->kroute.flags = 0; | 
|  | route->kroute.u.msi.address_lo = (uint32_t)msg.address; | 
|  | route->kroute.u.msi.address_hi = msg.address >> 32; | 
|  | route->kroute.u.msi.data = msg.data; | 
|  |  | 
|  | kvm_add_routing_entry(s, &route->kroute); | 
|  |  | 
|  | QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, | 
|  | entry); | 
|  | } | 
|  |  | 
|  | assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); | 
|  |  | 
|  | return kvm_set_irq(s, route->kroute.gsi, 1); | 
|  | } | 
|  |  | 
|  | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) | 
|  | { | 
|  | struct kvm_irq_routing_entry kroute; | 
|  | int virq; | 
|  |  | 
|  | if (!kvm_gsi_routing_enabled()) { | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | virq = kvm_irqchip_get_virq(s); | 
|  | if (virq < 0) { | 
|  | return virq; | 
|  | } | 
|  |  | 
|  | kroute.gsi = virq; | 
|  | kroute.type = KVM_IRQ_ROUTING_MSI; | 
|  | kroute.flags = 0; | 
|  | kroute.u.msi.address_lo = (uint32_t)msg.address; | 
|  | kroute.u.msi.address_hi = msg.address >> 32; | 
|  | kroute.u.msi.data = msg.data; | 
|  |  | 
|  | kvm_add_routing_entry(s, &kroute); | 
|  |  | 
|  | return virq; | 
|  | } | 
|  |  | 
|  | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) | 
|  | { | 
|  | struct kvm_irq_routing_entry kroute; | 
|  |  | 
|  | if (!kvm_irqchip_in_kernel()) { | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | kroute.gsi = virq; | 
|  | kroute.type = KVM_IRQ_ROUTING_MSI; | 
|  | kroute.flags = 0; | 
|  | kroute.u.msi.address_lo = (uint32_t)msg.address; | 
|  | kroute.u.msi.address_hi = msg.address >> 32; | 
|  | kroute.u.msi.data = msg.data; | 
|  |  | 
|  | return kvm_update_routing_entry(s, &kroute); | 
|  | } | 
|  |  | 
|  | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) | 
|  | { | 
|  | struct kvm_irqfd irqfd = { | 
|  | .fd = fd, | 
|  | .gsi = virq, | 
|  | .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, | 
|  | }; | 
|  |  | 
|  | if (!kvm_irqfds_enabled()) { | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); | 
|  | } | 
|  |  | 
|  | #else /* !KVM_CAP_IRQ_ROUTING */ | 
|  |  | 
|  | static void kvm_init_irq_routing(KVMState *s) | 
|  | { | 
|  | } | 
|  |  | 
|  | void kvm_irqchip_release_virq(KVMState *s, int virq) | 
|  | { | 
|  | } | 
|  |  | 
|  | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) | 
|  | { | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) | 
|  | { | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  | #endif /* !KVM_CAP_IRQ_ROUTING */ | 
|  |  | 
|  | int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq) | 
|  | { | 
|  | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true); | 
|  | } | 
|  |  | 
|  | int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq) | 
|  | { | 
|  | return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false); | 
|  | } | 
|  |  | 
|  | static int kvm_irqchip_create(KVMState *s) | 
|  | { | 
|  | QemuOptsList *list = qemu_find_opts("machine"); | 
|  | int ret; | 
|  |  | 
|  | if (QTAILQ_EMPTY(&list->head) || | 
|  | !qemu_opt_get_bool(QTAILQ_FIRST(&list->head), | 
|  | "kernel_irqchip", true) || | 
|  | !kvm_check_extension(s, KVM_CAP_IRQCHIP)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "Create kernel irqchip failed\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | kvm_kernel_irqchip = true; | 
|  | /* If we have an in-kernel IRQ chip then we must have asynchronous | 
|  | * interrupt delivery (though the reverse is not necessarily true) | 
