blob: 720a97b1d15ed96a52f2ba0faea0e85e4c94035c [file] [log] [blame] [edit]
/*
* SH4 emulation
*
* Copyright (c) 2005 Samuel Tardieu
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <assert.h>
#include <stdlib.h>
#include "cpu.h"
#include "helper.h"
#ifndef CONFIG_USER_ONLY
#include "exec/softmmu_exec.h"
#define MMUSUFFIX _mmu
#define SHIFT 0
#include "exec/softmmu_template.h"
#define SHIFT 1
#include "exec/softmmu_template.h"
#define SHIFT 2
#include "exec/softmmu_template.h"
#define SHIFT 3
#include "exec/softmmu_template.h"
void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx,
uintptr_t retaddr)
{
int ret;
ret = superh_cpu_handle_mmu_fault(cs, addr, is_write, mmu_idx);
if (ret) {
/* now we have a real cpu fault */
if (retaddr) {
cpu_restore_state(cs, retaddr);
}
cpu_loop_exit(cs);
}
}
#endif
void helper_ldtlb(CPUSH4State *env)
{
#ifdef CONFIG_USER_ONLY
SuperHCPU *cpu = sh_env_get_cpu(env);
/* XXXXX */
cpu_abort(CPU(cpu), "Unhandled ldtlb");
#else
cpu_load_tlb(env);
#endif
}
static inline void QEMU_NORETURN raise_exception(CPUSH4State *env, int index,
uintptr_t retaddr)
{
CPUState *cs = CPU(sh_env_get_cpu(env));
cs->exception_index = index;
if (retaddr) {
cpu_restore_state(cs, retaddr);
}
cpu_loop_exit(cs);
}
void helper_raise_illegal_instruction(CPUSH4State *env)
{
raise_exception(env, 0x180, 0);
}
void helper_raise_slot_illegal_instruction(CPUSH4State *env)
{
raise_exception(env, 0x1a0, 0);
}
void helper_raise_fpu_disable(CPUSH4State *env)
{
raise_exception(env, 0x800, 0);
}
void helper_raise_slot_fpu_disable(CPUSH4State *env)
{
raise_exception(env, 0x820, 0);
}
void helper_debug(CPUSH4State *env)
{
raise_exception(env, EXCP_DEBUG, 0);
}
void helper_sleep(CPUSH4State *env)
{
CPUState *cs = CPU(sh_env_get_cpu(env));
cs->halted = 1;
env->in_sleep = 1;
raise_exception(env, EXCP_HLT, 0);
}
void helper_trapa(CPUSH4State *env, uint32_t tra)
{
env->tra = tra << 2;
raise_exception(env, 0x160, 0);
}
void helper_movcal(CPUSH4State *env, uint32_t address, uint32_t value)
{
if (cpu_sh4_is_cached (env, address))
{
memory_content *r = malloc (sizeof(memory_content));
r->address = address;
r->value = value;
r->next = NULL;
*(env->movcal_backup_tail) = r;
env->movcal_backup_tail = &(r->next);
}
}
void helper_discard_movcal_backup(CPUSH4State *env)
{
memory_content *current = env->movcal_backup;
while(current)
{
memory_content *next = current->next;
free (current);
env->movcal_backup = current = next;
if (current == NULL)
env->movcal_backup_tail = &(env->movcal_backup);
}
}
void helper_ocbi(CPUSH4State *env, uint32_t address)
{
memory_content **current = &(env->movcal_backup);
while (*current)
{
uint32_t a = (*current)->address;
if ((a & ~0x1F) == (address & ~0x1F))
{
memory_content *next = (*current)->next;
cpu_stl_data(env, a, (*current)->value);
if (next == NULL)
{
env->movcal_backup_tail = current;
}
free (*current);
*current = next;
break;
}
}
}
#define T (env->sr & SR_T)
#define Q (env->sr & SR_Q ? 1 : 0)
#define M (env->sr & SR_M ? 1 : 0)
#define SETT env->sr |= SR_T
#define CLRT env->sr &= ~SR_T
#define SETQ env->sr |= SR_Q
#define CLRQ env->sr &= ~SR_Q
