| /* |
| * vfio based device assignment support |
| * |
| * Copyright Red Hat, Inc. 2012 |
| * |
| * Authors: |
| * Alex Williamson <alex.williamson@redhat.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See |
| * the COPYING file in the top-level directory. |
| * |
| * Based on qemu-kvm device-assignment: |
| * Adapted for KVM by Qumranet. |
| * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com) |
| * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com) |
| * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com) |
| * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com) |
| * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com) |
| */ |
| |
| #include <dirent.h> |
| #include <linux/vfio.h> |
| #include <sys/ioctl.h> |
| #include <sys/mman.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| #include "config.h" |
| #include "exec/address-spaces.h" |
| #include "exec/memory.h" |
| #include "hw/pci/msi.h" |
| #include "hw/pci/msix.h" |
| #include "hw/pci/pci.h" |
| #include "qemu-common.h" |
| #include "qemu/error-report.h" |
| #include "qemu/event_notifier.h" |
| #include "qemu/queue.h" |
| #include "qemu/range.h" |
| #include "sysemu/kvm.h" |
| #include "sysemu/sysemu.h" |
| #include "hw/misc/vfio.h" |
| |
| /* #define DEBUG_VFIO */ |
| #ifdef DEBUG_VFIO |
| #define DPRINTF(fmt, ...) \ |
| do { fprintf(stderr, "vfio: " fmt, ## __VA_ARGS__); } while (0) |
| #else |
| #define DPRINTF(fmt, ...) \ |
| do { } while (0) |
| #endif |
| |
| /* Extra debugging, trap acceleration paths for more logging */ |
| #define VFIO_ALLOW_MMAP 1 |
| #define VFIO_ALLOW_KVM_INTX 1 |
| #define VFIO_ALLOW_KVM_MSI 1 |
| #define VFIO_ALLOW_KVM_MSIX 1 |
| |
| struct VFIODevice; |
| |
| typedef struct VFIOQuirk { |
| MemoryRegion mem; |
| struct VFIODevice *vdev; |
| QLIST_ENTRY(VFIOQuirk) next; |
| struct { |
| uint32_t base_offset:TARGET_PAGE_BITS; |
| uint32_t address_offset:TARGET_PAGE_BITS; |
| uint32_t address_size:3; |
| uint32_t bar:3; |
| |
| uint32_t address_match; |
| uint32_t address_mask; |
| |
| uint32_t address_val:TARGET_PAGE_BITS; |
| uint32_t data_offset:TARGET_PAGE_BITS; |
| uint32_t data_size:3; |
| |
| uint8_t flags; |
| uint8_t read_flags; |
| uint8_t write_flags; |
| } data; |
| } VFIOQuirk; |
| |
| typedef struct VFIOBAR { |
| off_t fd_offset; /* offset of BAR within device fd */ |
| int fd; /* device fd, allows us to pass VFIOBAR as opaque data */ |
| MemoryRegion mem; /* slow, read/write access */ |
| MemoryRegion mmap_mem; /* direct mapped access */ |
| void *mmap; |
| size_t size; |
| uint32_t flags; /* VFIO region flags (rd/wr/mmap) */ |
| uint8_t nr; /* cache the BAR number for debug */ |
| bool ioport; |
| bool mem64; |
| QLIST_HEAD(, VFIOQuirk) quirks; |
| } VFIOBAR; |
| |
| typedef struct VFIOVGARegion { |
| MemoryRegion mem; |
| off_t offset; |
| int nr; |
| QLIST_HEAD(, VFIOQuirk) quirks; |
| } VFIOVGARegion; |
| |
| typedef struct VFIOVGA { |
| off_t fd_offset; |
| int fd; |
| VFIOVGARegion region[QEMU_PCI_VGA_NUM_REGIONS]; |
| } VFIOVGA; |
| |
| typedef struct VFIOINTx { |
| bool pending; /* interrupt pending */ |
| bool kvm_accel; /* set when QEMU bypass through KVM enabled */ |
| uint8_t pin; /* which pin to pull for qemu_set_irq */ |
| EventNotifier interrupt; /* eventfd triggered on interrupt */ |
| EventNotifier unmask; /* eventfd for unmask on QEMU bypass */ |
| PCIINTxRoute route; /* routing info for QEMU bypass */ |
| uint32_t mmap_timeout; /* delay to re-enable mmaps after interrupt */ |
| QEMUTimer *mmap_timer; /* enable mmaps after periods w/o interrupts */ |
| } VFIOINTx; |
| |
| typedef struct VFIOMSIVector { |
| /* |
| * Two interrupt paths are configured per vector. The first, is only used |
| * for interrupts injected via QEMU. This is typically the non-accel path, |
| * but may also be used when we want QEMU to handle masking and pending |
| * bits. The KVM path bypasses QEMU and is therefore higher performance, |
| * but requires masking at the device. virq is used to track the MSI route |
| * through KVM, thus kvm_interrupt is only available when virq is set to a |
| * valid (>= 0) value. |
| */ |
| EventNotifier interrupt; |
| EventNotifier kvm_interrupt; |
| struct VFIODevice *vdev; /* back pointer to device */ |
| int virq; |
| bool use; |
| } VFIOMSIVector; |
| |
| enum { |
| VFIO_INT_NONE = 0, |
| VFIO_INT_INTx = 1, |
| VFIO_INT_MSI = 2, |
| VFIO_INT_MSIX = 3, |
| }; |
| |
| typedef struct VFIOAddressSpace { |
| AddressSpace *as; |
| QLIST_HEAD(, VFIOContainer) containers; |
| QLIST_ENTRY(VFIOAddressSpace) list; |
| } VFIOAddressSpace; |
| |
| static QLIST_HEAD(, VFIOAddressSpace) vfio_address_spaces = |
| QLIST_HEAD_INITIALIZER(vfio_address_spaces); |
| |
| struct VFIOGroup; |
| |
| typedef struct VFIOType1 { |
| MemoryListener listener; |
| int error; |
| bool initialized; |
| } VFIOType1; |
| |
| typedef struct VFIOContainer { |
| VFIOAddressSpace *space; |
| int fd; /* /dev/vfio/vfio, empowered by the attached groups */ |
| struct { |
| /* enable abstraction to support various iommu backends */ |
| union { |
| VFIOType1 type1; |
| }; |
| void (*release)(struct VFIOContainer *); |
| } iommu_data; |
| QLIST_HEAD(, VFIOGuestIOMMU) giommu_list; |
| QLIST_HEAD(, VFIOGroup) group_list; |
| QLIST_ENTRY(VFIOContainer) next; |
| } VFIOContainer; |
| |
| typedef struct VFIOGuestIOMMU { |
| VFIOContainer *container; |
| MemoryRegion *iommu; |
| Notifier n; |
| QLIST_ENTRY(VFIOGuestIOMMU) giommu_next; |
| } VFIOGuestIOMMU; |
| |
| /* Cache of MSI-X setup plus extra mmap and memory region for split BAR map */ |
| typedef struct VFIOMSIXInfo { |
| uint8_t table_bar; |
| uint8_t pba_bar; |
| uint16_t entries; |
| uint32_t table_offset; |
| uint32_t pba_offset; |
| MemoryRegion mmap_mem; |
| void *mmap; |
| } VFIOMSIXInfo; |
| |
| typedef struct VFIODevice { |
| PCIDevice pdev; |
| int fd; |
| VFIOINTx intx; |
| unsigned int config_size; |
| uint8_t *emulated_config_bits; /* QEMU emulated bits, little-endian */ |
| off_t config_offset; /* Offset of config space region within device fd */ |
| unsigned int rom_size; |
| off_t rom_offset; /* Offset of ROM region within device fd */ |
| void *rom; |
| int msi_cap_size; |
| VFIOMSIVector *msi_vectors; |
| VFIOMSIXInfo *msix; |
| int nr_vectors; /* Number of MSI/MSIX vectors currently in use */ |
| int interrupt; /* Current interrupt type */ |
| VFIOBAR bars[PCI_NUM_REGIONS - 1]; /* No ROM */ |
| VFIOVGA vga; /* 0xa0000, 0x3b0, 0x3c0 */ |
| PCIHostDeviceAddress host; |
| QLIST_ENTRY(VFIODevice) next; |
| struct VFIOGroup *group; |
| EventNotifier err_notifier; |
| uint32_t features; |
| #define VFIO_FEATURE_ENABLE_VGA_BIT 0 |
| #define VFIO_FEATURE_ENABLE_VGA (1 << VFIO_FEATURE_ENABLE_VGA_BIT) |
| int32_t bootindex; |
| uint8_t pm_cap; |
| bool reset_works; |
| bool has_vga; |
| bool pci_aer; |
| bool has_flr; |
| bool has_pm_reset; |
| bool needs_reset; |
| bool rom_read_failed; |
| } VFIODevice; |
| |
| typedef struct VFIOGroup { |
| int fd; |
| int groupid; |
| VFIOContainer *container; |
| QLIST_HEAD(, VFIODevice) device_list; |
| QLIST_ENTRY(VFIOGroup) next; |
| QLIST_ENTRY(VFIOGroup) container_next; |
| } VFIOGroup; |
| |
| typedef struct VFIORomBlacklistEntry { |
| uint16_t vendor_id; |
| uint16_t device_id; |
| } VFIORomBlacklistEntry; |
| |
| /* |
| * List of device ids/vendor ids for which to disable |
| * option rom loading. This avoids the guest hangs during rom |
| * execution as noticed with the BCM 57810 card for lack of a |