|  | */ | 
|  | kvm_async_interrupts_allowed = true; | 
|  |  | 
|  | kvm_init_irq_routing(s); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_max_vcpus(KVMState *s) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* Find number of supported CPUs using the recommended | 
|  | * procedure from the kernel API documentation to cope with | 
|  | * older kernels that may be missing capabilities. | 
|  | */ | 
|  | ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 4; | 
|  | } | 
|  |  | 
|  | int kvm_init(void) | 
|  | { | 
|  | static const char upgrade_note[] = | 
|  | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | 
|  | "(see http://sourceforge.net/projects/kvm).\n"; | 
|  | KVMState *s; | 
|  | const KVMCapabilityInfo *missing_cap; | 
|  | int ret; | 
|  | int i; | 
|  | int max_vcpus; | 
|  |  | 
|  | s = g_malloc0(sizeof(KVMState)); | 
|  |  | 
|  | /* | 
|  | * On systems where the kernel can support different base page | 
|  | * sizes, host page size may be different from TARGET_PAGE_SIZE, | 
|  | * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum | 
|  | * page size for the system though. | 
|  | */ | 
|  | assert(TARGET_PAGE_SIZE <= getpagesize()); | 
|  |  | 
|  | #ifdef KVM_CAP_SET_GUEST_DEBUG | 
|  | QTAILQ_INIT(&s->kvm_sw_breakpoints); | 
|  | #endif | 
|  | for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | 
|  | s->slots[i].slot = i; | 
|  | } | 
|  | s->vmfd = -1; | 
|  | s->fd = qemu_open("/dev/kvm", O_RDWR); | 
|  | if (s->fd == -1) { | 
|  | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | 
|  | ret = -errno; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | 
|  | if (ret < KVM_API_VERSION) { | 
|  | if (ret > 0) { | 
|  | ret = -EINVAL; | 
|  | } | 
|  | fprintf(stderr, "kvm version too old\n"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (ret > KVM_API_VERSION) { | 
|  | ret = -EINVAL; | 
|  | fprintf(stderr, "kvm version not supported\n"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | max_vcpus = kvm_max_vcpus(s); | 
|  | if (smp_cpus > max_vcpus) { | 
|  | ret = -EINVAL; | 
|  | fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus " | 
|  | "supported by KVM (%d)\n", smp_cpus, max_vcpus); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); | 
|  | if (s->vmfd < 0) { | 
|  | #ifdef TARGET_S390X | 
|  | fprintf(stderr, "Please add the 'switch_amode' kernel parameter to " | 
|  | "your host kernel command line\n"); | 
|  | #endif | 
|  | ret = s->vmfd; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); | 
|  | if (!missing_cap) { | 
|  | missing_cap = | 
|  | kvm_check_extension_list(s, kvm_arch_required_capabilities); | 
|  | } | 
|  | if (missing_cap) { | 
|  | ret = -EINVAL; | 
|  | fprintf(stderr, "kvm does not support %s\n%s", | 
|  | missing_cap->name, upgrade_note); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); | 
|  |  | 
|  | s->broken_set_mem_region = 1; | 
|  | ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); | 
|  | if (ret > 0) { | 
|  | s->broken_set_mem_region = 0; | 
|  | } | 
|  |  | 
|  | #ifdef KVM_CAP_VCPU_EVENTS | 
|  | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | 
|  | #endif | 
|  |  | 
|  | s->robust_singlestep = | 
|  | kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); | 
|  |  | 
|  | #ifdef KVM_CAP_DEBUGREGS | 
|  | s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); | 
|  | #endif | 
|  |  | 
|  | #ifdef KVM_CAP_XSAVE | 