#define SETM env->sr |= SR_M
#define CLRM env->sr &= ~SR_M
uint32_t helper_div1(CPUSH4State *env, uint32_t arg0, uint32_t arg1)
{
uint32_t tmp0, tmp2;
uint8_t old_q, tmp1 = 0xff;
//printf("div1 arg0=0x%08x arg1=0x%08x M=%d Q=%d T=%d\n", arg0, arg1, M, Q, T);
old_q = Q;
if ((0x80000000 & arg1) != 0)
SETQ;
else
CLRQ;
tmp2 = arg0;
arg1 <<= 1;
arg1 |= T;
switch (old_q) {
case 0:
switch (M) {
case 0:
tmp0 = arg1;
arg1 -= tmp2;
tmp1 = arg1 > tmp0;
switch (Q) {
case 0:
if (tmp1)
SETQ;
else
CLRQ;
break;
case 1:
if (tmp1 == 0)
SETQ;
else
CLRQ;
break;
}
break;
case 1:
tmp0 = arg1;
arg1 += tmp2;
tmp1 = arg1 < tmp0;
switch (Q) {
case 0:
if (tmp1 == 0)
SETQ;
else
CLRQ;
break;
case 1:
if (tmp1)
SETQ;
else
CLRQ;
break;
}
break;
}
break;
case 1:
switch (M) {
case 0:
tmp0 = arg1;
arg1 += tmp2;
tmp1 = arg1 < tmp0;
switch (Q) {
case 0:
if (tmp1)
SETQ;
else
CLRQ;
break;
case 1:
if (tmp1 == 0)
SETQ;
else
CLRQ;
break;
}
break;
case 1:
tmp0 = arg1;
arg1 -= tmp2;
tmp1 = arg1 > tmp0;
switch (Q) {
case 0:
if (tmp1 == 0)
SETQ;
else
CLRQ;
break;
case 1:
if (tmp1)
SETQ;
else
CLRQ;
break;
}
break;
}
break;
}
if (Q == M)
SETT;
else
CLRT;
//printf("Output: arg1=0x%08x M=%d Q=%d T=%d\n", arg1, M, Q, T);
return arg1;
}
void helper_macl(CPUSH4State *env, uint32_t arg0, uint32_t arg1)
{
int64_t res;
res = ((uint64_t) env->mach << 32) | env->macl;
res += (int64_t) (int32_t) arg0 *(int64_t) (int32_t) arg1;
env->mach = (res >> 32) & 0xffffffff;
env->macl = res & 0xffffffff;
if (env->sr & SR_S) {
if (res < 0)
env->mach |= 0xffff0000;
else
env->mach &= 0x00007fff;
}
}
void helper_macw(CPUSH4State *env, uint32_t arg0, uint32_t arg1)
{
int64_t res;
res = ((uint64_t) env->mach << 32) | env->macl;
res += (int64_t) (int16_t) arg0 *(int64_t) (int16_t) arg1;
env->mach = (res >> 32) & 0xffffffff;
env->macl = res & 0xffffffff;
if (env->sr & SR_S) {
if (res < -0x80000000) {
env->mach = 1;
env->macl = 0x80000000;
} else if (res > 0x000000007fffffff) {
env->mach = 1;
env->macl = 0x7fffffff;
}
}
}
static inline void set_t(CPUSH4State *env)
{
env->sr |= SR_T;
}
static inline void clr_t(CPUSH4State *env)
{
env->sr &= ~SR_T;
}
void helper_ld_fpscr(CPUSH4State *env, uint32_t val)
{
env->fpscr = val & FPSCR_MASK;
if ((val & FPSCR_RM_MASK) == FPSCR_RM_ZERO) {
set_float_rounding_mode(float_round_to_zero, &env->fp_status);
} else {
set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
}
set_flush_to_zero((val & FPSCR_DN) != 0, &env->fp_status);
}
static void update_fpscr(CPUSH4State *env, uintptr_t retaddr)
{
int xcpt, cause, enable;
xcpt = get_float_exception_flags(&env->fp_status);
/* Clear the flag entries */
env->fpscr &= ~FPSCR_FLAG_MASK;
if (unlikely(xcpt)) {
if (xcpt & float_flag_invalid) {
env->fpscr |= FPSCR_FLAG_V;
}
if (xcpt & float_flag_divbyzero) {
env->fpscr |= FPSCR_FLAG_Z;
}
if (xcpt & float_flag_overflow) {
env->fpscr |= FPSCR_FLAG_O;
}
if (xcpt & float_flag_underflow) {
env->fpscr |= FPSCR_FLAG_U;
}
if (xcpt & float_flag_inexact) {
env->fpscr |= FPSCR_FLAG_I;
}
/* Accumulate in cause entries */
env->fpscr |= (env->fpscr & FPSCR_FLAG_MASK)
<< (FPSCR_CAUSE_SHIFT - FPSCR_FLAG_SHIFT);
