| /* | 
 |  * QEMU KVM support | 
 |  * | 
 |  * Copyright IBM, Corp. 2008 | 
 |  *           Red Hat, Inc. 2008 | 
 |  * | 
 |  * Authors: | 
 |  *  Anthony Liguori   <aliguori@us.ibm.com> | 
 |  *  Glauber Costa     <gcosta@redhat.com> | 
 |  * | 
 |  * This work is licensed under the terms of the GNU GPL, version 2 or later. | 
 |  * See the COPYING file in the top-level directory. | 
 |  * | 
 |  */ | 
 |  | 
 | #include <sys/types.h> | 
 | #include <sys/ioctl.h> | 
 | #include <sys/mman.h> | 
 | #include <stdarg.h> | 
 |  | 
 | #include <linux/kvm.h> | 
 |  | 
 | #include "qemu-common.h" | 
 | #include "qemu-barrier.h" | 
 | #include "sysemu.h" | 
 | #include "hw/hw.h" | 
 | #include "gdbstub.h" | 
 | #include "kvm.h" | 
 | #include "bswap.h" | 
 |  | 
 | /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */ | 
 | #define PAGE_SIZE TARGET_PAGE_SIZE | 
 |  | 
 | //#define DEBUG_KVM | 
 |  | 
 | #ifdef DEBUG_KVM | 
 | #define DPRINTF(fmt, ...) \ | 
 |     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) | 
 | #else | 
 | #define DPRINTF(fmt, ...) \ | 
 |     do { } while (0) | 
 | #endif | 
 |  | 
 | typedef struct KVMSlot | 
 | { | 
 |     target_phys_addr_t start_addr; | 
 |     ram_addr_t memory_size; | 
 |     ram_addr_t phys_offset; | 
 |     int slot; | 
 |     int flags; | 
 | } KVMSlot; | 
 |  | 
 | typedef struct kvm_dirty_log KVMDirtyLog; | 
 |  | 
 | struct KVMState | 
 | { | 
 |     KVMSlot slots[32]; | 
 |     int fd; | 
 |     int vmfd; | 
 |     int coalesced_mmio; | 
 | #ifdef KVM_CAP_COALESCED_MMIO | 
 |     struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; | 
 | #endif | 
 |     int broken_set_mem_region; | 
 |     int migration_log; | 
 |     int vcpu_events; | 
 |     int robust_singlestep; | 
 |     int debugregs; | 
 | #ifdef KVM_CAP_SET_GUEST_DEBUG | 
 |     struct kvm_sw_breakpoint_head kvm_sw_breakpoints; | 
 | #endif | 
 |     int irqchip_in_kernel; | 
 |     int pit_in_kernel; | 
 |     int xsave, xcrs; | 
 | }; | 
 |  | 
 | static KVMState *kvm_state; | 
 |  | 
 | static KVMSlot *kvm_alloc_slot(KVMState *s) | 
 | { | 
 |     int i; | 
 |  | 
 |     for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | 
 |         /* KVM private memory slots */ | 
 |         if (i >= 8 && i < 12) | 
 |             continue; | 
 |         if (s->slots[i].memory_size == 0) | 
 |             return &s->slots[i]; | 
 |     } | 
 |  | 
 |     fprintf(stderr, "%s: no free slot available\n", __func__); | 
 |     abort(); | 
 | } | 
 |  | 
 | static KVMSlot *kvm_lookup_matching_slot(KVMState *s, | 
 |                                          target_phys_addr_t start_addr, | 
 |                                          target_phys_addr_t end_addr) | 
 | { | 
 |     int i; | 
 |  | 
 |     for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | 
 |         KVMSlot *mem = &s->slots[i]; | 
 |  | 
 |         if (start_addr == mem->start_addr && | 
 |             end_addr == mem->start_addr + mem->memory_size) { | 
 |             return mem; | 
 |         } | 
 |     } | 
 |  | 
 |     return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Find overlapping slot with lowest start address | 
 |  */ | 
 | static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, | 
 |                                             target_phys_addr_t start_addr, | 
 |                                             target_phys_addr_t end_addr) | 
 | { | 
 |     KVMSlot *found = NULL; | 
 |     int i; | 
 |  | 
 |     for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | 
 |         KVMSlot *mem = &s->slots[i]; | 
 |  | 
 |         if (mem->memory_size == 0 || | 
 |             (found && found->start_addr < mem->start_addr)) { | 
 |             continue; | 
 |         } | 
 |  | 
 |         if (end_addr > mem->start_addr && | 
 |             start_addr < mem->start_addr + mem->memory_size) { | 
 |             found = mem; | 
 |         } | 
 |     } | 
 |  | 
 |     return found; | 
 | } | 
 |  | 
 | static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) | 
 | { | 
 |     struct kvm_userspace_memory_region mem; | 
 |  | 
 |     mem.slot = slot->slot; | 
 |     mem.guest_phys_addr = slot->start_addr; | 
 |     mem.memory_size = slot->memory_size; | 
 |     mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset); | 
 |     mem.flags = slot->flags; | 
 |     if (s->migration_log) { | 
 |         mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; | 
 |     } | 
 |     return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); | 
 | } | 
 |  | 
 | static void kvm_reset_vcpu(void *opaque) | 
 | { | 
 |     CPUState *env = opaque; | 
 |  | 
 |     kvm_arch_reset_vcpu(env); | 
 | } | 
 |  | 
 | int kvm_irqchip_in_kernel(void) | 
 | { | 
 |     return kvm_state->irqchip_in_kernel; | 
 | } | 
 |  | 
 | int kvm_pit_in_kernel(void) | 
 | { | 
 |     return kvm_state->pit_in_kernel; | 
 | } | 
 |  | 
 |  | 
 | int kvm_init_vcpu(CPUState *env) | 
 | { | 
 |     KVMState *s = kvm_state; | 
 |     long mmap_size; | 
 |     int ret; | 
 |  | 
 |     DPRINTF("kvm_init_vcpu\n"); | 
