|  | /* | 
|  | *  Common CPU TLB handling | 
|  | * | 
|  | *  Copyright (c) 2003 Fabrice Bellard | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  |  | 
|  | #include "config.h" | 
|  | #include "cpu.h" | 
|  | #include "exec/exec-all.h" | 
|  | #include "exec/memory.h" | 
|  | #include "exec/address-spaces.h" | 
|  | #include "exec/cpu_ldst.h" | 
|  |  | 
|  | #include "exec/cputlb.h" | 
|  |  | 
|  | #include "exec/memory-internal.h" | 
|  | #include "exec/ram_addr.h" | 
|  | #include "tcg/tcg.h" | 
|  |  | 
|  | //#define DEBUG_TLB | 
|  | //#define DEBUG_TLB_CHECK | 
|  |  | 
|  | /* statistics */ | 
|  | int tlb_flush_count; | 
|  |  | 
|  | /* NOTE: | 
|  | * If flush_global is true (the usual case), flush all tlb entries. | 
|  | * If flush_global is false, flush (at least) all tlb entries not | 
|  | * marked global. | 
|  | * | 
|  | * Since QEMU doesn't currently implement a global/not-global flag | 
|  | * for tlb entries, at the moment tlb_flush() will also flush all | 
|  | * tlb entries in the flush_global == false case. This is OK because | 
|  | * CPU architectures generally permit an implementation to drop | 
|  | * entries from the TLB at any time, so flushing more entries than | 
|  | * required is only an efficiency issue, not a correctness issue. | 
|  | */ | 
|  | void tlb_flush(CPUState *cpu, int flush_global) | 
|  | { | 
|  | CPUArchState *env = cpu->env_ptr; | 
|  |  | 
|  | #if defined(DEBUG_TLB) | 
|  | printf("tlb_flush:\n"); | 
|  | #endif | 
|  | /* must reset current TB so that interrupts cannot modify the | 
|  | links while we are modifying them */ | 
|  | cpu->current_tb = NULL; | 
|  |  | 
|  | memset(env->tlb_table, -1, sizeof(env->tlb_table)); | 
|  | memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table)); | 
|  | memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache)); | 
|  |  | 
|  | env->vtlb_index = 0; | 
|  | env->tlb_flush_addr = -1; | 
|  | env->tlb_flush_mask = 0; | 
|  | tlb_flush_count++; | 
|  | } | 
|  |  | 
|  | static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) | 
|  | { | 
|  | if (addr == (tlb_entry->addr_read & | 
|  | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || | 
|  | addr == (tlb_entry->addr_write & | 
|  | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || | 
|  | addr == (tlb_entry->addr_code & | 
|  | (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | 
|  | memset(tlb_entry, -1, sizeof(*tlb_entry)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void tlb_flush_page(CPUState *cpu, target_ulong addr) | 
|  | { | 
|  | CPUArchState *env = cpu->env_ptr; | 
|  | int i; | 
|  | int mmu_idx; | 
|  |  | 
|  | #if defined(DEBUG_TLB) | 
|  | printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr); | 
|  | #endif | 
|  | /* Check if we need to flush due to large pages.  */ | 
|  | if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) { | 
|  | #if defined(DEBUG_TLB) | 
|  | printf("tlb_flush_page: forced full flush (" | 
|  | TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", | 
|  | env->tlb_flush_addr, env->tlb_flush_mask); | 
|  | #endif | 
|  | tlb_flush(cpu, 1); | 
|  | return; | 
|  | } | 
|  | /* must reset current TB so that interrupts cannot modify the | 
|  | links while we are modifying them */ | 
|  | cpu->current_tb = NULL; | 
|  |  | 
|  | addr &= TARGET_PAGE_MASK; | 
|  | i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | 
|  | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | 
|  | tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr); | 
|  | } | 
|  |  | 
|  | /* check whether there are entries that need to be flushed in the vtlb */ | 
|  | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | 
|  | int k; | 
|  | for (k = 0; k < CPU_VTLB_SIZE; k++) { | 
|  | tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr); | 
|  | } | 
|  | } | 
|  |  | 
|  | tb_flush_jmp_cache(cpu, addr); | 
|  | } | 
|  |  | 
|  | /* update the TLBs so that writes to code in the virtual page 'addr' | 
|  | can be detected */ | 
|  | void tlb_protect_code(ram_addr_t ram_addr) | 
|  | { | 
|  | cpu_physical_memory_reset_dirty(ram_addr, TARGET_PAGE_SIZE, | 
|  | DIRTY_MEMORY_CODE); | 
|  | } | 
|  |  | 