|  | s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); | 
|  | #endif | 
|  |  | 
|  | #ifdef KVM_CAP_XCRS | 
|  | s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); | 
|  | #endif | 
|  |  | 
|  | #ifdef KVM_CAP_PIT_STATE2 | 
|  | s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); | 
|  | #endif | 
|  |  | 
|  | #ifdef KVM_CAP_IRQ_ROUTING | 
|  | s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); | 
|  | #endif | 
|  |  | 
|  | s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); | 
|  |  | 
|  | s->irq_set_ioctl = KVM_IRQ_LINE; | 
|  | if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { | 
|  | s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; | 
|  | } | 
|  |  | 
|  | ret = kvm_arch_init(s); | 
|  | if (ret < 0) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = kvm_irqchip_create(s); | 
|  | if (ret < 0) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | kvm_state = s; | 
|  | memory_listener_register(&kvm_memory_listener, &address_space_memory); | 
|  | memory_listener_register(&kvm_io_listener, &address_space_io); | 
|  |  | 
|  | s->many_ioeventfds = kvm_check_many_ioeventfds(); | 
|  |  | 
|  | cpu_interrupt_handler = kvm_handle_interrupt; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | if (s->vmfd >= 0) { | 
|  | close(s->vmfd); | 
|  | } | 
|  | if (s->fd != -1) { | 
|  | close(s->fd); | 
|  | } | 
|  | g_free(s); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void kvm_handle_io(uint16_t port, void *data, int direction, int size, | 
|  | uint32_t count) | 
|  | { | 
|  | int i; | 
|  | uint8_t *ptr = data; | 
|  |  | 
|  | for (i = 0; i < count; i++) { | 
|  | if (direction == KVM_EXIT_IO_IN) { | 
|  | switch (size) { | 
|  | case 1: | 
|  | stb_p(ptr, cpu_inb(port)); | 
|  | break; | 
|  | case 2: | 
|  | stw_p(ptr, cpu_inw(port)); | 
|  | break; | 
|  | case 4: | 
|  | stl_p(ptr, cpu_inl(port)); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | switch (size) { | 
|  | case 1: | 
|  | cpu_outb(port, ldub_p(ptr)); | 
|  | break; | 
|  | case 2: | 
|  | cpu_outw(port, lduw_p(ptr)); | 
|  | break; | 
|  | case 4: | 
|  | cpu_outl(port, ldl_p(ptr)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | ptr += size; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run) | 
|  | { | 
|  | CPUState *cpu = ENV_GET_CPU(env); | 
|  |  | 
|  | fprintf(stderr, "KVM internal error."); | 
|  | if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { | 
|  | int i; | 
|  |  | 
|  | fprintf(stderr, " Suberror: %d\n", run->internal.suberror); | 
|  | for (i = 0; i < run->internal.ndata; ++i) { | 
|  | fprintf(stderr, "extra data[%d]: %"PRIx64"\n", | 
|  | i, (uint64_t)run->internal.data[i]); | 
|  | } | 
|  | } else { | 
|  | fprintf(stderr, "\n"); | 
|  | } | 
|  | if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { | 
|  | fprintf(stderr, "emulation failure\n"); | 
|  | if (!kvm_arch_stop_on_emulation_error(cpu)) { | 
|  | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); | 
|  | return EXCP_INTERRUPT; | 
|  | } | 
|  | } | 
|  | /* FIXME: Should trigger a qmp message to let management know | 
|  | * something went wrong. | 
|  | */ | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | void kvm_flush_coalesced_mmio_buffer(void) | 
|  | { | 
|  | KVMState *s = kvm_state; | 
|  |  | 
|  | if (s->coalesced_flush_in_progress) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | s->coalesced_flush_in_progress = true; | 
|  |  | 
|  | if (s->coalesced_mmio_ring) { | 