 |  | 
 |     ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index); | 
 |     if (ret < 0) { | 
 |         DPRINTF("kvm_create_vcpu failed\n"); | 
 |         goto err; | 
 |     } | 
 |  | 
 |     env->kvm_fd = ret; | 
 |     env->kvm_state = s; | 
 |  | 
 |     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | 
 |     if (mmap_size < 0) { | 
 |         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); | 
 |         goto err; | 
 |     } | 
 |  | 
 |     env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, | 
 |                         env->kvm_fd, 0); | 
 |     if (env->kvm_run == MAP_FAILED) { | 
 |         ret = -errno; | 
 |         DPRINTF("mmap'ing vcpu state failed\n"); | 
 |         goto err; | 
 |     } | 
 |  | 
 | #ifdef KVM_CAP_COALESCED_MMIO | 
 |     if (s->coalesced_mmio && !s->coalesced_mmio_ring) | 
 |         s->coalesced_mmio_ring = (void *) env->kvm_run + | 
 | 		s->coalesced_mmio * PAGE_SIZE; | 
 | #endif | 
 |  | 
 |     ret = kvm_arch_init_vcpu(env); | 
 |     if (ret == 0) { | 
 |         qemu_register_reset(kvm_reset_vcpu, env); | 
 |         kvm_arch_reset_vcpu(env); | 
 |     } | 
 | err: | 
 |     return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * dirty pages logging control | 
 |  */ | 
 | static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr, | 
 |                                       ram_addr_t size, int flags, int mask) | 
 | { | 
 |     KVMState *s = kvm_state; | 
 |     KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); | 
 |     int old_flags; | 
 |  | 
 |     if (mem == NULL)  { | 
 |             fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" | 
 |                     TARGET_FMT_plx "\n", __func__, phys_addr, | 
 |                     (target_phys_addr_t)(phys_addr + size - 1)); | 
 |             return -EINVAL; | 
 |     } | 
 |  | 
 |     old_flags = mem->flags; | 
 |  | 
 |     flags = (mem->flags & ~mask) | flags; | 
 |     mem->flags = flags; | 
 |  | 
 |     /* If nothing changed effectively, no need to issue ioctl */ | 
 |     if (s->migration_log) { | 
 |         flags |= KVM_MEM_LOG_DIRTY_PAGES; | 
 |     } | 
 |     if (flags == old_flags) { | 
 |             return 0; | 
 |     } | 
 |  | 
 |     return kvm_set_user_memory_region(s, mem); | 
 | } | 
 |  | 
 | int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size) | 
 | { | 
 |         return kvm_dirty_pages_log_change(phys_addr, size, | 
 |                                           KVM_MEM_LOG_DIRTY_PAGES, | 
 |                                           KVM_MEM_LOG_DIRTY_PAGES); | 
 | } | 
 |  | 
 | int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size) | 
 | { | 
 |         return kvm_dirty_pages_log_change(phys_addr, size, | 
 |                                           0, | 
 |                                           KVM_MEM_LOG_DIRTY_PAGES); | 
 | } | 
 |  | 
 | static int kvm_set_migration_log(int enable) | 
 | { | 
 |     KVMState *s = kvm_state; | 
 |     KVMSlot *mem; | 
 |     int i, err; | 
 |  | 
 |     s->migration_log = enable; | 
 |  | 
 |     for (i = 0; i < ARRAY_SIZE(s->slots); i++) { | 
 |         mem = &s->slots[i]; | 
 |  | 
 |         if (!mem->memory_size) { | 
 |             continue; | 
 |         } | 
 |         if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { | 
 |             continue; | 
 |         } | 
 |         err = kvm_set_user_memory_region(s, mem); | 
 |         if (err) { | 
 |             return err; | 
 |         } | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | /* get kvm's dirty pages bitmap and update qemu's */ | 
 | static int kvm_get_dirty_pages_log_range(unsigned long start_addr, | 
 |                                          unsigned long *bitmap, | 
 |                                          unsigned long offset, | 
 |                                          unsigned long mem_size) | 
 | { | 
 |     unsigned int i, j; | 
 |     unsigned long page_number, addr, addr1, c; | 
 |     ram_addr_t ram_addr; | 
 |     unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / | 
 |         HOST_LONG_BITS; | 
 |  | 
 |     /* | 
 |      * bitmap-traveling is faster than memory-traveling (for addr...) | 
 |      * especially when most of the memory is not dirty. | 
 |      */ | 
 |     for (i = 0; i < len; i++) { | 
 |         if (bitmap[i] != 0) { | 
 |             c = leul_to_cpu(bitmap[i]); | 
 |             do { | 
 |                 j = ffsl(c) - 1; | 
 |                 c &= ~(1ul << j); | 
 |                 page_number = i * HOST_LONG_BITS + j; | 
 |                 addr1 = page_number * TARGET_PAGE_SIZE; | 
 |                 addr = offset + addr1; | 
 |                 ram_addr = cpu_get_physical_page_desc(addr); | 
 |                 cpu_physical_memory_set_dirty(ram_addr); | 
 |             } while (c != 0); | 
 |         } | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1)) | 
 |  | 
 | /** | 
 |  * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space | 
 |  * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty(). | 
