| /* |
| * Software MMU support |
| * |
| * Generate helpers used by TCG for qemu_ld/st ops and code load |
| * functions. |
| * |
| * Included from target op helpers and exec.c. |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/timer.h" |
| #include "exec/address-spaces.h" |
| #include "exec/memory.h" |
| |
| #define DATA_SIZE (1 << SHIFT) |
| |
| #if DATA_SIZE == 8 |
| #define SUFFIX q |
| #define LSUFFIX q |
| #define SDATA_TYPE int64_t |
| #define DATA_TYPE uint64_t |
| #elif DATA_SIZE == 4 |
| #define SUFFIX l |
| #define LSUFFIX l |
| #define SDATA_TYPE int32_t |
| #define DATA_TYPE uint32_t |
| #elif DATA_SIZE == 2 |
| #define SUFFIX w |
| #define LSUFFIX uw |
| #define SDATA_TYPE int16_t |
| #define DATA_TYPE uint16_t |
| #elif DATA_SIZE == 1 |
| #define SUFFIX b |
| #define LSUFFIX ub |
| #define SDATA_TYPE int8_t |
| #define DATA_TYPE uint8_t |
| #else |
| #error unsupported data size |
| #endif |
| |
| |
| /* For the benefit of TCG generated code, we want to avoid the complication |
| of ABI-specific return type promotion and always return a value extended |
| to the register size of the host. This is tcg_target_long, except in the |
| case of a 32-bit host and 64-bit data, and for that we always have |
| uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */ |
| #if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8 |
| # define WORD_TYPE DATA_TYPE |
| # define USUFFIX SUFFIX |
| #else |
| # define WORD_TYPE tcg_target_ulong |
| # define USUFFIX glue(u, SUFFIX) |
| # define SSUFFIX glue(s, SUFFIX) |
| #endif |
| |
| #ifdef SOFTMMU_CODE_ACCESS |
| #define READ_ACCESS_TYPE MMU_INST_FETCH |
| #define ADDR_READ addr_code |
| #else |
| #define READ_ACCESS_TYPE MMU_DATA_LOAD |
| #define ADDR_READ addr_read |
| #endif |
| |
| #if DATA_SIZE == 8 |
| # define BSWAP(X) bswap64(X) |
| #elif DATA_SIZE == 4 |
| # define BSWAP(X) bswap32(X) |
| #elif DATA_SIZE == 2 |
| # define BSWAP(X) bswap16(X) |
| #else |
| # define BSWAP(X) (X) |
| #endif |
| |
| #ifdef TARGET_WORDS_BIGENDIAN |
| # define TGT_BE(X) (X) |
| # define TGT_LE(X) BSWAP(X) |
| #else |
| # define TGT_BE(X) BSWAP(X) |
| # define TGT_LE(X) (X) |
| #endif |
| |
| #if DATA_SIZE == 1 |
| # define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX) |
| # define helper_be_ld_name helper_le_ld_name |
| # define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX) |
| # define helper_be_lds_name helper_le_lds_name |
| # define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX) |
| # define helper_be_st_name helper_le_st_name |
| #else |
| # define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX) |
| # define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX) |
| # define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX) |
| # define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX) |
| # define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX) |
| # define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX) |
| #endif |
| |
| #ifdef TARGET_WORDS_BIGENDIAN |
| # define helper_te_ld_name helper_be_ld_name |
| # define helper_te_st_name helper_be_st_name |
| #else |
| # define helper_te_ld_name helper_le_ld_name |
| # define helper_te_st_name helper_le_st_name |
| #endif |
| |
| #ifndef SOFTMMU_CODE_ACCESS |
| static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env, |
| CPUIOTLBEntry *iotlbentry, |
| target_ulong addr, |
| uintptr_t retaddr) |
| { |
| uint64_t val; |
| CPUState *cpu = ENV_GET_CPU(env); |
| hwaddr physaddr = iotlbentry->addr; |
| MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs); |
| |
| physaddr = (physaddr & TARGET_PAGE_MASK) + addr; |
| cpu->mem_io_pc = retaddr; |
| if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { |
| cpu_io_recompile(cpu, retaddr); |
| } |
| |
| cpu->mem_io_vaddr = addr; |
| memory_region_dispatch_read(mr, physaddr, &val, 1 << SHIFT, |
| iotlbentry->attrs); |
| return val; |
| } |
| #endif |
| |
| WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| unsigned mmu_idx = get_mmuidx(oi); |
| int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
| target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; |
| int a_bits = get_alignment_bits(get_memop(oi)); |
| uintptr_t haddr; |
| DATA_TYPE res; |
| |
| /* Adjust the given return address. */ |
| retaddr -= GETPC_ADJ; |