| * more better way to handle such issues. |
| * The user can still override by specifying a romfile or |
| * rombar=1. |
| * Please see https://bugs.launchpad.net/qemu/+bug/1284874 |
| * for an analysis of the 57810 card hang. When adding |
| * a new vendor id/device id combination below, please also add |
| * your card/environment details and information that could |
| * help in debugging to the bug tracking this issue |
| */ |
| static const VFIORomBlacklistEntry romblacklist[] = { |
| /* Broadcom BCM 57810 */ |
| { 0x14e4, 0x168e } |
| }; |
| |
| #define MSIX_CAP_LENGTH 12 |
| |
| static QLIST_HEAD(, VFIOGroup) |
| group_list = QLIST_HEAD_INITIALIZER(group_list); |
| |
| #ifdef CONFIG_KVM |
| /* |
| * We have a single VFIO pseudo device per KVM VM. Once created it lives |
| * for the life of the VM. Closing the file descriptor only drops our |
| * reference to it and the device's reference to kvm. Therefore once |
| * initialized, this file descriptor is only released on QEMU exit and |
| * we'll re-use it should another vfio device be attached before then. |
| */ |
| static int vfio_kvm_device_fd = -1; |
| #endif |
| |
| static void vfio_disable_interrupts(VFIODevice *vdev); |
| static uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len); |
| static void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr, |
| uint32_t val, int len); |
| static void vfio_mmap_set_enabled(VFIODevice *vdev, bool enabled); |
| |
| /* |
| * Common VFIO interrupt disable |
| */ |
| static void vfio_disable_irqindex(VFIODevice *vdev, int index) |
| { |
| struct vfio_irq_set irq_set = { |
| .argsz = sizeof(irq_set), |
| .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER, |
| .index = index, |
| .start = 0, |
| .count = 0, |
| }; |
| |
| ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); |
| } |
| |
| /* |
| * INTx |
| */ |
| static void vfio_unmask_intx(VFIODevice *vdev) |
| { |
| struct vfio_irq_set irq_set = { |
| .argsz = sizeof(irq_set), |
| .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_UNMASK, |
| .index = VFIO_PCI_INTX_IRQ_INDEX, |
| .start = 0, |
| .count = 1, |
| }; |
| |
| ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); |
| } |
| |
| #ifdef CONFIG_KVM /* Unused outside of CONFIG_KVM code */ |
| static void vfio_mask_intx(VFIODevice *vdev) |
| { |
| struct vfio_irq_set irq_set = { |
| .argsz = sizeof(irq_set), |
| .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_MASK, |
| .index = VFIO_PCI_INTX_IRQ_INDEX, |
| .start = 0, |
| .count = 1, |
| }; |
| |
| ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); |
| } |
| #endif |
| |
| /* |
| * Disabling BAR mmaping can be slow, but toggling it around INTx can |
| * also be a huge overhead. We try to get the best of both worlds by |
| * waiting until an interrupt to disable mmaps (subsequent transitions |
| * to the same state are effectively no overhead). If the interrupt has |
| * been serviced and the time gap is long enough, we re-enable mmaps for |
| * performance. This works well for things like graphics cards, which |
| * may not use their interrupt at all and are penalized to an unusable |
| * level by read/write BAR traps. Other devices, like NICs, have more |
| * regular interrupts and see much better latency by staying in non-mmap |
| * mode. We therefore set the default mmap_timeout such that a ping |
| * is just enough to keep the mmap disabled. Users can experiment with |
| * other options with the x-intx-mmap-timeout-ms parameter (a value of |
| * zero disables the timer). |
| */ |
| static void vfio_intx_mmap_enable(void *opaque) |
| { |
| VFIODevice *vdev = opaque; |
| |
| if (vdev->intx.pending) { |
| timer_mod(vdev->intx.mmap_timer, |
| qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout); |
| return; |
| } |
| |
| vfio_mmap_set_enabled(vdev, true); |
| } |
| |
| static void vfio_intx_interrupt(void *opaque) |
| { |
| VFIODevice *vdev = opaque; |
| |
| if (!event_notifier_test_and_clear(&vdev->intx.interrupt)) { |
| return; |
| } |
| |
| DPRINTF("%s(%04x:%02x:%02x.%x) Pin %c\n", __func__, vdev->host.domain, |
| vdev->host.bus, vdev->host.slot, vdev->host.function, |
| 'A' + vdev->intx.pin); |
| |
| vdev->intx.pending = true; |
| pci_irq_assert(&vdev->pdev); |
| vfio_mmap_set_enabled(vdev, false); |
| if (vdev->intx.mmap_timeout) { |
| timer_mod(vdev->intx.mmap_timer, |
| qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout); |
| } |
| } |
| |
| static void vfio_eoi(VFIODevice *vdev) |
| { |
| if (!vdev->intx.pending) { |
| return; |
| } |
| |
| DPRINTF("%s(%04x:%02x:%02x.%x) EOI\n", __func__, vdev->host.domain, |
| vdev->host.bus, vdev->host.slot, vdev->host.function); |
| |
| vdev->intx.pending = false; |
| pci_irq_deassert(&vdev->pdev); |
| vfio_unmask_intx(vdev); |
| } |
| |
| static void vfio_enable_intx_kvm(VFIODevice *vdev) |
| { |
| #ifdef CONFIG_KVM |
| struct kvm_irqfd irqfd = { |
| .fd = event_notifier_get_fd(&vdev->intx.interrupt), |
| .gsi = vdev->intx.route.irq, |
| .flags = KVM_IRQFD_FLAG_RESAMPLE, |
| }; |
| struct vfio_irq_set *irq_set; |
| int ret, argsz; |
| int32_t *pfd; |
| |
| if (!VFIO_ALLOW_KVM_INTX || !kvm_irqfds_enabled() || |
| vdev->intx.route.mode != PCI_INTX_ENABLED || |
| !kvm_check_extension(kvm_state, KVM_CAP_IRQFD_RESAMPLE)) { |
| return; |
| } |
| |
| /* Get to a known interrupt state */ |
| qemu_set_fd_handler(irqfd.fd, NULL, NULL, vdev); |
| vfio_mask_intx(vdev); |
| vdev->intx.pending = false; |
| pci_irq_deassert(&vdev->pdev); |
| |
| /* Get an eventfd for resample/unmask */ |
| if (event_notifier_init(&vdev->intx.unmask, 0)) { |
| error_report("vfio: Error: event_notifier_init failed eoi"); |
| goto fail; |
| } |
| |
| /* KVM triggers it, VFIO listens for it */ |
| irqfd.resamplefd = event_notifier_get_fd(&vdev->intx.unmask); |
| |
| if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) { |
| error_report("vfio: Error: Failed to setup resample irqfd: %m"); |
| goto fail_irqfd; |
| } |
| |
| argsz = sizeof(*irq_set) + sizeof(*pfd); |
| |
| irq_set = g_malloc0(argsz); |
| irq_set->argsz = argsz; |
| irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_UNMASK; |
| irq_set->index = VFIO_PCI_INTX_IRQ_INDEX; |
| irq_set->start = 0; |
| irq_set->count = 1; |
| pfd = (int32_t *)&irq_set->data; |
| |
| *pfd = irqfd.resamplefd; |
| |
| ret = ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, irq_set); |
| g_free(irq_set); |
| if (ret) { |
| error_report("vfio: Error: Failed to setup INTx unmask fd: %m"); |
| goto fail_vfio; |
| } |
| |
| /* Let'em rip */ |
| vfio_unmask_intx(vdev); |
| |
| vdev->intx.kvm_accel = true; |
| |
| DPRINTF("%s(%04x:%02x:%02x.%x) KVM INTx accel enabled\n", |
| __func__, vdev->host.domain, vdev->host.bus, |
| vdev->host.slot, vdev->host.function); |
| |
| return; |
| |
| fail_vfio: |
| irqfd.flags = KVM_IRQFD_FLAG_DEASSIGN; |
| kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd); |
| fail_irqfd: |
| event_notifier_cleanup(&vdev->intx.unmask); |
| fail: |
| qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev); |
| vfio_unmask_intx(vdev); |
| #endif |
| } |
| |
| static void vfio_disable_intx_kvm(VFIODevice *vdev) |
| { |
| #ifdef CONFIG_KVM |
| struct kvm_irqfd irqfd = { |
| .fd = event_notifier_get_fd(&vdev->intx.interrupt), |
| .gsi = vdev->intx.route.irq, |
| .flags = KVM_IRQFD_FLAG_DEASSIGN, |
| }; |
| |
| if (!vdev->intx.kvm_accel) { |
| return; |
| } |
| |
| /* |
| * Get to a known state, hardware masked, QEMU ready to accept new |
| * interrupts, QEMU IRQ de-asserted. |
| */ |