 |  * This means all bits are set to dirty. | 
 |  * | 
 |  * @start_add: start of logged region. | 
 |  * @end_addr: end of logged region. | 
 |  */ | 
 | static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, | 
 | 					  target_phys_addr_t end_addr) | 
 | { | 
 |     KVMState *s = kvm_state; | 
 |     unsigned long size, allocated_size = 0; | 
 |     KVMDirtyLog d; | 
 |     KVMSlot *mem; | 
 |     int ret = 0; | 
 |  | 
 |     d.dirty_bitmap = NULL; | 
 |     while (start_addr < end_addr) { | 
 |         mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); | 
 |         if (mem == NULL) { | 
 |             break; | 
 |         } | 
 |  | 
 |         size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8; | 
 |         if (!d.dirty_bitmap) { | 
 |             d.dirty_bitmap = qemu_malloc(size); | 
 |         } else if (size > allocated_size) { | 
 |             d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size); | 
 |         } | 
 |         allocated_size = size; | 
 |         memset(d.dirty_bitmap, 0, allocated_size); | 
 |  | 
 |         d.slot = mem->slot; | 
 |  | 
 |         if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { | 
 |             DPRINTF("ioctl failed %d\n", errno); | 
 |             ret = -1; | 
 |             break; | 
 |         } | 
 |  | 
 |         kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap, | 
 |                                       mem->start_addr, mem->memory_size); | 
 |         start_addr = mem->start_addr + mem->memory_size; | 
 |     } | 
 |     qemu_free(d.dirty_bitmap); | 
 |  | 
 |     return ret; | 
 | } | 
 |  | 
 | int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) | 
 | { | 
 |     int ret = -ENOSYS; | 
 | #ifdef KVM_CAP_COALESCED_MMIO | 
 |     KVMState *s = kvm_state; | 
 |  | 
 |     if (s->coalesced_mmio) { | 
 |         struct kvm_coalesced_mmio_zone zone; | 
 |  | 
 |         zone.addr = start; | 
 |         zone.size = size; | 
 |  | 
 |         ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); | 
 |     } | 
 | #endif | 
 |  | 
 |     return ret; | 
 | } | 
 |  | 
 | int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) | 
 | { | 
 |     int ret = -ENOSYS; | 
 | #ifdef KVM_CAP_COALESCED_MMIO | 
 |     KVMState *s = kvm_state; | 
 |  | 
 |     if (s->coalesced_mmio) { | 
 |         struct kvm_coalesced_mmio_zone zone; | 
 |  | 
 |         zone.addr = start; | 
 |         zone.size = size; | 
 |  | 
 |         ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); | 
 |     } | 
 | #endif | 
 |  | 
 |     return ret; | 
 | } | 
 |  | 
 | int kvm_check_extension(KVMState *s, unsigned int extension) | 
 | { | 
 |     int ret; | 
 |  | 
 |     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | 
 |     if (ret < 0) { | 
 |         ret = 0; | 
 |     } | 
 |  | 
 |     return ret; | 
 | } | 
 |  | 
 | static void kvm_set_phys_mem(target_phys_addr_t start_addr, | 
 | 			     ram_addr_t size, | 
 | 			     ram_addr_t phys_offset) | 
 | { | 
 |     KVMState *s = kvm_state; | 
 |     ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK; | 
 |     KVMSlot *mem, old; | 
 |     int err; | 
 |  | 
 |     /* kvm works in page size chunks, but the function may be called | 
 |        with sub-page size and unaligned start address. */ | 
 |     size = TARGET_PAGE_ALIGN(size); | 
 |     start_addr = TARGET_PAGE_ALIGN(start_addr); | 
 |  | 
 |     /* KVM does not support read-only slots */ | 
 |     phys_offset &= ~IO_MEM_ROM; | 
 |  | 
 |     while (1) { | 
 |         mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); | 
 |         if (!mem) { | 
 |             break; | 
 |         } | 
 |  | 
 |         if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr && | 
 |             (start_addr + size <= mem->start_addr + mem->memory_size) && | 
 |             (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) { | 
 |             /* The new slot fits into the existing one and comes with | 
 |              * identical parameters - nothing to be done. */ | 
 |             return; | 
 |         } | 
 |  | 
 |         old = *mem; | 
 |  | 
 |         /* unregister the overlapping slot */ | 
 |         mem->memory_size = 0; | 
 |         err = kvm_set_user_memory_region(s, mem); | 
 |         if (err) { | 
 |             fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", | 
 |                     __func__, strerror(-err)); | 
 |             abort(); | 
 |         } | 
 |  | 
 |         /* Workaround for older KVM versions: we can't join slots, even not by | 
 |          * unregistering the previous ones and then registering the larger | 
 |          * slot. We have to maintain the existing fragmentation. Sigh. | 
 |          * | 
 |          * This workaround assumes that the new slot starts at the same | 
 |          * address as the first existing one. If not or if some overlapping | 
 |          * slot comes around later, we will fail (not seen in practice so far) | 
 |          * - and actually require a recent KVM version. */ | 