/* Generate an exception if enabled */
cause = (env->fpscr & FPSCR_CAUSE_MASK) >> FPSCR_CAUSE_SHIFT;
enable = (env->fpscr & FPSCR_ENABLE_MASK) >> FPSCR_ENABLE_SHIFT;
if (cause & enable) {
raise_exception(env, 0x120, retaddr);
}
}
}
float32 helper_fabs_FT(float32 t0)
{
return float32_abs(t0);
}
float64 helper_fabs_DT(float64 t0)
{
return float64_abs(t0);
}
float32 helper_fadd_FT(CPUSH4State *env, float32 t0, float32 t1)
{
set_float_exception_flags(0, &env->fp_status);
t0 = float32_add(t0, t1, &env->fp_status);
update_fpscr(env, GETPC());
return t0;
}
float64 helper_fadd_DT(CPUSH4State *env, float64 t0, float64 t1)
{
set_float_exception_flags(0, &env->fp_status);
t0 = float64_add(t0, t1, &env->fp_status);
update_fpscr(env, GETPC());
return t0;
}
void helper_fcmp_eq_FT(CPUSH4State *env, float32 t0, float32 t1)
{
int relation;
set_float_exception_flags(0, &env->fp_status);
relation = float32_compare(t0, t1, &env->fp_status);
if (unlikely(relation == float_relation_unordered)) {
update_fpscr(env, GETPC());
} else if (relation == float_relation_equal) {
set_t(env);
} else {
clr_t(env);
}
}
void helper_fcmp_eq_DT(CPUSH4State *env, float64 t0, float64 t1)
{
int relation;
set_float_exception_flags(0, &env->fp_status);
relation = float64_compare(t0, t1, &env->fp_status);
if (unlikely(relation == float_relation_unordered)) {
update_fpscr(env, GETPC());
} else if (relation == float_relation_equal) {
set_t(env);
} else {
clr_t(env);
}
}
void helper_fcmp_gt_FT(CPUSH4State *env, float32 t0, float32 t1)
{
int relation;
set_float_exception_flags(0, &env->fp_status);
relation = float32_compare(t0, t1, &env->fp_status);
if (unlikely(relation == float_relation_unordered)) {
update_fpscr(env, GETPC());
} else if (relation == float_relation_greater) {
set_t(env);
} else {
clr_t(env);
}
}
void helper_fcmp_gt_DT(CPUSH4State *env, float64 t0, float64 t1)
{
int relation;
set_float_exception_flags(0, &env->fp_status);
relation = float64_compare(t0, t1, &env->fp_status);
if (unlikely(relation == float_relation_unordered)) {
update_fpscr(env, GETPC());
} else if (relation == float_relation_greater) {
set_t(env);
} else {
clr_t(env);
}
}
float64 helper_fcnvsd_FT_DT(CPUSH4State *env, float32 t0)
{
float64 ret;
set_float_exception_flags(0, &env->fp_status);
ret = float32_to_float64(t0, &env->fp_status);
update_fpscr(env, GETPC());
return ret;
}
float32 helper_fcnvds_DT_FT(CPUSH4State *env, float64 t0)
{
float32 ret;
set_float_exception_flags(0, &env->fp_status);
ret = float64_to_float32(t0, &env->fp_status);
update_fpscr(env, GETPC());
return ret;
}
float32 helper_fdiv_FT(CPUSH4State *env, float32 t0, float32 t1)
{
set_float_exception_flags(0, &env->fp_status);
t0 = float32_div(t0, t1, &env->fp_status);
update_fpscr(env, GETPC());
return t0;
}
float64 helper_fdiv_DT(CPUSH4State *env, float64 t0, float64 t1)
{
set_float_exception_flags(0, &env->fp_status);
t0 = float64_div(t0, t1, &env->fp_status);
update_fpscr(env, GETPC());
return t0;
}
float32 helper_float_FT(CPUSH4State *env, uint32_t t0)
{
float32 ret;
set_float_exception_flags(0, &env->fp_status);
ret = int32_to_float32(t0, &env->fp_status);