| vfio_mask_intx(vdev); |
| vdev->intx.pending = false; |
| pci_irq_deassert(&vdev->pdev); |
| |
| /* Tell KVM to stop listening for an INTx irqfd */ |
| if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) { |
| error_report("vfio: Error: Failed to disable INTx irqfd: %m"); |
| } |
| |
| /* We only need to close the eventfd for VFIO to cleanup the kernel side */ |
| event_notifier_cleanup(&vdev->intx.unmask); |
| |
| /* QEMU starts listening for interrupt events. */ |
| qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev); |
| |
| vdev->intx.kvm_accel = false; |
| |
| /* If we've missed an event, let it re-fire through QEMU */ |
| vfio_unmask_intx(vdev); |
| |
| DPRINTF("%s(%04x:%02x:%02x.%x) KVM INTx accel disabled\n", |
| __func__, vdev->host.domain, vdev->host.bus, |
| vdev->host.slot, vdev->host.function); |
| #endif |
| } |
| |
| static void vfio_update_irq(PCIDevice *pdev) |
| { |
| VFIODevice *vdev = DO_UPCAST(VFIODevice, pdev, pdev); |
| PCIINTxRoute route; |
| |
| if (vdev->interrupt != VFIO_INT_INTx) { |
| return; |
| } |
| |
| route = pci_device_route_intx_to_irq(&vdev->pdev, vdev->intx.pin); |
| |
| if (!pci_intx_route_changed(&vdev->intx.route, &route)) { |
| return; /* Nothing changed */ |
| } |
| |
| DPRINTF("%s(%04x:%02x:%02x.%x) IRQ moved %d -> %d\n", __func__, |
| vdev->host.domain, vdev->host.bus, vdev->host.slot, |
| vdev->host.function, vdev->intx.route.irq, route.irq); |
| |
| vfio_disable_intx_kvm(vdev); |
| |
| vdev->intx.route = route; |
| |
| if (route.mode != PCI_INTX_ENABLED) { |
| return; |
| } |
| |
| vfio_enable_intx_kvm(vdev); |
| |
| /* Re-enable the interrupt in cased we missed an EOI */ |
| vfio_eoi(vdev); |
| } |
| |
| static int vfio_enable_intx(VFIODevice *vdev) |
| { |
| uint8_t pin = vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1); |
| int ret, argsz; |
| struct vfio_irq_set *irq_set; |
| int32_t *pfd; |
| |
| if (!pin) { |
| return 0; |
| } |
| |
| vfio_disable_interrupts(vdev); |
| |
| vdev->intx.pin = pin - 1; /* Pin A (1) -> irq[0] */ |
| pci_config_set_interrupt_pin(vdev->pdev.config, pin); |
| |
| #ifdef CONFIG_KVM |
| /* |
| * Only conditional to avoid generating error messages on platforms |
| * where we won't actually use the result anyway. |
| */ |
| if (kvm_irqfds_enabled() && |
| kvm_check_extension(kvm_state, KVM_CAP_IRQFD_RESAMPLE)) { |
| vdev->intx.route = pci_device_route_intx_to_irq(&vdev->pdev, |
| vdev->intx.pin); |
| } |
| #endif |
| |
| ret = event_notifier_init(&vdev->intx.interrupt, 0); |
| if (ret) { |
| error_report("vfio: Error: event_notifier_init failed"); |
| return ret; |
| } |
| |
| argsz = sizeof(*irq_set) + sizeof(*pfd); |
| |
| irq_set = g_malloc0(argsz); |
| irq_set->argsz = argsz; |
| irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; |
| irq_set->index = VFIO_PCI_INTX_IRQ_INDEX; |
| irq_set->start = 0; |
| irq_set->count = 1; |
| pfd = (int32_t *)&irq_set->data; |
| |
| *pfd = event_notifier_get_fd(&vdev->intx.interrupt); |
| qemu_set_fd_handler(*pfd, vfio_intx_interrupt, NULL, vdev); |
| |
| ret = ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, irq_set); |
| g_free(irq_set); |
| if (ret) { |
| error_report("vfio: Error: Failed to setup INTx fd: %m"); |
| qemu_set_fd_handler(*pfd, NULL, NULL, vdev); |
| event_notifier_cleanup(&vdev->intx.interrupt); |
| return -errno; |
| } |
| |
| vfio_enable_intx_kvm(vdev); |
| |
| vdev->interrupt = VFIO_INT_INTx; |
| |
| DPRINTF("%s(%04x:%02x:%02x.%x)\n", __func__, vdev->host.domain, |
| vdev->host.bus, vdev->host.slot, vdev->host.function); |
| |
| return 0; |
| } |
| |
| static void vfio_disable_intx(VFIODevice *vdev) |
| { |
| int fd; |
| |
| timer_del(vdev->intx.mmap_timer); |
| vfio_disable_intx_kvm(vdev); |
| vfio_disable_irqindex(vdev, VFIO_PCI_INTX_IRQ_INDEX); |
| vdev->intx.pending = false; |
| pci_irq_deassert(&vdev->pdev); |
| vfio_mmap_set_enabled(vdev, true); |
| |
| fd = event_notifier_get_fd(&vdev->intx.interrupt); |
| qemu_set_fd_handler(fd, NULL, NULL, vdev); |
| event_notifier_cleanup(&vdev->intx.interrupt); |
| |
| vdev->interrupt = VFIO_INT_NONE; |
| |
| DPRINTF("%s(%04x:%02x:%02x.%x)\n", __func__, vdev->host.domain, |
| vdev->host.bus, vdev->host.slot, vdev->host.function); |
| } |
| |
| /* |
| * MSI/X |
| */ |
| static void vfio_msi_interrupt(void *opaque) |
| { |
| VFIOMSIVector *vector = opaque; |
| VFIODevice *vdev = vector->vdev; |
| int nr = vector - vdev->msi_vectors; |
| |
| if (!event_notifier_test_and_clear(&vector->interrupt)) { |
| return; |
| } |
| |
| #ifdef DEBUG_VFIO |
| MSIMessage msg; |
| |
| if (vdev->interrupt == VFIO_INT_MSIX) { |
| msg = msix_get_message(&vdev->pdev, nr); |
| } else if (vdev->interrupt == VFIO_INT_MSI) { |
| msg = msi_get_message(&vdev->pdev, nr); |
| } else { |
| abort(); |
| } |
| |
| DPRINTF("%s(%04x:%02x:%02x.%x) vector %d 0x%"PRIx64"/0x%x\n", __func__, |
| vdev->host.domain, vdev->host.bus, vdev->host.slot, |
| vdev->host.function, nr, msg.address, msg.data); |
| #endif |
| |
| if (vdev->interrupt == VFIO_INT_MSIX) { |
| msix_notify(&vdev->pdev, nr); |
| } else if (vdev->interrupt == VFIO_INT_MSI) { |
| msi_notify(&vdev->pdev, nr); |
| } else { |
| error_report("vfio: MSI interrupt receieved, but not enabled?"); |
| } |
| } |
| |
| static int vfio_enable_vectors(VFIODevice *vdev, bool msix) |
| { |
| struct vfio_irq_set *irq_set; |
| int ret = 0, i, argsz; |
| int32_t *fds; |
| |
| argsz = sizeof(*irq_set) + (vdev->nr_vectors * sizeof(*fds)); |
| |
| irq_set = g_malloc0(argsz); |
| irq_set->argsz = argsz; |
| irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; |
| irq_set->index = msix ? VFIO_PCI_MSIX_IRQ_INDEX : VFIO_PCI_MSI_IRQ_INDEX; |
| irq_set->start = 0; |
| irq_set->count = vdev->nr_vectors; |
| fds = (int32_t *)&irq_set->data; |
| |
| for (i = 0; i < vdev->nr_vectors; i++) { |
| int fd = -1; |
| |
| /* |
| * MSI vs MSI-X - The guest has direct access to MSI mask and pending |
| * bits, therefore we always use the KVM signaling path when setup. |
| * MSI-X mask and pending bits are emulated, so we want to use the |
| * KVM signaling path only when configured and unmasked. |
| */ |
| if (vdev->msi_vectors[i].use) { |
| if (vdev->msi_vectors[i].virq < 0 || |
| (msix && msix_is_masked(&vdev->pdev, i))) { |
| fd = event_notifier_get_fd(&vdev->msi_vectors[i].interrupt); |
| } else { |
| fd = event_notifier_get_fd(&vdev->msi_vectors[i].kvm_interrupt); |
| } |
| } |
| |
| fds[i] = fd; |
| } |
| |
| ret = ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, irq_set); |
| |
| g_free(irq_set); |
| |
| return ret; |
| } |
| |
| static void vfio_add_kvm_msi_virq(VFIOMSIVector *vector, MSIMessage *msg, |
| bool msix) |
| { |
| int virq; |
| |
| if ((msix && !VFIO_ALLOW_KVM_MSIX) || |
| (!msix && !VFIO_ALLOW_KVM_MSI) || !msg) { |
| return; |
| } |
| |
| if (event_notifier_init(&vector->kvm_interrupt, 0)) { |
| return; |
| } |
| |
| virq = kvm_irqchip_add_msi_route(kvm_state, *msg); |
| if (virq < 0) { |
| event_notifier_cleanup(&vector->kvm_interrupt); |
| return; |
| } |
| |
| if (kvm_irqchip_add_irqfd_notifier(kvm_state, &vector->kvm_interrupt, |
| NULL, virq) < 0) { |
| kvm_irqchip_release_virq(kvm_state, virq); |
| event_notifier_cleanup(&vector->kvm_interrupt); |
| return; |
| } |
| |
| vector->virq = virq; |
| } |
| |
| static void vfio_remove_kvm_msi_virq(VFIOMSIVector *vector) |
| { |
| kvm_irqchip_remove_irqfd_notifier(kvm_state, &vector->kvm_interrupt, |
| vector->virq); |
| kvm_irqchip_release_virq(kvm_state, vector->virq); |
| vector->virq = -1; |