 |         if (s->broken_set_mem_region && | 
 |             old.start_addr == start_addr && old.memory_size < size && | 
 |             flags < IO_MEM_UNASSIGNED) { | 
 |             mem = kvm_alloc_slot(s); | 
 |             mem->memory_size = old.memory_size; | 
 |             mem->start_addr = old.start_addr; | 
 |             mem->phys_offset = old.phys_offset; | 
 |             mem->flags = 0; | 
 |  | 
 |             err = kvm_set_user_memory_region(s, mem); | 
 |             if (err) { | 
 |                 fprintf(stderr, "%s: error updating slot: %s\n", __func__, | 
 |                         strerror(-err)); | 
 |                 abort(); | 
 |             } | 
 |  | 
 |             start_addr += old.memory_size; | 
 |             phys_offset += old.memory_size; | 
 |             size -= old.memory_size; | 
 |             continue; | 
 |         } | 
 |  | 
 |         /* register prefix slot */ | 
 |         if (old.start_addr < start_addr) { | 
 |             mem = kvm_alloc_slot(s); | 
 |             mem->memory_size = start_addr - old.start_addr; | 
 |             mem->start_addr = old.start_addr; | 
 |             mem->phys_offset = old.phys_offset; | 
 |             mem->flags = 0; | 
 |  | 
 |             err = kvm_set_user_memory_region(s, mem); | 
 |             if (err) { | 
 |                 fprintf(stderr, "%s: error registering prefix slot: %s\n", | 
 |                         __func__, strerror(-err)); | 
 |                 abort(); | 
 |             } | 
 |         } | 
 |  | 
 |         /* register suffix slot */ | 
 |         if (old.start_addr + old.memory_size > start_addr + size) { | 
 |             ram_addr_t size_delta; | 
 |  | 
 |             mem = kvm_alloc_slot(s); | 
 |             mem->start_addr = start_addr + size; | 
 |             size_delta = mem->start_addr - old.start_addr; | 
 |             mem->memory_size = old.memory_size - size_delta; | 
 |             mem->phys_offset = old.phys_offset + size_delta; | 
 |             mem->flags = 0; | 
 |  | 
 |             err = kvm_set_user_memory_region(s, mem); | 
 |             if (err) { | 
 |                 fprintf(stderr, "%s: error registering suffix slot: %s\n", | 
 |                         __func__, strerror(-err)); | 
 |                 abort(); | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     /* in case the KVM bug workaround already "consumed" the new slot */ | 
 |     if (!size) | 
 |         return; | 
 |  | 
 |     /* KVM does not need to know about this memory */ | 
 |     if (flags >= IO_MEM_UNASSIGNED) | 
 |         return; | 
 |  | 
 |     mem = kvm_alloc_slot(s); | 
 |     mem->memory_size = size; | 
 |     mem->start_addr = start_addr; | 
 |     mem->phys_offset = phys_offset; | 
 |     mem->flags = 0; | 
 |  | 
 |     err = kvm_set_user_memory_region(s, mem); | 
 |     if (err) { | 
 |         fprintf(stderr, "%s: error registering slot: %s\n", __func__, | 
 |                 strerror(-err)); | 
 |         abort(); | 
 |     } | 
 | } | 
 |  | 
 | static void kvm_client_set_memory(struct CPUPhysMemoryClient *client, | 
 | 				  target_phys_addr_t start_addr, | 
 | 				  ram_addr_t size, | 
 | 				  ram_addr_t phys_offset) | 
 | { | 
 | 	kvm_set_phys_mem(start_addr, size, phys_offset); | 
 | } | 
 |  | 
 | static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client, | 
 | 					target_phys_addr_t start_addr, | 
 | 					target_phys_addr_t end_addr) | 
 | { | 
 | 	return kvm_physical_sync_dirty_bitmap(start_addr, end_addr); | 
 | } | 
 |  | 
 | static int kvm_client_migration_log(struct CPUPhysMemoryClient *client, | 
 | 				    int enable) | 
 | { | 
 | 	return kvm_set_migration_log(enable); | 
 | } | 
 |  | 
 | static CPUPhysMemoryClient kvm_cpu_phys_memory_client = { | 
 | 	.set_memory = kvm_client_set_memory, | 
 | 	.sync_dirty_bitmap = kvm_client_sync_dirty_bitmap, | 
 | 	.migration_log = kvm_client_migration_log, | 
 | }; | 
 |  | 
 | int kvm_init(int smp_cpus) | 
 | { | 
 |     static const char upgrade_note[] = | 
 |         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | 
 |         "(see http://sourceforge.net/projects/kvm).\n"; | 
 |     KVMState *s; | 
 |     int ret; | 
 |     int i; | 
 |  | 
 |     s = qemu_mallocz(sizeof(KVMState)); | 
 |  | 
 | #ifdef KVM_CAP_SET_GUEST_DEBUG | 
 |     QTAILQ_INIT(&s->kvm_sw_breakpoints); | 
 | #endif | 
 |     for (i = 0; i < ARRAY_SIZE(s->slots); i++) | 
 |         s->slots[i].slot = i; | 
 |  | 
 |     s->vmfd = -1; | 
 |     s->fd = qemu_open("/dev/kvm", O_RDWR); | 
 |     if (s->fd == -1) { | 
 |         fprintf(stderr, "Could not access KVM kernel module: %m\n"); | 
 |         ret = -errno; | 
 |         goto err; | 
 |     } | 
 |  | 
 |     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | 
 |     if (ret < KVM_API_VERSION) { | 
 |         if (ret > 0) | 
 |             ret = -EINVAL; | 
 |         fprintf(stderr, "kvm version too old\n"); | 
 |         goto err; | 
 |     } | 
 |  | 
 |     if (ret > KVM_API_VERSION) { | 
 |         ret = -EINVAL; | 
 |         fprintf(stderr, "kvm version not supported\n"); | 