|  | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | 
|  | while (ring->first != ring->last) { | 
|  | struct kvm_coalesced_mmio *ent; | 
|  |  | 
|  | ent = &ring->coalesced_mmio[ring->first]; | 
|  |  | 
|  | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | 
|  | smp_wmb(); | 
|  | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; | 
|  | } | 
|  | } | 
|  |  | 
|  | s->coalesced_flush_in_progress = false; | 
|  | } | 
|  |  | 
|  | static void do_kvm_cpu_synchronize_state(void *arg) | 
|  | { | 
|  | CPUState *cpu = arg; | 
|  |  | 
|  | if (!cpu->kvm_vcpu_dirty) { | 
|  | kvm_arch_get_registers(cpu); | 
|  | cpu->kvm_vcpu_dirty = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void kvm_cpu_synchronize_state(CPUArchState *env) | 
|  | { | 
|  | CPUState *cpu = ENV_GET_CPU(env); | 
|  |  | 
|  | if (!cpu->kvm_vcpu_dirty) { | 
|  | run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | void kvm_cpu_synchronize_post_reset(CPUArchState *env) | 
|  | { | 
|  | CPUState *cpu = ENV_GET_CPU(env); | 
|  |  | 
|  | kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); | 
|  | cpu->kvm_vcpu_dirty = false; | 
|  | } | 
|  |  | 
|  | void kvm_cpu_synchronize_post_init(CPUArchState *env) | 
|  | { | 
|  | CPUState *cpu = ENV_GET_CPU(env); | 
|  |  | 
|  | kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); | 
|  | cpu->kvm_vcpu_dirty = false; | 
|  | } | 
|  |  | 
|  | int kvm_cpu_exec(CPUArchState *env) | 
|  | { | 
|  | CPUState *cpu = ENV_GET_CPU(env); | 
|  | struct kvm_run *run = cpu->kvm_run; | 
|  | int ret, run_ret; | 
|  |  | 
|  | DPRINTF("kvm_cpu_exec()\n"); | 
|  |  | 
|  | if (kvm_arch_process_async_events(cpu)) { | 
|  | env->exit_request = 0; | 
|  | return EXCP_HLT; | 
|  | } | 
|  |  | 
|  | do { | 
|  | if (cpu->kvm_vcpu_dirty) { | 
|  | kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); | 
|  | cpu->kvm_vcpu_dirty = false; | 
|  | } | 
|  |  | 
|  | kvm_arch_pre_run(cpu, run); | 
|  | if (env->exit_request) { | 
|  | DPRINTF("interrupt exit requested\n"); | 
|  | /* | 
|  | * KVM requires us to reenter the kernel after IO exits to complete | 
|  | * instruction emulation. This self-signal will ensure that we | 
|  | * leave ASAP again. | 
|  | */ | 
|  | qemu_cpu_kick_self(); | 
|  | } | 
|  | qemu_mutex_unlock_iothread(); | 
|  |  | 
|  | run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); | 
|  |  | 
|  | qemu_mutex_lock_iothread(); | 
|  | kvm_arch_post_run(cpu, run); | 
|  |  | 
|  | if (run_ret < 0) { | 
|  | if (run_ret == -EINTR || run_ret == -EAGAIN) { | 
|  | DPRINTF("io window exit\n"); | 
|  | ret = EXCP_INTERRUPT; | 
|  | break; | 
|  | } | 
|  | fprintf(stderr, "error: kvm run failed %s\n", | 
|  | strerror(-run_ret)); | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | switch (run->exit_reason) { | 
|  | case KVM_EXIT_IO: | 
|  | DPRINTF("handle_io\n"); | 
|  | kvm_handle_io(run->io.port, | 
|  | (uint8_t *)run + run->io.data_offset, | 
|  | run->io.direction, | 
|  | run->io.size, | 
|  | run->io.count); | 
|  | ret = 0; | 
|  | break; | 
|  | case KVM_EXIT_MMIO: | 
|  | DPRINTF("handle_mmio\n"); | 
|  | cpu_physical_memory_rw(run->mmio.phys_addr, | 
|  | run->mmio.data, | 
|  | run->mmio.len, | 
|  | run->mmio.is_write); | 
|  | ret = 0; | 
|  | break; | 
|  | case KVM_EXIT_IRQ_WINDOW_OPEN: | 
|  | DPRINTF("irq_window_open\n"); | 
|  | ret = EXCP_INTERRUPT; | 
|  | break; | 
|  | case KVM_EXIT_SHUTDOWN: | 
|  | DPRINTF("shutdown\n"); | 