| event_notifier_cleanup(&vector->kvm_interrupt); |
| } |
| |
| static void vfio_update_kvm_msi_virq(VFIOMSIVector *vector, MSIMessage msg) |
| { |
| kvm_irqchip_update_msi_route(kvm_state, vector->virq, msg); |
| } |
| |
| static int vfio_msix_vector_do_use(PCIDevice *pdev, unsigned int nr, |
| MSIMessage *msg, IOHandler *handler) |
| { |
| VFIODevice *vdev = DO_UPCAST(VFIODevice, pdev, pdev); |
| VFIOMSIVector *vector; |
| int ret; |
| |
| DPRINTF("%s(%04x:%02x:%02x.%x) vector %d used\n", __func__, |
| vdev->host.domain, vdev->host.bus, vdev->host.slot, |
| vdev->host.function, nr); |
| |
| vector = &vdev->msi_vectors[nr]; |
| |
| if (!vector->use) { |
| vector->vdev = vdev; |
| vector->virq = -1; |
| if (event_notifier_init(&vector->interrupt, 0)) { |
| error_report("vfio: Error: event_notifier_init failed"); |
| } |
| vector->use = true; |
| msix_vector_use(pdev, nr); |
| } |
| |
| qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), |
| handler, NULL, vector); |
| |
| /* |
| * Attempt to enable route through KVM irqchip, |
| * default to userspace handling if unavailable. |
| */ |
| if (vector->virq >= 0) { |
| if (!msg) { |
| vfio_remove_kvm_msi_virq(vector); |
| } else { |
| vfio_update_kvm_msi_virq(vector, *msg); |
| } |
| } else { |
| vfio_add_kvm_msi_virq(vector, msg, true); |
| } |
| |
| /* |
| * We don't want to have the host allocate all possible MSI vectors |
| * for a device if they're not in use, so we shutdown and incrementally |
| * increase them as needed. |
| */ |
| if (vdev->nr_vectors < nr + 1) { |
| vfio_disable_irqindex(vdev, VFIO_PCI_MSIX_IRQ_INDEX); |
| vdev->nr_vectors = nr + 1; |
| ret = vfio_enable_vectors(vdev, true); |
| if (ret) { |
| error_report("vfio: failed to enable vectors, %d", ret); |
| } |
| } else { |
| int argsz; |
| struct vfio_irq_set *irq_set; |
| int32_t *pfd; |
| |
| argsz = sizeof(*irq_set) + sizeof(*pfd); |
| |
| irq_set = g_malloc0(argsz); |
| irq_set->argsz = argsz; |
| irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | |
| VFIO_IRQ_SET_ACTION_TRIGGER; |
| irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX; |
| irq_set->start = nr; |
| irq_set->count = 1; |
| pfd = (int32_t *)&irq_set->data; |
| |
| if (vector->virq >= 0) { |
| *pfd = event_notifier_get_fd(&vector->kvm_interrupt); |
| } else { |
| *pfd = event_notifier_get_fd(&vector->interrupt); |
| } |
| |
| ret = ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, irq_set); |
| g_free(irq_set); |
| if (ret) { |
| error_report("vfio: failed to modify vector, %d", ret); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int vfio_msix_vector_use(PCIDevice *pdev, |
| unsigned int nr, MSIMessage msg) |
| { |
| return vfio_msix_vector_do_use(pdev, nr, &msg, vfio_msi_interrupt); |
| } |
| |
| static void vfio_msix_vector_release(PCIDevice *pdev, unsigned int nr) |
| { |
| VFIODevice *vdev = DO_UPCAST(VFIODevice, pdev, pdev); |
| VFIOMSIVector *vector = &vdev->msi_vectors[nr]; |
| |
| DPRINTF("%s(%04x:%02x:%02x.%x) vector %d released\n", __func__, |
| vdev->host.domain, vdev->host.bus, vdev->host.slot, |
| vdev->host.function, nr); |
| |
| /* |
| * There are still old guests that mask and unmask vectors on every |
| * interrupt. If we're using QEMU bypass with a KVM irqfd, leave all of |
| * the KVM setup in place, simply switch VFIO to use the non-bypass |
| * eventfd. We'll then fire the interrupt through QEMU and the MSI-X |
| * core will mask the interrupt and set pending bits, allowing it to |
| * be re-asserted on unmask. Nothing to do if already using QEMU mode. |
| */ |
| if (vector->virq >= 0) { |
| int argsz; |
| struct vfio_irq_set *irq_set; |
| int32_t *pfd; |
| |
| argsz = sizeof(*irq_set) + sizeof(*pfd); |
| |
| irq_set = g_malloc0(argsz); |
| irq_set->argsz = argsz; |
| irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | |
| VFIO_IRQ_SET_ACTION_TRIGGER; |
| irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX; |
| irq_set->start = nr; |
| irq_set->count = 1; |
| pfd = (int32_t *)&irq_set->data; |
| |
| *pfd = event_notifier_get_fd(&vector->interrupt); |
| |
| ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, irq_set); |
| |
| g_free(irq_set); |
| } |
| } |
| |
| static void vfio_enable_msix(VFIODevice *vdev) |
| { |
| vfio_disable_interrupts(vdev); |
| |
| vdev->msi_vectors = g_malloc0(vdev->msix->entries * sizeof(VFIOMSIVector)); |
| |
| vdev->interrupt = VFIO_INT_MSIX; |
| |
| /* |
| * Some communication channels between VF & PF or PF & fw rely on the |
| * physical state of the device and expect that enabling MSI-X from the |
| * guest enables the same on the host. When our guest is Linux, the |
| * guest driver call to pci_enable_msix() sets the enabling bit in the |
| * MSI-X capability, but leaves the vector table masked. We therefore |
| * can't rely on a vector_use callback (from request_irq() in the guest) |
| * to switch the physical device into MSI-X mode because that may come a |
| * long time after pci_enable_msix(). This code enables vector 0 with |
| * triggering to userspace, then immediately release the vector, leaving |
| * the physical device with no vectors enabled, but MSI-X enabled, just |
| * like the guest view. |
| */ |
| vfio_msix_vector_do_use(&vdev->pdev, 0, NULL, NULL); |
| vfio_msix_vector_release(&vdev->pdev, 0); |
| |
| if (msix_set_vector_notifiers(&vdev->pdev, vfio_msix_vector_use, |
| vfio_msix_vector_release, NULL)) { |
| error_report("vfio: msix_set_vector_notifiers failed"); |
| } |
| |
| DPRINTF("%s(%04x:%02x:%02x.%x)\n", __func__, vdev->host.domain, |
| vdev->host.bus, vdev->host.slot, vdev->host.function); |
| } |
| |
| static void vfio_enable_msi(VFIODevice *vdev) |
| { |
| int ret, i; |
| |
| vfio_disable_interrupts(vdev); |
| |
| vdev->nr_vectors = msi_nr_vectors_allocated(&vdev->pdev); |
| retry: |
| vdev->msi_vectors = g_malloc0(vdev->nr_vectors * sizeof(VFIOMSIVector)); |
| |
| for (i = 0; i < vdev->nr_vectors; i++) { |
| VFIOMSIVector *vector = &vdev->msi_vectors[i]; |
| MSIMessage msg = msi_get_message(&vdev->pdev, i); |
| |
| vector->vdev = vdev; |
| vector->virq = -1; |
| vector->use = true; |
| |
| if (event_notifier_init(&vector->interrupt, 0)) { |
| error_report("vfio: Error: event_notifier_init failed"); |
| } |
| |
| qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), |
| vfio_msi_interrupt, NULL, vector); |
| |
| /* |
| * Attempt to enable route through KVM irqchip, |
| * default to userspace handling if unavailable. |
| */ |
| vfio_add_kvm_msi_virq(vector, &msg, false); |
| } |
| |
| /* Set interrupt type prior to possible interrupts */ |
| vdev->interrupt = VFIO_INT_MSI; |
| |
| ret = vfio_enable_vectors(vdev, false); |
| if (ret) { |
| if (ret < 0) { |
| error_report("vfio: Error: Failed to setup MSI fds: %m"); |
| } else if (ret != vdev->nr_vectors) { |
| error_report("vfio: Error: Failed to enable %d " |
| "MSI vectors, retry with %d", vdev->nr_vectors, ret); |
| } |
| |
| for (i = 0; i < vdev->nr_vectors; i++) { |
| VFIOMSIVector *vector = &vdev->msi_vectors[i]; |
| if (vector->virq >= 0) { |
| vfio_remove_kvm_msi_virq(vector); |
| } |
| qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), |
| NULL, NULL, NULL); |
| event_notifier_cleanup(&vector->interrupt); |
| } |
| |
| g_free(vdev->msi_vectors); |
| |
| if (ret > 0 && ret != vdev->nr_vectors) { |
| vdev->nr_vectors = ret; |
| goto retry; |
| } |
| vdev->nr_vectors = 0; |
| |
| /* |
| * Failing to setup MSI doesn't really fall within any specification. |