|  | /* update the TLB so that writes in physical page 'phys_addr' are no longer | 
|  | tested for self modifying code */ | 
|  | void tlb_unprotect_code_phys(CPUState *cpu, ram_addr_t ram_addr, | 
|  | target_ulong vaddr) | 
|  | { | 
|  | cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); | 
|  | } | 
|  |  | 
|  | static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe) | 
|  | { | 
|  | return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0; | 
|  | } | 
|  |  | 
|  | void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start, | 
|  | uintptr_t length) | 
|  | { | 
|  | uintptr_t addr; | 
|  |  | 
|  | if (tlb_is_dirty_ram(tlb_entry)) { | 
|  | addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; | 
|  | if ((addr - start) < length) { | 
|  | tlb_entry->addr_write |= TLB_NOTDIRTY; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) | 
|  | { | 
|  | ram_addr_t ram_addr; | 
|  |  | 
|  | if (qemu_ram_addr_from_host(ptr, &ram_addr) == NULL) { | 
|  | fprintf(stderr, "Bad ram pointer %p\n", ptr); | 
|  | abort(); | 
|  | } | 
|  | return ram_addr; | 
|  | } | 
|  |  | 
|  | void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length) | 
|  | { | 
|  | CPUState *cpu; | 
|  | CPUArchState *env; | 
|  |  | 
|  | CPU_FOREACH(cpu) { | 
|  | int mmu_idx; | 
|  |  | 
|  | env = cpu->env_ptr; | 
|  | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < CPU_TLB_SIZE; i++) { | 
|  | tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i], | 
|  | start1, length); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < CPU_VTLB_SIZE; i++) { | 
|  | tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i], | 
|  | start1, length); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) | 
|  | { | 
|  | if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { | 
|  | tlb_entry->addr_write = vaddr; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* update the TLB corresponding to virtual page vaddr | 
|  | so that it is no longer dirty */ | 
|  | void tlb_set_dirty(CPUArchState *env, target_ulong vaddr) | 
|  | { | 
|  | int i; | 
|  | int mmu_idx; | 
|  |  | 
|  | vaddr &= TARGET_PAGE_MASK; | 
|  | i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | 
|  | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | 
|  | tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr); | 
|  | } | 
|  |  | 
|  | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | 
|  | int k; | 
|  | for (k = 0; k < CPU_VTLB_SIZE; k++) { | 
|  | tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Our TLB does not support large pages, so remember the area covered by | 
|  | large pages and trigger a full TLB flush if these are invalidated.  */ | 
|  | static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr, | 
|  | target_ulong size) | 
|  | { | 
|  | target_ulong mask = ~(size - 1); | 
|  |  | 
|  | if (env->tlb_flush_addr == (target_ulong)-1) { | 
|  | env->tlb_flush_addr = vaddr & mask; | 
|  | env->tlb_flush_mask = mask; | 
|  | return; | 
|  | } | 
|  | /* Extend the existing region to include the new page. | 
|  | This is a compromise between unnecessary flushes and the cost | 
|  | of maintaining a full variable size TLB.  */ | 
|  | mask &= env->tlb_flush_mask; | 
|  | while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) { | 
|  | mask <<= 1; | 
|  | } | 
|  | env->tlb_flush_addr &= mask; | 
|  | env->tlb_flush_mask = mask; | 
|  | } | 
|  |  | 
|  | /* Add a new TLB entry. At most one entry for a given virtual address | 
|  | is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the | 
|  | supplied size is only used by tlb_flush_page.  */ | 
|  | void tlb_set_page(CPUState *cpu, target_ulong vaddr, | 
|  | hwaddr paddr, int prot, | 
|  | int mmu_idx, target_ulong size) | 
|  | { | 
|  | CPUArchState *env = cpu->env_ptr; | 
|  | MemoryRegionSection *section; | 
|  | unsigned int index; | 
|  | target_ulong address; | 
|  | target_ulong code_address; | 
|  | uintptr_t addend; | 
|  | CPUTLBEntry *te; | 
|  | hwaddr iotlb, xlat, sz; | 
|  | unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE; | 
|  |  | 
|  | assert(size >= TARGET_PAGE_SIZE); | 
|  | if (size != TARGET_PAGE_SIZE) { | 
|  | tlb_add_large_page(env, vaddr, size); | 
|  | } | 
|  |  | 
|  | sz = size; | 