|  | qemu_system_reset_request(); | 
|  | ret = EXCP_INTERRUPT; | 
|  | break; | 
|  | case KVM_EXIT_UNKNOWN: | 
|  | fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", | 
|  | (uint64_t)run->hw.hardware_exit_reason); | 
|  | ret = -1; | 
|  | break; | 
|  | case KVM_EXIT_INTERNAL_ERROR: | 
|  | ret = kvm_handle_internal_error(env, run); | 
|  | break; | 
|  | default: | 
|  | DPRINTF("kvm_arch_handle_exit\n"); | 
|  | ret = kvm_arch_handle_exit(cpu, run); | 
|  | break; | 
|  | } | 
|  | } while (ret == 0); | 
|  |  | 
|  | if (ret < 0) { | 
|  | cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); | 
|  | vm_stop(RUN_STATE_INTERNAL_ERROR); | 
|  | } | 
|  |  | 
|  | env->exit_request = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int kvm_ioctl(KVMState *s, int type, ...) | 
|  | { | 
|  | int ret; | 
|  | void *arg; | 
|  | va_list ap; | 
|  |  | 
|  | va_start(ap, type); | 
|  | arg = va_arg(ap, void *); | 
|  | va_end(ap); | 
|  |  | 
|  | ret = ioctl(s->fd, type, arg); | 
|  | if (ret == -1) { | 
|  | ret = -errno; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int kvm_vm_ioctl(KVMState *s, int type, ...) | 
|  | { | 
|  | int ret; | 
|  | void *arg; | 
|  | va_list ap; | 
|  |  | 
|  | va_start(ap, type); | 
|  | arg = va_arg(ap, void *); | 
|  | va_end(ap); | 
|  |  | 
|  | ret = ioctl(s->vmfd, type, arg); | 
|  | if (ret == -1) { | 
|  | ret = -errno; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) | 
|  | { | 
|  | int ret; | 
|  | void *arg; | 
|  | va_list ap; | 
|  |  | 
|  | va_start(ap, type); | 
|  | arg = va_arg(ap, void *); | 
|  | va_end(ap); | 
|  |  | 
|  | ret = ioctl(cpu->kvm_fd, type, arg); | 
|  | if (ret == -1) { | 
|  | ret = -errno; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int kvm_has_sync_mmu(void) | 
|  | { | 
|  | return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); | 
|  | } | 
|  |  | 
|  | int kvm_has_vcpu_events(void) | 
|  | { | 
|  | return kvm_state->vcpu_events; | 
|  | } | 
|  |  | 
|  | int kvm_has_robust_singlestep(void) | 
|  | { | 
|  | return kvm_state->robust_singlestep; | 
|  | } | 
|  |  | 
|  | int kvm_has_debugregs(void) | 
|  | { | 
|  | return kvm_state->debugregs; | 
|  | } | 
|  |  | 
|  | int kvm_has_xsave(void) | 
|  | { | 
|  | return kvm_state->xsave; | 
|  | } | 
|  |  | 
|  | int kvm_has_xcrs(void) | 
|  | { | 
|  | return kvm_state->xcrs; | 
|  | } | 
|  |  | 
|  | int kvm_has_pit_state2(void) | 
|  | { | 
|  | return kvm_state->pit_state2; | 
|  | } | 
|  |  | 
|  | int kvm_has_many_ioeventfds(void) | 
|  | { | 
|  | if (!kvm_enabled()) { | 
|  | return 0; | 
|  | } | 
|  | return kvm_state->many_ioeventfds; | 
|  | } | 
|  |  | 
|  | int kvm_has_gsi_routing(void) | 
|  | { | 
|  | #ifdef KVM_CAP_IRQ_ROUTING | 
|  | return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); | 
|  | #else | 
|  | return false; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | int kvm_has_intx_set_mask(void) | 
|  | { | 
|  | return kvm_state->intx_set_mask; | 
|  | } | 
|  |  | 
|  | void *kvm_vmalloc(ram_addr_t size) | 
|  | { | 
|  | #ifdef TARGET_S390X | 
|  | void *mem; | 
|  |  | 
|  | mem = kvm_arch_vmalloc(size); | 
|  | if (mem) { | 
|  | return mem; | 
|  | } | 
|  | #endif | 
|  | return qemu_vmalloc(size); | 
|  | } | 
|  |  | 
|  | void kvm_setup_guest_memory(void *start, size_t size) | 
|  | { | 
|  | #ifdef CONFIG_VALGRIND_H | 
|  | VALGRIND_MAKE_MEM_DEFINED(start, size); | 
|  | #endif | 