| * Let's try leaving interrupts disabled and hope the guest figures |
| * out to fall back to INTx for this device. |
| */ |
| error_report("vfio: Error: Failed to enable MSI"); |
| vdev->interrupt = VFIO_INT_NONE; |
| |
| return; |
| } |
| |
| DPRINTF("%s(%04x:%02x:%02x.%x) Enabled %d MSI vectors\n", __func__, |
| vdev->host.domain, vdev->host.bus, vdev->host.slot, |
| vdev->host.function, vdev->nr_vectors); |
| } |
| |
| static void vfio_disable_msi_common(VFIODevice *vdev) |
| { |
| int i; |
| |
| for (i = 0; i < vdev->nr_vectors; i++) { |
| VFIOMSIVector *vector = &vdev->msi_vectors[i]; |
| if (vdev->msi_vectors[i].use) { |
| if (vector->virq >= 0) { |
| vfio_remove_kvm_msi_virq(vector); |
| } |
| qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), |
| NULL, NULL, NULL); |
| event_notifier_cleanup(&vector->interrupt); |
| } |
| } |
| |
| g_free(vdev->msi_vectors); |
| vdev->msi_vectors = NULL; |
| vdev->nr_vectors = 0; |
| vdev->interrupt = VFIO_INT_NONE; |
| |
| vfio_enable_intx(vdev); |
| } |
| |
| static void vfio_disable_msix(VFIODevice *vdev) |
| { |
| int i; |
| |
| msix_unset_vector_notifiers(&vdev->pdev); |
| |
| /* |
| * MSI-X will only release vectors if MSI-X is still enabled on the |
| * device, check through the rest and release it ourselves if necessary. |
| */ |
| for (i = 0; i < vdev->nr_vectors; i++) { |
| if (vdev->msi_vectors[i].use) { |
| vfio_msix_vector_release(&vdev->pdev, i); |
| msix_vector_unuse(&vdev->pdev, i); |
| } |
| } |
| |
| if (vdev->nr_vectors) { |
| vfio_disable_irqindex(vdev, VFIO_PCI_MSIX_IRQ_INDEX); |
| } |
| |
| vfio_disable_msi_common(vdev); |
| |
| DPRINTF("%s(%04x:%02x:%02x.%x)\n", __func__, vdev->host.domain, |
| vdev->host.bus, vdev->host.slot, vdev->host.function); |
| } |
| |
| static void vfio_disable_msi(VFIODevice *vdev) |
| { |
| vfio_disable_irqindex(vdev, VFIO_PCI_MSI_IRQ_INDEX); |
| vfio_disable_msi_common(vdev); |
| |
| DPRINTF("%s(%04x:%02x:%02x.%x)\n", __func__, vdev->host.domain, |
| vdev->host.bus, vdev->host.slot, vdev->host.function); |
| } |
| |
| static void vfio_update_msi(VFIODevice *vdev) |
| { |
| int i; |
| |
| for (i = 0; i < vdev->nr_vectors; i++) { |
| VFIOMSIVector *vector = &vdev->msi_vectors[i]; |
| MSIMessage msg; |
| |
| if (!vector->use || vector->virq < 0) { |
| continue; |
| } |
| |
| msg = msi_get_message(&vdev->pdev, i); |
| vfio_update_kvm_msi_virq(vector, msg); |
| } |
| } |
| |
| /* |
| * IO Port/MMIO - Beware of the endians, VFIO is always little endian |
| */ |
| static void vfio_bar_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIOBAR *bar = opaque; |
| union { |
| uint8_t byte; |
| uint16_t word; |
| uint32_t dword; |
| uint64_t qword; |
| } buf; |
| |
| switch (size) { |
| case 1: |
| buf.byte = data; |
| break; |
| case 2: |
| buf.word = cpu_to_le16(data); |
| break; |
| case 4: |
| buf.dword = cpu_to_le32(data); |
| break; |
| default: |
| hw_error("vfio: unsupported write size, %d bytes", size); |
| break; |
| } |
| |
| if (pwrite(bar->fd, &buf, size, bar->fd_offset + addr) != size) { |
| error_report("%s(,0x%"HWADDR_PRIx", 0x%"PRIx64", %d) failed: %m", |
| __func__, addr, data, size); |
| } |
| |
| #ifdef DEBUG_VFIO |
| { |
| VFIODevice *vdev = container_of(bar, VFIODevice, bars[bar->nr]); |
| |
| DPRINTF("%s(%04x:%02x:%02x.%x:BAR%d+0x%"HWADDR_PRIx", 0x%"PRIx64 |
| ", %d)\n", __func__, vdev->host.domain, vdev->host.bus, |
| vdev->host.slot, vdev->host.function, bar->nr, addr, |
| data, size); |
| } |
| #endif |
| |
| /* |
| * A read or write to a BAR always signals an INTx EOI. This will |
| * do nothing if not pending (including not in INTx mode). We assume |
| * that a BAR access is in response to an interrupt and that BAR |
| * accesses will service the interrupt. Unfortunately, we don't know |
| * which access will service the interrupt, so we're potentially |
| * getting quite a few host interrupts per guest interrupt. |
| */ |
| vfio_eoi(container_of(bar, VFIODevice, bars[bar->nr])); |
| } |
| |
| static uint64_t vfio_bar_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| VFIOBAR *bar = opaque; |
| union { |
| uint8_t byte; |
| uint16_t word; |
| uint32_t dword; |
| uint64_t qword; |
| } buf; |
| uint64_t data = 0; |
| |
| if (pread(bar->fd, &buf, size, bar->fd_offset + addr) != size) { |
| error_report("%s(,0x%"HWADDR_PRIx", %d) failed: %m", |
| __func__, addr, size); |
| return (uint64_t)-1; |
| } |
| |
| switch (size) { |
| case 1: |
| data = buf.byte; |
| break; |
| case 2: |
| data = le16_to_cpu(buf.word); |
| break; |
| case 4: |
| data = le32_to_cpu(buf.dword); |
| break; |
| default: |
| hw_error("vfio: unsupported read size, %d bytes", size); |
| break; |
| } |
| |
| #ifdef DEBUG_VFIO |
| { |
| VFIODevice *vdev = container_of(bar, VFIODevice, bars[bar->nr]); |
| |
| DPRINTF("%s(%04x:%02x:%02x.%x:BAR%d+0x%"HWADDR_PRIx |
| ", %d) = 0x%"PRIx64"\n", __func__, vdev->host.domain, |
| vdev->host.bus, vdev->host.slot, vdev->host.function, |
| bar->nr, addr, size, data); |
| } |
| #endif |
| |
| /* Same as write above */ |
| vfio_eoi(container_of(bar, VFIODevice, bars[bar->nr])); |
| |
| return data; |
| } |
| |
| static const MemoryRegionOps vfio_bar_ops = { |
| .read = vfio_bar_read, |
| .write = vfio_bar_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static void vfio_pci_load_rom(VFIODevice *vdev) |
| { |
| struct vfio_region_info reg_info = { |
| .argsz = sizeof(reg_info), |
| .index = VFIO_PCI_ROM_REGION_INDEX |
| }; |
| uint64_t size; |
| off_t off = 0; |
| size_t bytes; |
| |
| if (ioctl(vdev->fd, VFIO_DEVICE_GET_REGION_INFO, ®_info)) { |
| error_report("vfio: Error getting ROM info: %m"); |
| return; |
| } |
| |
| DPRINTF("Device %04x:%02x:%02x.%x ROM:\n", vdev->host.domain, |
| vdev->host.bus, vdev->host.slot, vdev->host.function); |
| DPRINTF(" size: 0x%lx, offset: 0x%lx, flags: 0x%lx\n", |
| (unsigned long)reg_info.size, (unsigned long)reg_info.offset, |
| (unsigned long)reg_info.flags); |
| |
| vdev->rom_size = size = reg_info.size; |
| vdev->rom_offset = reg_info.offset; |
| |
| if (!vdev->rom_size) { |
| vdev->rom_read_failed = true; |
| error_report("vfio-pci: Cannot read device rom at " |
| "%04x:%02x:%02x.%x", |
| vdev->host.domain, vdev->host.bus, vdev->host.slot, |
| vdev->host.function); |
| error_printf("Device option ROM contents are probably invalid " |
| "(check dmesg).\nSkip option ROM probe with rombar=0, " |
| "or load from file with romfile=\n"); |
| return; |
| } |
| |
| vdev->rom = g_malloc(size); |
| memset(vdev->rom, 0xff, size); |
| |
| while (size) { |
| bytes = pread(vdev->fd, vdev->rom + off, size, vdev->rom_offset + off); |
| if (bytes == 0) { |
| break; |
| } else if (bytes > 0) { |
| off += bytes; |
| size -= bytes; |
| } else { |
| if (errno == EINTR || errno == EAGAIN) { |
| continue; |
| } |
| error_report("vfio: Error reading device ROM: %m"); |
| break; |
| } |
| } |
| } |
| |
| static uint64_t vfio_rom_read(void *opaque, hwaddr addr, unsigned size) |
| { |
| VFIODevice *vdev = opaque; |
| union { |
| uint8_t byte; |
| uint16_t word; |
| uint32_t dword; |
| uint64_t qword; |
| } val; |
| uint64_t data = 0; |
| |
| /* Load the ROM lazily when the guest tries to read it */ |
| if (unlikely(!vdev->rom && !vdev->rom_read_failed)) { |
| vfio_pci_load_rom(vdev); |
| } |
| |
| memcpy(&val, vdev->rom + addr, |
| (addr < vdev->rom_size) ? MIN(size, vdev->rom_size - addr) : 0); |
| |
| switch (size) { |
| case 1: |
| data = val.byte; |
| break; |
| case 2: |
| data = le16_to_cpu(val.word); |
| break; |
| case 4: |