 |         goto err; | 
 |     } | 
 |  | 
 |     s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); | 
 |     if (s->vmfd < 0) { | 
 | #ifdef TARGET_S390X | 
 |         fprintf(stderr, "Please add the 'switch_amode' kernel parameter to " | 
 |                         "your host kernel command line\n"); | 
 | #endif | 
 |         goto err; | 
 |     } | 
 |  | 
 |     /* initially, KVM allocated its own memory and we had to jump through | 
 |      * hooks to make phys_ram_base point to this.  Modern versions of KVM | 
 |      * just use a user allocated buffer so we can use regular pages | 
 |      * unmodified.  Make sure we have a sufficiently modern version of KVM. | 
 |      */ | 
 |     if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) { | 
 |         ret = -EINVAL; | 
 |         fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s", | 
 |                 upgrade_note); | 
 |         goto err; | 
 |     } | 
 |  | 
 |     /* There was a nasty bug in < kvm-80 that prevents memory slots from being | 
 |      * destroyed properly.  Since we rely on this capability, refuse to work | 
 |      * with any kernel without this capability. */ | 
 |     if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) { | 
 |         ret = -EINVAL; | 
 |  | 
 |         fprintf(stderr, | 
 |                 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s", | 
 |                 upgrade_note); | 
 |         goto err; | 
 |     } | 
 |  | 
 |     s->coalesced_mmio = 0; | 
 | #ifdef KVM_CAP_COALESCED_MMIO | 
 |     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); | 
 |     s->coalesced_mmio_ring = NULL; | 
 | #endif | 
 |  | 
 |     s->broken_set_mem_region = 1; | 
 | #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS | 
 |     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); | 
 |     if (ret > 0) { | 
 |         s->broken_set_mem_region = 0; | 
 |     } | 
 | #endif | 
 |  | 
 |     s->vcpu_events = 0; | 
 | #ifdef KVM_CAP_VCPU_EVENTS | 
 |     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | 
 | #endif | 
 |  | 
 |     s->robust_singlestep = 0; | 
 | #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP | 
 |     s->robust_singlestep = | 
 |         kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); | 
 | #endif | 
 |  | 
 |     s->debugregs = 0; | 
 | #ifdef KVM_CAP_DEBUGREGS | 
 |     s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); | 
 | #endif | 
 |  | 
 |     s->xsave = 0; | 
 | #ifdef KVM_CAP_XSAVE | 
 |     s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); | 
 | #endif | 
 |  | 
 |     s->xcrs = 0; | 
 | #ifdef KVM_CAP_XCRS | 
 |     s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); | 
 | #endif | 
 |  | 
 |     ret = kvm_arch_init(s, smp_cpus); | 
 |     if (ret < 0) | 
 |         goto err; | 
 |  | 
 |     kvm_state = s; | 
 |     cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client); | 
 |  | 
 |     return 0; | 
 |  | 
 | err: | 
 |     if (s) { | 
 |         if (s->vmfd != -1) | 
 |             close(s->vmfd); | 
 |         if (s->fd != -1) | 
 |             close(s->fd); | 
 |     } | 
 |     qemu_free(s); | 
 |  | 
 |     return ret; | 
 | } | 
 |  | 
 | static int kvm_handle_io(uint16_t port, void *data, int direction, int size, | 
 |                          uint32_t count) | 
 | { | 
 |     int i; | 
 |     uint8_t *ptr = data; | 
 |  | 
 |     for (i = 0; i < count; i++) { | 
 |         if (direction == KVM_EXIT_IO_IN) { | 
 |             switch (size) { | 
 |             case 1: | 
 |                 stb_p(ptr, cpu_inb(port)); | 
 |                 break; | 
 |             case 2: | 
 |                 stw_p(ptr, cpu_inw(port)); | 
 |                 break; | 
 |             case 4: | 
 |                 stl_p(ptr, cpu_inl(port)); | 
 |                 break; | 
 |             } | 
 |         } else { | 
 |             switch (size) { | 
 |             case 1: | 
 |                 cpu_outb(port, ldub_p(ptr)); | 
 |                 break; | 
 |             case 2: | 
 |                 cpu_outw(port, lduw_p(ptr)); | 
 |                 break; | 
 |             case 4: | 
 |                 cpu_outl(port, ldl_p(ptr)); | 
 |                 break; | 
 |             } | 
 |         } | 
 |  | 
 |         ptr += size; | 
 |     } | 
 |  | 
 |     return 1; | 
 | } | 
 |  | 
 | #ifdef KVM_CAP_INTERNAL_ERROR_DATA | 
 | static void kvm_handle_internal_error(CPUState *env, struct kvm_run *run) | 
 | { | 
 |  | 
 |     if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { | 
 |         int i; | 
 |  | 
 |         fprintf(stderr, "KVM internal error. Suberror: %d\n", | 
 |                 run->internal.suberror); | 
 |  | 
 |         for (i = 0; i < run->internal.ndata; ++i) { | 
 |             fprintf(stderr, "extra data[%d]: %"PRIx64"\n", | 
 |                     i, (uint64_t)run->internal.data[i]); | 
 |         } | 
 |     } | 
 |     cpu_dump_state(env, stderr, fprintf, 0); | 
 |     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { | 