|  | if (!kvm_has_sync_mmu()) { | 
|  | int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); | 
|  |  | 
|  | if (ret) { | 
|  | perror("qemu_madvise"); | 
|  | fprintf(stderr, | 
|  | "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef KVM_CAP_SET_GUEST_DEBUG | 
|  | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, | 
|  | target_ulong pc) | 
|  | { | 
|  | struct kvm_sw_breakpoint *bp; | 
|  |  | 
|  | QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { | 
|  | if (bp->pc == pc) { | 
|  | return bp; | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int kvm_sw_breakpoints_active(CPUState *cpu) | 
|  | { | 
|  | return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); | 
|  | } | 
|  |  | 
|  | struct kvm_set_guest_debug_data { | 
|  | struct kvm_guest_debug dbg; | 
|  | CPUState *cpu; | 
|  | int err; | 
|  | }; | 
|  |  | 
|  | static void kvm_invoke_set_guest_debug(void *data) | 
|  | { | 
|  | struct kvm_set_guest_debug_data *dbg_data = data; | 
|  |  | 
|  | dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG, | 
|  | &dbg_data->dbg); | 
|  | } | 
|  |  | 
|  | int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap) | 
|  | { | 
|  | CPUState *cpu = ENV_GET_CPU(env); | 
|  | struct kvm_set_guest_debug_data data; | 
|  |  | 
|  | data.dbg.control = reinject_trap; | 
|  |  | 
|  | if (env->singlestep_enabled) { | 
|  | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; | 
|  | } | 
|  | kvm_arch_update_guest_debug(cpu, &data.dbg); | 
|  | data.cpu = cpu; | 
|  |  | 
|  | run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data); | 
|  | return data.err; | 
|  | } | 
|  |  | 
|  | int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr, | 
|  | target_ulong len, int type) | 
|  | { | 
|  | CPUState *current_cpu = ENV_GET_CPU(current_env); | 
|  | struct kvm_sw_breakpoint *bp; | 
|  | CPUArchState *env; | 
|  | int err; | 
|  |  | 
|  | if (type == GDB_BREAKPOINT_SW) { | 
|  | bp = kvm_find_sw_breakpoint(current_cpu, addr); | 
|  | if (bp) { | 
|  | bp->use_count++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); | 
|  | if (!bp) { | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | bp->pc = addr; | 
|  | bp->use_count = 1; | 
|  | err = kvm_arch_insert_sw_breakpoint(current_cpu, bp); | 
|  | if (err) { | 
|  | g_free(bp); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | QTAILQ_INSERT_HEAD(¤t_cpu->kvm_state->kvm_sw_breakpoints, | 
|  | bp, entry); | 
|  | } else { | 
|  | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | 
|  | if (err) { | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | err = kvm_update_guest_debug(env, 0); | 
|  | if (err) { | 
|  | return err; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr, | 
|  | target_ulong len, int type) | 
|  | { | 
|  | CPUState *current_cpu = ENV_GET_CPU(current_env); | 
|  | struct kvm_sw_breakpoint *bp; | 
|  | CPUArchState *env; | 
|  | int err; | 
|  |  | 
|  | if (type == GDB_BREAKPOINT_SW) { | 
|  | bp = kvm_find_sw_breakpoint(current_cpu, addr); | 
|  | if (!bp) { | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | if (bp->use_count > 1) { | 
|  | bp->use_count--; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | err = kvm_arch_remove_sw_breakpoint(current_cpu, bp); | 
|  | if (err) { | 
|  | return err; | 
|  | } | 
|  |  | 
|  | QTAILQ_REMOVE(¤t_cpu->kvm_state->kvm_sw_breakpoints, bp, entry); | 
|  | g_free(bp); | 
|  | } else { | 
|  | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | 