| data = le32_to_cpu(val.dword); |
| break; |
| default: |
| hw_error("vfio: unsupported read size, %d bytes\n", size); |
| break; |
| } |
| |
| DPRINTF("%s(%04x:%02x:%02x.%x, 0x%"HWADDR_PRIx", 0x%x) = 0x%"PRIx64"\n", |
| __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, |
| vdev->host.function, addr, size, data); |
| |
| return data; |
| } |
| |
| static void vfio_rom_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| } |
| |
| static const MemoryRegionOps vfio_rom_ops = { |
| .read = vfio_rom_read, |
| .write = vfio_rom_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static bool vfio_blacklist_opt_rom(VFIODevice *vdev) |
| { |
| PCIDevice *pdev = &vdev->pdev; |
| uint16_t vendor_id, device_id; |
| int count = 0; |
| |
| vendor_id = pci_get_word(pdev->config + PCI_VENDOR_ID); |
| device_id = pci_get_word(pdev->config + PCI_DEVICE_ID); |
| |
| while (count < ARRAY_SIZE(romblacklist)) { |
| if (romblacklist[count].vendor_id == vendor_id && |
| romblacklist[count].device_id == device_id) { |
| return true; |
| } |
| count++; |
| } |
| |
| return false; |
| } |
| |
| static void vfio_pci_size_rom(VFIODevice *vdev) |
| { |
| uint32_t orig, size = cpu_to_le32((uint32_t)PCI_ROM_ADDRESS_MASK); |
| off_t offset = vdev->config_offset + PCI_ROM_ADDRESS; |
| DeviceState *dev = DEVICE(vdev); |
| char name[32]; |
| |
| if (vdev->pdev.romfile || !vdev->pdev.rom_bar) { |
| /* Since pci handles romfile, just print a message and return */ |
| if (vfio_blacklist_opt_rom(vdev) && vdev->pdev.romfile) { |
| error_printf("Warning : Device at %04x:%02x:%02x.%x " |
| "is known to cause system instability issues during " |
| "option rom execution. " |
| "Proceeding anyway since user specified romfile\n", |
| vdev->host.domain, vdev->host.bus, vdev->host.slot, |
| vdev->host.function); |
| } |
| return; |
| } |
| |
| /* |
| * Use the same size ROM BAR as the physical device. The contents |
| * will get filled in later when the guest tries to read it. |
| */ |
| if (pread(vdev->fd, &orig, 4, offset) != 4 || |
| pwrite(vdev->fd, &size, 4, offset) != 4 || |
| pread(vdev->fd, &size, 4, offset) != 4 || |
| pwrite(vdev->fd, &orig, 4, offset) != 4) { |
| error_report("%s(%04x:%02x:%02x.%x) failed: %m", |
| __func__, vdev->host.domain, vdev->host.bus, |
| vdev->host.slot, vdev->host.function); |
| return; |
| } |
| |
| size = ~(le32_to_cpu(size) & PCI_ROM_ADDRESS_MASK) + 1; |
| |
| if (!size) { |
| return; |
| } |
| |
| if (vfio_blacklist_opt_rom(vdev)) { |
| if (dev->opts && qemu_opt_get(dev->opts, "rombar")) { |
| error_printf("Warning : Device at %04x:%02x:%02x.%x " |
| "is known to cause system instability issues during " |
| "option rom execution. " |
| "Proceeding anyway since user specified non zero value for " |
| "rombar\n", |
| vdev->host.domain, vdev->host.bus, vdev->host.slot, |
| vdev->host.function); |
| } else { |
| error_printf("Warning : Rom loading for device at " |
| "%04x:%02x:%02x.%x has been disabled due to " |
| "system instability issues. " |
| "Specify rombar=1 or romfile to force\n", |
| vdev->host.domain, vdev->host.bus, vdev->host.slot, |
| vdev->host.function); |
| return; |
| } |
| } |
| |
| DPRINTF("%04x:%02x:%02x.%x ROM size 0x%x\n", vdev->host.domain, |
| vdev->host.bus, vdev->host.slot, vdev->host.function, size); |
| |
| snprintf(name, sizeof(name), "vfio[%04x:%02x:%02x.%x].rom", |
| vdev->host.domain, vdev->host.bus, vdev->host.slot, |
| vdev->host.function); |
| |
| memory_region_init_io(&vdev->pdev.rom, OBJECT(vdev), |
| &vfio_rom_ops, vdev, name, size); |
| |
| pci_register_bar(&vdev->pdev, PCI_ROM_SLOT, |
| PCI_BASE_ADDRESS_SPACE_MEMORY, &vdev->pdev.rom); |
| |
| vdev->pdev.has_rom = true; |
| vdev->rom_read_failed = false; |
| } |
| |
| static void vfio_vga_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIOVGARegion *region = opaque; |
| VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]); |
| union { |
| uint8_t byte; |
| uint16_t word; |
| uint32_t dword; |
| uint64_t qword; |
| } buf; |
| off_t offset = vga->fd_offset + region->offset + addr; |
| |
| switch (size) { |
| case 1: |
| buf.byte = data; |
| break; |
| case 2: |
| buf.word = cpu_to_le16(data); |
| break; |
| case 4: |
| buf.dword = cpu_to_le32(data); |
| break; |
| default: |
| hw_error("vfio: unsupported write size, %d bytes", size); |
| break; |
| } |
| |
| if (pwrite(vga->fd, &buf, size, offset) != size) { |
| error_report("%s(,0x%"HWADDR_PRIx", 0x%"PRIx64", %d) failed: %m", |
| __func__, region->offset + addr, data, size); |
| } |
| |
| DPRINTF("%s(0x%"HWADDR_PRIx", 0x%"PRIx64", %d)\n", |
| __func__, region->offset + addr, data, size); |
| } |
| |
| static uint64_t vfio_vga_read(void *opaque, hwaddr addr, unsigned size) |
| { |
| VFIOVGARegion *region = opaque; |
| VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]); |
| union { |
| uint8_t byte; |
| uint16_t word; |
| uint32_t dword; |
| uint64_t qword; |
| } buf; |
| uint64_t data = 0; |
| off_t offset = vga->fd_offset + region->offset + addr; |
| |
| if (pread(vga->fd, &buf, size, offset) != size) { |
| error_report("%s(,0x%"HWADDR_PRIx", %d) failed: %m", |
| __func__, region->offset + addr, size); |
| return (uint64_t)-1; |
| } |
| |
| switch (size) { |
| case 1: |
| data = buf.byte; |
| break; |
| case 2: |
| data = le16_to_cpu(buf.word); |
| break; |
| case 4: |
| data = le32_to_cpu(buf.dword); |
| break; |
| default: |
| hw_error("vfio: unsupported read size, %d bytes", size); |
| break; |
| } |
| |
| DPRINTF("%s(0x%"HWADDR_PRIx", %d) = 0x%"PRIx64"\n", |
| __func__, region->offset + addr, size, data); |
| |
| return data; |
| } |
| |
| static const MemoryRegionOps vfio_vga_ops = { |
| .read = vfio_vga_read, |
| .write = vfio_vga_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| /* |
| * Device specific quirks |
| */ |
| |
| /* Is range1 fully contained within range2? */ |
| static bool vfio_range_contained(uint64_t first1, uint64_t len1, |
| uint64_t first2, uint64_t len2) { |
| return (first1 >= first2 && first1 + len1 <= first2 + len2); |
| } |
| |
| static bool vfio_flags_enabled(uint8_t flags, uint8_t mask) |
| { |
| return (mask && (flags & mask) == mask); |
| } |
| |
| static uint64_t vfio_generic_window_quirk_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| VFIOQuirk *quirk = opaque; |
| VFIODevice *vdev = quirk->vdev; |
| uint64_t data; |
| |
| if (vfio_flags_enabled(quirk->data.flags, quirk->data.read_flags) && |
| ranges_overlap(addr, size, |
| quirk->data.data_offset, quirk->data.data_size)) { |
| hwaddr offset = addr - quirk->data.data_offset; |
| |
| if (!vfio_range_contained(addr, size, quirk->data.data_offset, |
| quirk->data.data_size)) { |
| hw_error("%s: window data read not fully contained: %s", |
| __func__, memory_region_name(&quirk->mem)); |
| } |
| |
| data = vfio_pci_read_config(&vdev->pdev, |
| quirk->data.address_val + offset, size); |
| |
| DPRINTF("%s read(%04x:%02x:%02x.%x:BAR%d+0x%"HWADDR_PRIx", %d) = 0x%" |
| PRIx64"\n", memory_region_name(&quirk->mem), vdev->host.domain, |
| vdev->host.bus, vdev->host.slot, vdev->host.function, |
| quirk->data.bar, addr, size, data); |
| } else { |
| data = vfio_bar_read(&vdev->bars[quirk->data.bar], |
| addr + quirk->data.base_offset, size); |
| } |
| |
| return data; |
| } |
| |
| static void vfio_generic_window_quirk_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIOQuirk *quirk = opaque; |
| VFIODevice *vdev = quirk->vdev; |
| |
| if (ranges_overlap(addr, size, |
| quirk->data.address_offset, quirk->data.address_size)) { |