| |
| if (a_bits > 0 && (addr & ((1 << a_bits) - 1)) != 0) { |
| cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, |
| mmu_idx, retaddr, DATA_SIZE); |
| } |
| |
| /* If the TLB entry is for a different page, reload and try again. */ |
| if ((addr & TARGET_PAGE_MASK) |
| != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { |
| if (!VICTIM_TLB_HIT(ADDR_READ, addr)) { |
| tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, |
| mmu_idx, retaddr); |
| } |
| tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; |
| } |
| |
| /* Handle an IO access. */ |
| if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { |
| CPUIOTLBEntry *iotlbentry; |
| if ((addr & (DATA_SIZE - 1)) != 0) { |
| goto do_unaligned_access; |
| } |
| iotlbentry = &env->iotlb[mmu_idx][index]; |
| |
| /* ??? Note that the io helpers always read data in the target |
| byte ordering. We should push the LE/BE request down into io. */ |
| res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr); |
| res = TGT_LE(res); |
| return res; |
| } |
| |
| /* Handle slow unaligned access (it spans two pages or IO). */ |
| if (DATA_SIZE > 1 |
| && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 |
| >= TARGET_PAGE_SIZE)) { |
| target_ulong addr1, addr2; |
| DATA_TYPE res1, res2; |
| unsigned shift; |
| do_unaligned_access: |
| addr1 = addr & ~(DATA_SIZE - 1); |
| addr2 = addr1 + DATA_SIZE; |
| /* Note the adjustment at the beginning of the function. |
| Undo that for the recursion. */ |
| res1 = helper_le_ld_name(env, addr1, oi, retaddr + GETPC_ADJ); |
| res2 = helper_le_ld_name(env, addr2, oi, retaddr + GETPC_ADJ); |
| shift = (addr & (DATA_SIZE - 1)) * 8; |
| |
| /* Little-endian combine. */ |
| res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift)); |
| return res; |
| } |
| |
| haddr = addr + env->tlb_table[mmu_idx][index].addend; |
| #if DATA_SIZE == 1 |
| res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr); |
| #else |
| res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr); |
| #endif |
| return res; |
| } |
| |
| #if DATA_SIZE > 1 |
| WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| unsigned mmu_idx = get_mmuidx(oi); |
| int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
| target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; |
| int a_bits = get_alignment_bits(get_memop(oi)); |
| uintptr_t haddr; |
| DATA_TYPE res; |
| |
| /* Adjust the given return address. */ |
| retaddr -= GETPC_ADJ; |
| |
| if (a_bits > 0 && (addr & ((1 << a_bits) - 1)) != 0) { |
| cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, |
| mmu_idx, retaddr, DATA_SIZE); |
| } |
| |
| /* If the TLB entry is for a different page, reload and try again. */ |
| if ((addr & TARGET_PAGE_MASK) |
| != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { |
| if (!VICTIM_TLB_HIT(ADDR_READ, addr)) { |
| tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, |
| mmu_idx, retaddr); |
| } |
| tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; |
| } |
| |
| /* Handle an IO access. */ |
| if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { |
| CPUIOTLBEntry *iotlbentry; |
| if ((addr & (DATA_SIZE - 1)) != 0) { |
| goto do_unaligned_access; |
| } |
| iotlbentry = &env->iotlb[mmu_idx][index]; |
| |
| /* ??? Note that the io helpers always read data in the target |
| byte ordering. We should push the LE/BE request down into io. */ |
| res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr); |
| res = TGT_BE(res); |
| return res; |
| } |
| |
| /* Handle slow unaligned access (it spans two pages or IO). */ |
| if (DATA_SIZE > 1 |
| && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 |
| >= TARGET_PAGE_SIZE)) { |
| target_ulong addr1, addr2; |
| DATA_TYPE res1, res2; |
| unsigned shift; |
| do_unaligned_access: |
| addr1 = addr & ~(DATA_SIZE - 1); |
| addr2 = addr1 + DATA_SIZE; |
| /* Note the adjustment at the beginning of the function. |
| Undo that for the recursion. */ |
| res1 = helper_be_ld_name(env, addr1, oi, retaddr + GETPC_ADJ); |
| res2 = helper_be_ld_name(env, addr2, oi, retaddr + GETPC_ADJ); |
| shift = (addr & (DATA_SIZE - 1)) * 8; |
| |
| /* Big-endian combine. */ |
| res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift)); |
| return res; |
| } |
| |
| haddr = addr + env->tlb_table[mmu_idx][index].addend; |