|  | section = address_space_translate_for_iotlb(cpu->as, paddr, | 
|  | &xlat, &sz); | 
|  | assert(sz >= TARGET_PAGE_SIZE); | 
|  |  | 
|  | #if defined(DEBUG_TLB) | 
|  | printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx | 
|  | " prot=%x idx=%d\n", | 
|  | vaddr, paddr, prot, mmu_idx); | 
|  | #endif | 
|  |  | 
|  | address = vaddr; | 
|  | if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) { | 
|  | /* IO memory case */ | 
|  | address |= TLB_MMIO; | 
|  | addend = 0; | 
|  | } else { | 
|  | /* TLB_MMIO for rom/romd handled below */ | 
|  | addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; | 
|  | } | 
|  |  | 
|  | code_address = address; | 
|  | iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat, | 
|  | prot, &address); | 
|  |  | 
|  | index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | 
|  | te = &env->tlb_table[mmu_idx][index]; | 
|  |  | 
|  | /* do not discard the translation in te, evict it into a victim tlb */ | 
|  | env->tlb_v_table[mmu_idx][vidx] = *te; | 
|  | env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index]; | 
|  |  | 
|  | /* refill the tlb */ | 
|  | env->iotlb[mmu_idx][index] = iotlb - vaddr; | 
|  | te->addend = addend - vaddr; | 
|  | if (prot & PAGE_READ) { | 
|  | te->addr_read = address; | 
|  | } else { | 
|  | te->addr_read = -1; | 
|  | } | 
|  |  | 
|  | if (prot & PAGE_EXEC) { | 
|  | te->addr_code = code_address; | 
|  | } else { | 
|  | te->addr_code = -1; | 
|  | } | 
|  | if (prot & PAGE_WRITE) { | 
|  | if ((memory_region_is_ram(section->mr) && section->readonly) | 
|  | || memory_region_is_romd(section->mr)) { | 
|  | /* Write access calls the I/O callback.  */ | 
|  | te->addr_write = address | TLB_MMIO; | 
|  | } else if (memory_region_is_ram(section->mr) | 
|  | && cpu_physical_memory_is_clean(section->mr->ram_addr | 
|  | + xlat)) { | 
|  | te->addr_write = address | TLB_NOTDIRTY; | 
|  | } else { | 
|  | te->addr_write = address; | 
|  | } | 
|  | } else { | 
|  | te->addr_write = -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* NOTE: this function can trigger an exception */ | 
|  | /* NOTE2: the returned address is not exactly the physical address: it | 
|  | * is actually a ram_addr_t (in system mode; the user mode emulation | 
|  | * version of this function returns a guest virtual address). | 
|  | */ | 
|  | tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr) | 
|  | { | 
|  | int mmu_idx, page_index, pd; | 
|  | void *p; | 
|  | MemoryRegion *mr; | 
|  | CPUState *cpu = ENV_GET_CPU(env1); | 
|  |  | 
|  | page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | 
|  | mmu_idx = cpu_mmu_index(env1); | 
|  | if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code != | 
|  | (addr & TARGET_PAGE_MASK))) { | 
|  | cpu_ldub_code(env1, addr); | 
|  | } | 
|  | pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK; | 
|  | mr = iotlb_to_region(cpu->as, pd); | 
|  | if (memory_region_is_unassigned(mr)) { | 
|  | CPUClass *cc = CPU_GET_CLASS(cpu); | 
|  |  | 
|  | if (cc->do_unassigned_access) { | 
|  | cc->do_unassigned_access(cpu, addr, false, true, 0, 4); | 
|  | } else { | 
|  | cpu_abort(cpu, "Trying to execute code outside RAM or ROM at 0x" | 
|  | TARGET_FMT_lx "\n", addr); | 
|  | } | 
|  | } | 
|  | p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend); | 
|  | return qemu_ram_addr_from_host_nofail(p); | 
|  | } | 
|  |  | 
|  | #define MMUSUFFIX _mmu | 
|  |  | 
|  | #define SHIFT 0 | 
|  | #include "softmmu_template.h" | 
|  |  | 
|  | #define SHIFT 1 | 
|  | #include "softmmu_template.h" | 
|  |  | 
|  | #define SHIFT 2 | 
|  | #include "softmmu_template.h" | 
|  |  | 
|  | #define SHIFT 3 | 
|  | #include "softmmu_template.h" | 
|  | #undef MMUSUFFIX | 
|  |  | 
|  | #define MMUSUFFIX _cmmu | 
|  | #undef GETPC_ADJ | 
|  | #define GETPC_ADJ 0 | 
|  | #undef GETRA | 
|  | #define GETRA() ((uintptr_t)0) | 
|  | #define SOFTMMU_CODE_ACCESS | 
|  |  | 
|  | #define SHIFT 0 | 
|  | #include "softmmu_template.h" | 
|  |  | 
|  | #define SHIFT 1 | 
|  | #include "softmmu_template.h" | 
|  |  | 
|  | #define SHIFT 2 | 
|  | #include "softmmu_template.h" | 
|  |  | 
|  | #define SHIFT 3 | 
|  | #include "softmmu_template.h" |