|  | if (err) { | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | err = kvm_update_guest_debug(env, 0); | 
|  | if (err) { | 
|  | return err; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvm_remove_all_breakpoints(CPUArchState *current_env) | 
|  | { | 
|  | CPUState *current_cpu = ENV_GET_CPU(current_env); | 
|  | struct kvm_sw_breakpoint *bp, *next; | 
|  | KVMState *s = current_cpu->kvm_state; | 
|  | CPUArchState *env; | 
|  | CPUState *cpu; | 
|  |  | 
|  | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { | 
|  | if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) { | 
|  | /* Try harder to find a CPU that currently sees the breakpoint. */ | 
|  | for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | cpu = ENV_GET_CPU(env); | 
|  | if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); | 
|  | g_free(bp); | 
|  | } | 
|  | kvm_arch_remove_all_hw_breakpoints(); | 
|  |  | 
|  | for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
|  | kvm_update_guest_debug(env, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | 
|  |  | 
|  | int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr, | 
|  | target_ulong len, int type) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr, | 
|  | target_ulong len, int type) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | void kvm_remove_all_breakpoints(CPUArchState *current_env) | 
|  | { | 
|  | } | 
|  | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | 
|  |  | 
|  | int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset) | 
|  | { | 
|  | CPUState *cpu = ENV_GET_CPU(env); | 
|  | struct kvm_signal_mask *sigmask; | 
|  | int r; | 
|  |  | 
|  | if (!sigset) { | 
|  | return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL); | 
|  | } | 
|  |  | 
|  | sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); | 
|  |  | 
|  | sigmask->len = 8; | 
|  | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); | 
|  | r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); | 
|  | g_free(sigmask); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign, | 
|  | uint32_t size) | 
|  | { | 
|  | int ret; | 
|  | struct kvm_ioeventfd iofd; | 
|  |  | 
|  | iofd.datamatch = val; | 
|  | iofd.addr = addr; | 
|  | iofd.len = size; | 
|  | iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH; | 
|  | iofd.fd = fd; | 
|  |  | 
|  | if (!kvm_enabled()) { | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | if (!assign) { | 
|  | iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | 
|  | } | 
|  |  | 
|  | ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); | 
|  |  | 
|  | if (ret < 0) { | 
|  | return -errno; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign) | 
|  | { | 
|  | struct kvm_ioeventfd kick = { | 
|  | .datamatch = val, | 
|  | .addr = addr, | 
|  | .len = 2, | 
|  | .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO, | 
|  | .fd = fd, | 
|  | }; | 
|  | int r; | 
|  | if (!kvm_enabled()) { | 
|  | return -ENOSYS; | 
|  | } | 
|  | if (!assign) { | 
|  | kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | 
|  | } | 
|  | r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); | 
|  | if (r < 0) { | 
|  | return r; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) | 
|  | { | 
|  | return kvm_arch_on_sigbus_vcpu(cpu, code, addr); | 
|  | } | 
|  |  | 
|  | int kvm_on_sigbus(int code, void *addr) | 
|  | { | 
|  | return kvm_arch_on_sigbus(code, addr); | 
|  | } |