| res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr); |
| return res; |
| } |
| #endif /* DATA_SIZE > 1 */ |
| |
| #ifndef SOFTMMU_CODE_ACCESS |
| |
| /* Provide signed versions of the load routines as well. We can of course |
| avoid this for 64-bit data, or for 32-bit data on 32-bit host. */ |
| #if DATA_SIZE * 8 < TCG_TARGET_REG_BITS |
| WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return (SDATA_TYPE)helper_le_ld_name(env, addr, oi, retaddr); |
| } |
| |
| # if DATA_SIZE > 1 |
| WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| return (SDATA_TYPE)helper_be_ld_name(env, addr, oi, retaddr); |
| } |
| # endif |
| #endif |
| |
| static inline void glue(io_write, SUFFIX)(CPUArchState *env, |
| CPUIOTLBEntry *iotlbentry, |
| DATA_TYPE val, |
| target_ulong addr, |
| uintptr_t retaddr) |
| { |
| CPUState *cpu = ENV_GET_CPU(env); |
| hwaddr physaddr = iotlbentry->addr; |
| MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs); |
| |
| physaddr = (physaddr & TARGET_PAGE_MASK) + addr; |
| if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { |
| cpu_io_recompile(cpu, retaddr); |
| } |
| |
| cpu->mem_io_vaddr = addr; |
| cpu->mem_io_pc = retaddr; |
| memory_region_dispatch_write(mr, physaddr, val, 1 << SHIFT, |
| iotlbentry->attrs); |
| } |
| |
| void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| unsigned mmu_idx = get_mmuidx(oi); |
| int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
| target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; |
| int a_bits = get_alignment_bits(get_memop(oi)); |
| uintptr_t haddr; |
| |
| /* Adjust the given return address. */ |
| retaddr -= GETPC_ADJ; |
| |
| if (a_bits > 0 && (addr & ((1 << a_bits) - 1)) != 0) { |
| cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, |
| mmu_idx, retaddr, DATA_SIZE); |
| } |
| |
| /* If the TLB entry is for a different page, reload and try again. */ |
| if ((addr & TARGET_PAGE_MASK) |
| != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { |
| if (!VICTIM_TLB_HIT(addr_write, addr)) { |
| tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); |
| } |
| tlb_addr = env->tlb_table[mmu_idx][index].addr_write; |
| } |
| |
| /* Handle an IO access. */ |
| if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { |
| CPUIOTLBEntry *iotlbentry; |
| if ((addr & (DATA_SIZE - 1)) != 0) { |
| goto do_unaligned_access; |
| } |
| iotlbentry = &env->iotlb[mmu_idx][index]; |
| |
| /* ??? Note that the io helpers always read data in the target |
| byte ordering. We should push the LE/BE request down into io. */ |
| val = TGT_LE(val); |
| glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr); |
| return; |
| } |
| |
| /* Handle slow unaligned access (it spans two pages or IO). */ |
| if (DATA_SIZE > 1 |
| && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 |
| >= TARGET_PAGE_SIZE)) { |
| int i, index2; |
| target_ulong page2, tlb_addr2; |
| do_unaligned_access: |
| /* Ensure the second page is in the TLB. Note that the first page |
| is already guaranteed to be filled, and that the second page |
| cannot evict the first. */ |
| page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK; |
| index2 = (page2 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
| tlb_addr2 = env->tlb_table[mmu_idx][index2].addr_write; |
| if (page2 != (tlb_addr2 & (TARGET_PAGE_MASK | TLB_INVALID_MASK)) |
| && !VICTIM_TLB_HIT(addr_write, page2)) { |
| tlb_fill(ENV_GET_CPU(env), page2, MMU_DATA_STORE, |
| mmu_idx, retaddr); |
| } |
| |
| /* XXX: not efficient, but simple. */ |
| /* This loop must go in the forward direction to avoid issues |
| with self-modifying code in Windows 64-bit. */ |
| for (i = 0; i < DATA_SIZE; ++i) { |
| /* Little-endian extract. */ |
| uint8_t val8 = val >> (i * 8); |
| /* Note the adjustment at the beginning of the function. |
| Undo that for the recursion. */ |
| glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8, |
| oi, retaddr + GETPC_ADJ); |
| } |
| return; |
| } |
| |
| haddr = addr + env->tlb_table[mmu_idx][index].addend; |
| #if DATA_SIZE == 1 |
| glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val); |
| #else |
| glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val); |
| #endif |
| } |
| |
| #if DATA_SIZE > 1 |
| void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val, |