 |         fprintf(stderr, "emulation failure\n"); | 
 |         if (!kvm_arch_stop_on_emulation_error(env)) | 
 | 		return; | 
 |     } | 
 |     /* FIXME: Should trigger a qmp message to let management know | 
 |      * something went wrong. | 
 |      */ | 
 |     vm_stop(0); | 
 | } | 
 | #endif | 
 |  | 
 | void kvm_flush_coalesced_mmio_buffer(void) | 
 | { | 
 | #ifdef KVM_CAP_COALESCED_MMIO | 
 |     KVMState *s = kvm_state; | 
 |     if (s->coalesced_mmio_ring) { | 
 |         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | 
 |         while (ring->first != ring->last) { | 
 |             struct kvm_coalesced_mmio *ent; | 
 |  | 
 |             ent = &ring->coalesced_mmio[ring->first]; | 
 |  | 
 |             cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | 
 |             smp_wmb(); | 
 |             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; | 
 |         } | 
 |     } | 
 | #endif | 
 | } | 
 |  | 
 | static void do_kvm_cpu_synchronize_state(void *_env) | 
 | { | 
 |     CPUState *env = _env; | 
 |  | 
 |     if (!env->kvm_vcpu_dirty) { | 
 |         kvm_arch_get_registers(env); | 
 |         env->kvm_vcpu_dirty = 1; | 
 |     } | 
 | } | 
 |  | 
 | void kvm_cpu_synchronize_state(CPUState *env) | 
 | { | 
 |     if (!env->kvm_vcpu_dirty) | 
 |         run_on_cpu(env, do_kvm_cpu_synchronize_state, env); | 
 | } | 
 |  | 
 | void kvm_cpu_synchronize_post_reset(CPUState *env) | 
 | { | 
 |     kvm_arch_put_registers(env, KVM_PUT_RESET_STATE); | 
 |     env->kvm_vcpu_dirty = 0; | 
 | } | 
 |  | 
 | void kvm_cpu_synchronize_post_init(CPUState *env) | 
 | { | 
 |     kvm_arch_put_registers(env, KVM_PUT_FULL_STATE); | 
 |     env->kvm_vcpu_dirty = 0; | 
 | } | 
 |  | 
 | int kvm_cpu_exec(CPUState *env) | 
 | { | 
 |     struct kvm_run *run = env->kvm_run; | 
 |     int ret; | 
 |  | 
 |     DPRINTF("kvm_cpu_exec()\n"); | 
 |  | 
 |     do { | 
 | #ifndef CONFIG_IOTHREAD | 
 |         if (env->exit_request) { | 
 |             DPRINTF("interrupt exit requested\n"); | 
 |             ret = 0; | 
 |             break; | 
 |         } | 
 | #endif | 
 |  | 
 |         if (kvm_arch_process_irqchip_events(env)) { | 
 |             ret = 0; | 
 |             break; | 
 |         } | 
 |  | 
 |         if (env->kvm_vcpu_dirty) { | 
 |             kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE); | 
 |             env->kvm_vcpu_dirty = 0; | 
 |         } | 
 |  | 
 |         kvm_arch_pre_run(env, run); | 
 |         cpu_single_env = NULL; | 
 |         qemu_mutex_unlock_iothread(); | 
 |         ret = kvm_vcpu_ioctl(env, KVM_RUN, 0); | 
 |         qemu_mutex_lock_iothread(); | 
 |         cpu_single_env = env; | 
 |         kvm_arch_post_run(env, run); | 
 |  | 
 |         if (ret == -EINTR || ret == -EAGAIN) { | 
 |             cpu_exit(env); | 
 |             DPRINTF("io window exit\n"); | 
 |             ret = 0; | 
 |             break; | 
 |         } | 
 |  | 
 |         if (ret < 0) { | 
 |             DPRINTF("kvm run failed %s\n", strerror(-ret)); | 
 |             abort(); | 
 |         } | 
 |  | 
 |         kvm_flush_coalesced_mmio_buffer(); | 
 |  | 
 |         ret = 0; /* exit loop */ | 
 |         switch (run->exit_reason) { | 
 |         case KVM_EXIT_IO: | 
 |             DPRINTF("handle_io\n"); | 
 |             ret = kvm_handle_io(run->io.port, | 
 |                                 (uint8_t *)run + run->io.data_offset, | 
 |                                 run->io.direction, | 
 |                                 run->io.size, | 
 |                                 run->io.count); | 
 |             break; | 
 |         case KVM_EXIT_MMIO: | 
 |             DPRINTF("handle_mmio\n"); | 
 |             cpu_physical_memory_rw(run->mmio.phys_addr, | 
 |                                    run->mmio.data, | 
 |                                    run->mmio.len, | 
 |                                    run->mmio.is_write); | 
 |             ret = 1; | 
 |             break; | 
 |         case KVM_EXIT_IRQ_WINDOW_OPEN: | 
 |             DPRINTF("irq_window_open\n"); | 
 |             break; | 
 |         case KVM_EXIT_SHUTDOWN: | 
 |             DPRINTF("shutdown\n"); | 
 |             qemu_system_reset_request(); | 
 |             ret = 1; | 
 |             break; | 
 |         case KVM_EXIT_UNKNOWN: | 
 |             DPRINTF("kvm_exit_unknown\n"); | 
 |             break; | 
 |         case KVM_EXIT_FAIL_ENTRY: | 
 |             DPRINTF("kvm_exit_fail_entry\n"); | 
 |             break; | 
 |         case KVM_EXIT_EXCEPTION: | 
 |             DPRINTF("kvm_exit_exception\n"); | 
 |             break; | 
 | #ifdef KVM_CAP_INTERNAL_ERROR_DATA | 
 |         case KVM_EXIT_INTERNAL_ERROR: | 
 |             kvm_handle_internal_error(env, run); | 
 |             break; | 
 | #endif | 
 |         case KVM_EXIT_DEBUG: | 
 |             DPRINTF("kvm_exit_debug\n"); | 
 | #ifdef KVM_CAP_SET_GUEST_DEBUG | 
 |             if (kvm_arch_debug(&run->debug.arch)) { | 
 |                 env->exception_index = EXCP_DEBUG; | 
 |                 return 0; | 