update_fpscr(env, GETPC());
return ret;
}
float64 helper_float_DT(CPUSH4State *env, uint32_t t0)
{
float64 ret;
set_float_exception_flags(0, &env->fp_status);
ret = int32_to_float64(t0, &env->fp_status);
update_fpscr(env, GETPC());
return ret;
}
float32 helper_fmac_FT(CPUSH4State *env, float32 t0, float32 t1, float32 t2)
{
set_float_exception_flags(0, &env->fp_status);
t0 = float32_muladd(t0, t1, t2, 0, &env->fp_status);
update_fpscr(env, GETPC());
return t0;
}
float32 helper_fmul_FT(CPUSH4State *env, float32 t0, float32 t1)
{
set_float_exception_flags(0, &env->fp_status);
t0 = float32_mul(t0, t1, &env->fp_status);
update_fpscr(env, GETPC());
return t0;
}
float64 helper_fmul_DT(CPUSH4State *env, float64 t0, float64 t1)
{
set_float_exception_flags(0, &env->fp_status);
t0 = float64_mul(t0, t1, &env->fp_status);
update_fpscr(env, GETPC());
return t0;
}
float32 helper_fneg_T(float32 t0)
{
return float32_chs(t0);
}
float32 helper_fsqrt_FT(CPUSH4State *env, float32 t0)
{
set_float_exception_flags(0, &env->fp_status);
t0 = float32_sqrt(t0, &env->fp_status);
update_fpscr(env, GETPC());
return t0;
}
float64 helper_fsqrt_DT(CPUSH4State *env, float64 t0)
{
set_float_exception_flags(0, &env->fp_status);
t0 = float64_sqrt(t0, &env->fp_status);
update_fpscr(env, GETPC());
return t0;
}
float32 helper_fsub_FT(CPUSH4State *env, float32 t0, float32 t1)
{
set_float_exception_flags(0, &env->fp_status);
t0 = float32_sub(t0, t1, &env->fp_status);
update_fpscr(env, GETPC());
return t0;
}
float64 helper_fsub_DT(CPUSH4State *env, float64 t0, float64 t1)
{
set_float_exception_flags(0, &env->fp_status);
t0 = float64_sub(t0, t1, &env->fp_status);
update_fpscr(env, GETPC());
return t0;
}
uint32_t helper_ftrc_FT(CPUSH4State *env, float32 t0)
{
uint32_t ret;
set_float_exception_flags(0, &env->fp_status);
ret = float32_to_int32_round_to_zero(t0, &env->fp_status);
update_fpscr(env, GETPC());
return ret;
}
uint32_t helper_ftrc_DT(CPUSH4State *env, float64 t0)
{
uint32_t ret;
set_float_exception_flags(0, &env->fp_status);
ret = float64_to_int32_round_to_zero(t0, &env->fp_status);
update_fpscr(env, GETPC());
return ret;
}
void helper_fipr(CPUSH4State *env, uint32_t m, uint32_t n)
{
int bank, i;
float32 r, p;
bank = (env->sr & FPSCR_FR) ? 16 : 0;
r = float32_zero;
set_float_exception_flags(0, &env->fp_status);
for (i = 0 ; i < 4 ; i++) {
p = float32_mul(env->fregs[bank + m + i],
env->fregs[bank + n + i],
&env->fp_status);
r = float32_add(r, p, &env->fp_status);
}
update_fpscr(env, GETPC());
env->fregs[bank + n + 3] = r;
}
void helper_ftrv(CPUSH4State *env, uint32_t n)
{
int bank_matrix, bank_vector;
int i, j;
float32 r[4];
float32 p;
bank_matrix = (env->sr & FPSCR_FR) ? 0 : 16;
bank_vector = (env->sr & FPSCR_FR) ? 16 : 0;
set_float_exception_flags(0, &env->fp_status);
for (i = 0 ; i < 4 ; i++) {
r[i] = float32_zero;
for (j = 0 ; j < 4 ; j++) {
p = float32_mul(env->fregs[bank_matrix + 4 * j + i],
env->fregs[bank_vector + j],
&env->fp_status);
r[i] = float32_add(r[i], p, &env->fp_status);
}
}
update_fpscr(env, GETPC());
for (i = 0 ; i < 4 ; i++) {
env->fregs[bank_vector + i] = r[i];
}
}