| TCGMemOpIdx oi, uintptr_t retaddr) |
| { |
| unsigned mmu_idx = get_mmuidx(oi); |
| int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
| target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; |
| int a_bits = get_alignment_bits(get_memop(oi)); |
| uintptr_t haddr; |
| |
| /* Adjust the given return address. */ |
| retaddr -= GETPC_ADJ; |
| |
| if (a_bits > 0 && (addr & ((1 << a_bits) - 1)) != 0) { |
| cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, |
| mmu_idx, retaddr, DATA_SIZE); |
| } |
| |
| /* If the TLB entry is for a different page, reload and try again. */ |
| if ((addr & TARGET_PAGE_MASK) |
| != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { |
| if (!VICTIM_TLB_HIT(addr_write, addr)) { |
| tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); |
| } |
| tlb_addr = env->tlb_table[mmu_idx][index].addr_write; |
| } |
| |
| /* Handle an IO access. */ |
| if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { |
| CPUIOTLBEntry *iotlbentry; |
| if ((addr & (DATA_SIZE - 1)) != 0) { |
| goto do_unaligned_access; |
| } |
| iotlbentry = &env->iotlb[mmu_idx][index]; |
| |
| /* ??? Note that the io helpers always read data in the target |
| byte ordering. We should push the LE/BE request down into io. */ |
| val = TGT_BE(val); |
| glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr); |
| return; |
| } |
| |
| /* Handle slow unaligned access (it spans two pages or IO). */ |
| if (DATA_SIZE > 1 |
| && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 |
| >= TARGET_PAGE_SIZE)) { |
| int i, index2; |
| target_ulong page2, tlb_addr2; |
| do_unaligned_access: |
| /* Ensure the second page is in the TLB. Note that the first page |
| is already guaranteed to be filled, and that the second page |
| cannot evict the first. */ |
| page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK; |
| index2 = (page2 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
| tlb_addr2 = env->tlb_table[mmu_idx][index2].addr_write; |
| if (page2 != (tlb_addr2 & (TARGET_PAGE_MASK | TLB_INVALID_MASK)) |
| && !VICTIM_TLB_HIT(addr_write, page2)) { |
| tlb_fill(ENV_GET_CPU(env), page2, MMU_DATA_STORE, |
| mmu_idx, retaddr); |
| } |
| |
| /* XXX: not efficient, but simple */ |
| /* This loop must go in the forward direction to avoid issues |
| with self-modifying code. */ |
| for (i = 0; i < DATA_SIZE; ++i) { |
| /* Big-endian extract. */ |
| uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8)); |
| /* Note the adjustment at the beginning of the function. |
| Undo that for the recursion. */ |
| glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8, |
| oi, retaddr + GETPC_ADJ); |
| } |
| return; |
| } |
| |
| haddr = addr + env->tlb_table[mmu_idx][index].addend; |
| glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val); |
| } |
| #endif /* DATA_SIZE > 1 */ |
| |
| #if DATA_SIZE == 1 |
| /* Probe for whether the specified guest write access is permitted. |
| * If it is not permitted then an exception will be taken in the same |
| * way as if this were a real write access (and we will not return). |
| * Otherwise the function will return, and there will be a valid |
| * entry in the TLB for this access. |
| */ |
| void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx, |
| uintptr_t retaddr) |
| { |
| int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
| target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; |
| |
| if ((addr & TARGET_PAGE_MASK) |
| != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { |
| /* TLB entry is for a different page */ |
| if (!VICTIM_TLB_HIT(addr_write, addr)) { |
| tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); |
| } |
| } |
| } |
| #endif |
| #endif /* !defined(SOFTMMU_CODE_ACCESS) */ |
| |
| #undef READ_ACCESS_TYPE |
| #undef SHIFT |
| #undef DATA_TYPE |
| #undef SUFFIX |
| #undef LSUFFIX |
| #undef DATA_SIZE |
| #undef ADDR_READ |
| #undef WORD_TYPE |
| #undef SDATA_TYPE |
| #undef USUFFIX |
| #undef SSUFFIX |
| #undef BSWAP |
| #undef TGT_BE |
| #undef TGT_LE |
| #undef CPU_BE |
| #undef CPU_LE |
| #undef helper_le_ld_name |
| #undef helper_be_ld_name |
| #undef helper_le_lds_name |
| #undef helper_be_lds_name |
| #undef helper_le_st_name |
| #undef helper_be_st_name |
| #undef helper_te_ld_name |
| #undef helper_te_st_name |