 |             } | 
 |             /* re-enter, this exception was guest-internal */ | 
 |             ret = 1; | 
 | #endif /* KVM_CAP_SET_GUEST_DEBUG */ | 
 |             break; | 
 |         default: | 
 |             DPRINTF("kvm_arch_handle_exit\n"); | 
 |             ret = kvm_arch_handle_exit(env, run); | 
 |             break; | 
 |         } | 
 |     } while (ret > 0); | 
 |  | 
 |     if (env->exit_request) { | 
 |         env->exit_request = 0; | 
 |         env->exception_index = EXCP_INTERRUPT; | 
 |     } | 
 |  | 
 |     return ret; | 
 | } | 
 |  | 
 | int kvm_ioctl(KVMState *s, int type, ...) | 
 | { | 
 |     int ret; | 
 |     void *arg; | 
 |     va_list ap; | 
 |  | 
 |     va_start(ap, type); | 
 |     arg = va_arg(ap, void *); | 
 |     va_end(ap); | 
 |  | 
 |     ret = ioctl(s->fd, type, arg); | 
 |     if (ret == -1) | 
 |         ret = -errno; | 
 |  | 
 |     return ret; | 
 | } | 
 |  | 
 | int kvm_vm_ioctl(KVMState *s, int type, ...) | 
 | { | 
 |     int ret; | 
 |     void *arg; | 
 |     va_list ap; | 
 |  | 
 |     va_start(ap, type); | 
 |     arg = va_arg(ap, void *); | 
 |     va_end(ap); | 
 |  | 
 |     ret = ioctl(s->vmfd, type, arg); | 
 |     if (ret == -1) | 
 |         ret = -errno; | 
 |  | 
 |     return ret; | 
 | } | 
 |  | 
 | int kvm_vcpu_ioctl(CPUState *env, int type, ...) | 
 | { | 
 |     int ret; | 
 |     void *arg; | 
 |     va_list ap; | 
 |  | 
 |     va_start(ap, type); | 
 |     arg = va_arg(ap, void *); | 
 |     va_end(ap); | 
 |  | 
 |     ret = ioctl(env->kvm_fd, type, arg); | 
 |     if (ret == -1) | 
 |         ret = -errno; | 
 |  | 
 |     return ret; | 
 | } | 
 |  | 
 | int kvm_has_sync_mmu(void) | 
 | { | 
 | #ifdef KVM_CAP_SYNC_MMU | 
 |     KVMState *s = kvm_state; | 
 |  | 
 |     return kvm_check_extension(s, KVM_CAP_SYNC_MMU); | 
 | #else | 
 |     return 0; | 
 | #endif | 
 | } | 
 |  | 
 | int kvm_has_vcpu_events(void) | 
 | { | 
 |     return kvm_state->vcpu_events; | 
 | } | 
 |  | 
 | int kvm_has_robust_singlestep(void) | 
 | { | 
 |     return kvm_state->robust_singlestep; | 
 | } | 
 |  | 
 | int kvm_has_debugregs(void) | 
 | { | 
 |     return kvm_state->debugregs; | 
 | } | 
 |  | 
 | int kvm_has_xsave(void) | 
 | { | 
 |     return kvm_state->xsave; | 
 | } | 
 |  | 
 | int kvm_has_xcrs(void) | 
 | { | 
 |     return kvm_state->xcrs; | 
 | } | 
 |  | 
 | void kvm_setup_guest_memory(void *start, size_t size) | 
 | { | 
 |     if (!kvm_has_sync_mmu()) { | 
 |         int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); | 
 |  | 
 |         if (ret) { | 
 |             perror("qemu_madvise"); | 
 |             fprintf(stderr, | 
 |                     "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); | 
 |             exit(1); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | #ifdef KVM_CAP_SET_GUEST_DEBUG | 
 | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env, | 
 |                                                  target_ulong pc) | 
 | { | 
 |     struct kvm_sw_breakpoint *bp; | 
 |  | 
 |     QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) { | 
 |         if (bp->pc == pc) | 
 |             return bp; | 
 |     } | 
 |     return NULL; | 
 | } | 
 |  | 
 | int kvm_sw_breakpoints_active(CPUState *env) | 
 | { | 
 |     return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints); | 
 | } | 
 |  | 
 | struct kvm_set_guest_debug_data { | 
 |     struct kvm_guest_debug dbg; | 
 |     CPUState *env; | 
 |     int err; | 
 | }; | 
 |  | 
 | static void kvm_invoke_set_guest_debug(void *data) | 
 | { | 
 |     struct kvm_set_guest_debug_data *dbg_data = data; | 
 |     CPUState *env = dbg_data->env; | 
 |  | 
 |     dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg); | 
 | } | 
 |  | 
 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) | 
 | { | 
 |     struct kvm_set_guest_debug_data data; | 
 |  | 
 |     data.dbg.control = reinject_trap; | 
 |  | 
 |     if (env->singlestep_enabled) { | 
 |         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; | 
 |     } | 
 |     kvm_arch_update_guest_debug(env, &data.dbg); | 
 |     data.env = env; | 
 |  | 
 |     run_on_cpu(env, kvm_invoke_set_guest_debug, &data); | 
 |     return data.err; | 
 | } | 
 |  | 
 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, | 
 |                           target_ulong len, int type) | 
 | { | 
 |     struct kvm_sw_breakpoint *bp; | 
 |     CPUState *env; | 
 |     int err; | 
 |  | 
 |     if (type == GDB_BREAKPOINT_SW) { | 
 |         bp = kvm_find_sw_breakpoint(current_env, addr); | 
 |         if (bp) { | 
 |             bp->use_count++; | 
 |             return 0; | 
 |         } | 
 |  | 
 |         bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint)); | 
 |         if (!bp) | 
 |             return -ENOMEM; | 
 |  | 
 |         bp->pc = addr; | 
 |         bp->use_count = 1; | 
 |         err = kvm_arch_insert_sw_breakpoint(current_env, bp); | 
 |         if (err) { | 
 |             free(bp); | 
 |             return err; | 
 |         } | 
 |  | 
 |         QTAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints, | 
 |                           bp, entry); | 
 |     } else { | 
 |         err = kvm_arch_insert_hw_breakpoint(addr, len, type); | 
 |         if (err) | 
 |             return err; | 
 |     } | 
 |  | 
 |     for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
 |         err = kvm_update_guest_debug(env, 0); | 
 |         if (err) | 
 |             return err; | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, | 
 |                           target_ulong len, int type) | 
 | { | 
 |     struct kvm_sw_breakpoint *bp; | 
 |     CPUState *env; | 
 |     int err; | 
 |  | 
 |     if (type == GDB_BREAKPOINT_SW) { | 
 |         bp = kvm_find_sw_breakpoint(current_env, addr); | 
 |         if (!bp) | 
 |             return -ENOENT; | 
 |  | 
 |         if (bp->use_count > 1) { | 
 |             bp->use_count--; | 
 |             return 0; | 
 |         } | 
 |  | 
 |         err = kvm_arch_remove_sw_breakpoint(current_env, bp); | 
 |         if (err) | 
 |             return err; | 
 |  | 
 |         QTAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry); | 
 |         qemu_free(bp); | 
 |     } else { | 
 |         err = kvm_arch_remove_hw_breakpoint(addr, len, type); | 
 |         if (err) | 
 |             return err; | 
 |     } | 
 |  | 
 |     for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
 |         err = kvm_update_guest_debug(env, 0); | 
 |         if (err) | 
 |             return err; | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | void kvm_remove_all_breakpoints(CPUState *current_env) | 
 | { | 
 |     struct kvm_sw_breakpoint *bp, *next; | 
 |     KVMState *s = current_env->kvm_state; | 
 |     CPUState *env; | 
 |  | 
 |     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { | 
 |         if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) { | 
 |             /* Try harder to find a CPU that currently sees the breakpoint. */ | 
 |             for (env = first_cpu; env != NULL; env = env->next_cpu) { | 
 |                 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) | 
 |                     break; | 
 |             } | 
 |         } | 
 |     } | 
 |     kvm_arch_remove_all_hw_breakpoints(); | 
 |  | 
 |     for (env = first_cpu; env != NULL; env = env->next_cpu) | 
 |         kvm_update_guest_debug(env, 0); | 
 | } | 
 |  | 
 | #else /* !KVM_CAP_SET_GUEST_DEBUG */ | 
 |  | 
 | int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) | 
 | { | 
 |     return -EINVAL; | 
 | } | 
 |  | 
 | int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, | 
 |                           target_ulong len, int type) | 
 | { | 
 |     return -EINVAL; | 
 | } | 
 |  | 
 | int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, | 
 |                           target_ulong len, int type) | 
 | { | 
 |     return -EINVAL; | 
 | } | 
 |  | 
 | void kvm_remove_all_breakpoints(CPUState *current_env) | 
 | { | 
 | } | 
 | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | 
 |  | 
 | int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset) | 
 | { | 
 |     struct kvm_signal_mask *sigmask; | 
 |     int r; | 
 |  | 
 |     if (!sigset) | 
 |         return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL); | 
 |  | 
 |     sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset)); | 
 |  | 
 |     sigmask->len = 8; | 
 |     memcpy(sigmask->sigset, sigset, sizeof(*sigset)); | 
 |     r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask); | 
 |     free(sigmask); | 
 |  | 
 |     return r; | 
 | } | 
 |  | 
 | int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign) | 
 | { | 
 | #ifdef KVM_IOEVENTFD | 
 |     int ret; | 
 |     struct kvm_ioeventfd iofd; | 
 |  | 
 |     iofd.datamatch = val; | 
 |     iofd.addr = addr; | 
 |     iofd.len = 4; | 
 |     iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH; | 
 |     iofd.fd = fd; | 
 |  | 
 |     if (!kvm_enabled()) { | 
 |         return -ENOSYS; | 
 |     } | 
 |  | 
 |     if (!assign) { | 
 |         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | 
 |     } | 
 |  | 
 |     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); | 
 |  | 
 |     if (ret < 0) { | 
 |         return -errno; | 
 |     } | 
 |  | 
 |     return 0; | 
 | #else | 
 |     return -ENOSYS; | 
 | #endif | 
 | } | 
 |  | 
 | int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign) | 
 | { | 
 | #ifdef KVM_IOEVENTFD | 
 |     struct kvm_ioeventfd kick = { | 
 |         .datamatch = val, | 
 |         .addr = addr, | 
 |         .len = 2, | 
 |         .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO, | 
 |         .fd = fd, | 
 |     }; | 
 |     int r; | 
 |     if (!kvm_enabled()) | 
 |         return -ENOSYS; | 
 |     if (!assign) | 
 |         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | 
 |     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); | 
 |     if (r < 0) | 
 |         return r; | 
 |     return 0; | 
 | #else | 
 |     return -ENOSYS; | 
 | #endif | 
 | } |