| |
| if (addr != quirk->data.address_offset) { |
| hw_error("%s: offset write into address window: %s", |
| __func__, memory_region_name(&quirk->mem)); |
| } |
| |
| if ((data & ~quirk->data.address_mask) == quirk->data.address_match) { |
| quirk->data.flags |= quirk->data.write_flags | |
| quirk->data.read_flags; |
| quirk->data.address_val = data & quirk->data.address_mask; |
| } else { |
| quirk->data.flags &= ~(quirk->data.write_flags | |
| quirk->data.read_flags); |
| } |
| } |
| |
| if (vfio_flags_enabled(quirk->data.flags, quirk->data.write_flags) && |
| ranges_overlap(addr, size, |
| quirk->data.data_offset, quirk->data.data_size)) { |
| hwaddr offset = addr - quirk->data.data_offset; |
| |
| if (!vfio_range_contained(addr, size, quirk->data.data_offset, |
| quirk->data.data_size)) { |
| hw_error("%s: window data write not fully contained: %s", |
| __func__, memory_region_name(&quirk->mem)); |
| } |
| |
| vfio_pci_write_config(&vdev->pdev, |
| quirk->data.address_val + offset, data, size); |
| DPRINTF("%s write(%04x:%02x:%02x.%x:BAR%d+0x%"HWADDR_PRIx", 0x%" |
| PRIx64", %d)\n", memory_region_name(&quirk->mem), |
| vdev->host.domain, vdev->host.bus, vdev->host.slot, |
| vdev->host.function, quirk->data.bar, addr, data, size); |
| return; |
| } |
| |
| vfio_bar_write(&vdev->bars[quirk->data.bar], |
| addr + quirk->data.base_offset, data, size); |
| } |
| |
| static const MemoryRegionOps vfio_generic_window_quirk = { |
| .read = vfio_generic_window_quirk_read, |
| .write = vfio_generic_window_quirk_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static uint64_t vfio_generic_quirk_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| VFIOQuirk *quirk = opaque; |
| VFIODevice *vdev = quirk->vdev; |
| hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK; |
| hwaddr offset = quirk->data.address_match & ~TARGET_PAGE_MASK; |
| uint64_t data; |
| |
| if (vfio_flags_enabled(quirk->data.flags, quirk->data.read_flags) && |
| ranges_overlap(addr, size, offset, quirk->data.address_mask + 1)) { |
| if (!vfio_range_contained(addr, size, offset, |
| quirk->data.address_mask + 1)) { |
| hw_error("%s: read not fully contained: %s", |
| __func__, memory_region_name(&quirk->mem)); |
| } |
| |
| data = vfio_pci_read_config(&vdev->pdev, addr - offset, size); |
| |
| DPRINTF("%s read(%04x:%02x:%02x.%x:BAR%d+0x%"HWADDR_PRIx", %d) = 0x%" |
| PRIx64"\n", memory_region_name(&quirk->mem), vdev->host.domain, |
| vdev->host.bus, vdev->host.slot, vdev->host.function, |
| quirk->data.bar, addr + base, size, data); |
| } else { |
| data = vfio_bar_read(&vdev->bars[quirk->data.bar], addr + base, size); |
| } |
| |
| return data; |
| } |
| |
| static void vfio_generic_quirk_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIOQuirk *quirk = opaque; |
| VFIODevice *vdev = quirk->vdev; |
| hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK; |
| hwaddr offset = quirk->data.address_match & ~TARGET_PAGE_MASK; |
| |
| if (vfio_flags_enabled(quirk->data.flags, quirk->data.write_flags) && |
| ranges_overlap(addr, size, offset, quirk->data.address_mask + 1)) { |
| if (!vfio_range_contained(addr, size, offset, |
| quirk->data.address_mask + 1)) { |
| hw_error("%s: write not fully contained: %s", |
| __func__, memory_region_name(&quirk->mem)); |
| } |
| |
| vfio_pci_write_config(&vdev->pdev, addr - offset, data, size); |
| |
| DPRINTF("%s write(%04x:%02x:%02x.%x:BAR%d+0x%"HWADDR_PRIx", 0x%" |
| PRIx64", %d)\n", memory_region_name(&quirk->mem), |
| vdev->host.domain, vdev->host.bus, vdev->host.slot, |
| vdev->host.function, quirk->data.bar, addr + base, data, size); |
| } else { |
| vfio_bar_write(&vdev->bars[quirk->data.bar], addr + base, data, size); |
| } |
| } |
| |
| static const MemoryRegionOps vfio_generic_quirk = { |
| .read = vfio_generic_quirk_read, |
| .write = vfio_generic_quirk_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| #define PCI_VENDOR_ID_ATI 0x1002 |
| |
| /* |
| * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR |
| * through VGA register 0x3c3. On newer cards, the I/O port BAR is always |
| * BAR4 (older cards like the X550 used BAR1, but we don't care to support |
| * those). Note that on bare metal, a read of 0x3c3 doesn't always return the |
| * I/O port BAR address. Originally this was coded to return the virtual BAR |
| * address only if the physical register read returns the actual BAR address, |
| * but users have reported greater success if we return the virtual address |
| * unconditionally. |
| */ |
| static uint64_t vfio_ati_3c3_quirk_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| VFIOQuirk *quirk = opaque; |
| VFIODevice *vdev = quirk->vdev; |
| uint64_t data = vfio_pci_read_config(&vdev->pdev, |
| PCI_BASE_ADDRESS_0 + (4 * 4) + 1, |
| size); |
| DPRINTF("%s(0x3c3, 1) = 0x%"PRIx64"\n", __func__, data); |
| |
| return data; |
| } |
| |
| static const MemoryRegionOps vfio_ati_3c3_quirk = { |
| .read = vfio_ati_3c3_quirk_read, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static void vfio_vga_probe_ati_3c3_quirk(VFIODevice *vdev) |
| { |
| PCIDevice *pdev = &vdev->pdev; |
| VFIOQuirk *quirk; |
| |
| if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) { |
| return; |
| } |
| |
| /* |
| * As long as the BAR is >= 256 bytes it will be aligned such that the |
| * lower byte is always zero. Filter out anything else, if it exists. |
| */ |
| if (!vdev->bars[4].ioport || vdev->bars[4].size < 256) { |
| return; |
| } |
| |
| quirk = g_malloc0(sizeof(*quirk)); |
| quirk->vdev = vdev; |
| |
| memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, quirk, |
| "vfio-ati-3c3-quirk", 1); |
| memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem, |
| 3 /* offset 3 bytes from 0x3c0 */, &quirk->mem); |
| |
| QLIST_INSERT_HEAD(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks, |
| quirk, next); |
| |
| DPRINTF("Enabled ATI/AMD quirk 0x3c3 BAR4for device %04x:%02x:%02x.%x\n", |
| vdev->host.domain, vdev->host.bus, vdev->host.slot, |
| vdev->host.function); |
| } |
| |
| /* |
| * Newer ATI/AMD devices, including HD5450 and HD7850, have a window to PCI |
| * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access |
| * the MMIO space directly, but a window to this space is provided through |
| * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the |
| * data register. When the address is programmed to a range of 0x4000-0x4fff |
| * PCI configuration space is available. Experimentation seems to indicate |
| * that only read-only access is provided, but we drop writes when the window |
| * is enabled to config space nonetheless. |
| */ |
| static void vfio_probe_ati_bar4_window_quirk(VFIODevice *vdev, int nr) |
| { |
| PCIDevice *pdev = &vdev->pdev; |
| VFIOQuirk *quirk; |
| |
| if (!vdev->has_vga || nr != 4 || |
| pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) { |
| return; |
| } |
| |
| quirk = g_malloc0(sizeof(*quirk)); |
| quirk->vdev = vdev; |
| quirk->data.address_size = 4; |
| quirk->data.data_offset = 4; |
| quirk->data.data_size = 4; |
| quirk->data.address_match = 0x4000; |
| quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1; |
| quirk->data.bar = nr; |
| quirk->data.read_flags = quirk->data.write_flags = 1; |
| |
| memory_region_init_io(&quirk->mem, OBJECT(vdev), |
| &vfio_generic_window_quirk, quirk, |
| "vfio-ati-bar4-window-quirk", 8); |
| memory_region_add_subregion_overlap(&vdev->bars[nr].mem, |
| quirk->data.base_offset, &quirk->mem, 1); |
| |
| QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); |
| |
| DPRINTF("Enabled ATI/AMD BAR4 window quirk for device %04x:%02x:%02x.%x\n", |
| vdev->host.domain, vdev->host.bus, vdev->host.slot, |
| vdev->host.function); |
| } |
| |
| #define PCI_VENDOR_ID_REALTEK 0x10ec |
| |
| /* |
| * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2 |
| * offset 0x70 there is a dword data register, offset 0x74 is a dword address |
| * register. According to the Linux r8169 driver, the MSI-X table is addressed |
| * when the "type" portion of the address register is set to 0x1. This appears |
| * to be bits 16:30. Bit 31 is both a write indicator and some sort of |
| * "address latched" indicator. Bits 12:15 are a mask field, which we can |
| * ignore because the MSI-X table should always be accessed as a dword (full |
| * mask). Bits 0:11 is offset within the type. |
| * |
| * Example trace: |
| * |
| * Read from MSI-X table offset 0 |
| * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr |
| * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch |
| * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data |
| * |
| * Write 0xfee00000 to MSI-X table offset 0 |
| * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data |
| * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write |
| * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete |
| */ |
| |
| static uint64_t vfio_rtl8168_window_quirk_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| VFIOQuirk *quirk = opaque; |
| VFIODevice *vdev = quirk->vdev; |
| |
| switch (addr) { |
| case 4: /* address */ |
| if (quirk->data.flags) { |
| DPRINTF("%s fake read(%04x:%02x:%02x.%d)\n", |
| memory_region_name(&quirk->mem), vdev->host.domain, |
| vdev->host.bus, vdev->host.slot, vdev->host.function); |
| |
| return quirk->data.address_match ^ 0x10000000U; |
| } |
| break; |
| case 0: /* data */ |
| if (quirk->data.flags) { |
| uint64_t val; |
| |
| DPRINTF("%s MSI-X table read(%04x:%02x:%02x.%d)\n", |
| memory_region_name(&quirk->mem), vdev->host.domain, |
| vdev->host.bus, vdev->host.slot, vdev->host.function); |
| |
| if (!(vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) { |
| return 0; |
| } |
| |
| io_mem_read(&vdev->pdev.msix_table_mmio, |
| (hwaddr)(quirk->data.address_match & 0xfff), |
| &val, size); |
| return val; |
| } |
| } |
| |
| DPRINTF("%s direct read(%04x:%02x:%02x.%d)\n", |
| memory_region_name(&quirk->mem), vdev->host.domain, |
| vdev->host.bus, vdev->host.slot, vdev->host.function); |
| |
| return vfio_bar_read(&vdev->bars[quirk->data.bar], addr + 0x70, size); |
| } |
| |
| static void vfio_rtl8168_window_quirk_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIOQuirk *quirk = opaque; |
| VFIODevice *vdev = quirk->vdev; |
| |
| switch (addr) { |
| case 4: /* address */ |
| if ((data & 0x7fff0000) == 0x10000) { |
| if (data & 0x10000000U && |
| vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) { |
| |
| DPRINTF("%s MSI-X table write(%04x:%02x:%02x.%d)\n", |
| memory_region_name(&quirk->mem), vdev->host.domain, |
| vdev->host.bus, vdev->host.slot, vdev->host.function); |
| |
| io_mem_write(&vdev->pdev.msix_table_mmio, |
| (hwaddr)(quirk->data.address_match & 0xfff), |
| data, size); |
| } |
| |
| quirk->data.flags = 1; |
| quirk->data.address_match = data; |
| |
| return; |
| } |
| quirk->data.flags = 0; |
| break; |
| case 0: /* data */ |
| quirk->data.address_mask = data; |
| break; |
| } |
| |
| DPRINTF("%s direct write(%04x:%02x:%02x.%d)\n", |
| memory_region_name(&quirk->mem), vdev->host.domain, |
| vdev->host.bus, vdev->host.slot, vdev->host.function); |
| |
| vfio_bar_write(&vdev->bars[quirk->data.bar], addr + 0x70, data, size); |
| } |
| |
| static const MemoryRegionOps vfio_rtl8168_window_quirk = { |
| .read = vfio_rtl8168_window_quirk_read, |
| .write = vfio_rtl8168_window_quirk_write, |
| .valid = { |
| .min_access_size = 4, |
| .max_access_size = 4, |
| .unaligned = false, |
| }, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static void vfio_probe_rtl8168_bar2_window_quirk(VFIODevice *vdev, int nr) |
| { |
| PCIDevice *pdev = &vdev->pdev; |
| VFIOQuirk *quirk; |
| |
| if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_REALTEK || |
| pci_get_word(pdev->config + PCI_DEVICE_ID) != 0x8168 || nr != 2) { |
| return; |
| } |
| |
| quirk = g_malloc0(sizeof(*quirk)); |
| quirk->vdev = vdev; |
| quirk->data.bar = nr; |
| |
| memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_rtl8168_window_quirk, |
| quirk, "vfio-rtl8168-window-quirk", 8); |
| memory_region_add_subregion_overlap(&vdev->bars[nr].mem, |
| 0x70, &quirk->mem, 1); |
| |
| QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); |
| |
| DPRINTF("Enabled RTL8168 BAR2 window quirk for device %04x:%02x:%02x.%x\n", |
| vdev->host.domain, vdev->host.bus, vdev->host.slot, |
| vdev->host.function); |
| } |
| /* |
| * Trap the BAR2 MMIO window to config space as well. |
| */ |
| static void vfio_probe_ati_bar2_4000_quirk(VFIODevice *vdev, int nr) |
| { |
| PCIDevice *pdev = &vdev->pdev; |
| VFIOQuirk *quirk; |
| |
| /* Only enable on newer devices where BAR2 is 64bit */ |
| if (!vdev->has_vga || nr != 2 || !vdev->bars[2].mem64 || |
| pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) { |
| return; |
| } |
| |
| quirk = g_malloc0(sizeof(*quirk)); |
| quirk->vdev = vdev; |
| quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1; |
| quirk->data.address_match = 0x4000; |
| quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1; |
| quirk->data.bar = nr; |
| |
| memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_generic_quirk, quirk, |
| "vfio-ati-bar2-4000-quirk", |
| TARGET_PAGE_ALIGN(quirk->data.address_mask + 1)); |
| memory_region_add_subregion_overlap(&vdev->bars[nr].mem, |
| quirk->data.address_match & TARGET_PAGE_MASK, |
| &quirk->mem, 1); |
| |
| QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); |
| |
| DPRINTF("Enabled ATI/AMD BAR2 0x4000 quirk for device %04x:%02x:%02x.%x\n", |
| vdev->host.domain, vdev->host.bus, vdev->host.slot, |
| vdev->host.function); |
| } |
| |
| /* |
| * Older ATI/AMD cards like the X550 have a similar window to that above. |
| * I/O port BAR1 provides a window to a mirror of PCI config space located |
| * in BAR2 at offset 0xf00. We don't care to support such older cards, but |
| * note it for future reference. |
| */ |
| |
| #define PCI_VENDOR_ID_NVIDIA 0x10de |
| |
| /* |
| * Nvidia has several different methods to get to config space, the |
| * nouveu project has several of these documented here: |
| * https://github.com/pathscale/envytools/tree/master/hwdocs |
| * |
| * The first quirk is actually not documented in envytools and is found |
| * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an |
| * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access |
| * the mirror of PCI config space found at BAR0 offset 0x1800. The access |
| * sequence first writes 0x338 to I/O port 0x3d4. The target offset is |
| * then written to 0x3d0. Finally 0x538 is written for a read and 0x738 |
| * is written for a write to 0x3d4. The BAR0 offset is then accessible |
| * through 0x3d0. This quirk doesn't seem to be necessary on newer cards |
| * that use the I/O port BAR5 window but it doesn't hurt to leave it. |
| */ |
| enum { |
| NV_3D0_NONE = 0, |
| NV_3D0_SELECT, |
| NV_3D0_WINDOW, |
| NV_3D0_READ, |
| NV_3D0_WRITE, |
| }; |
| |
| static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque, |
| hwaddr addr, unsigned size) |
| { |
| VFIOQuirk *quirk = opaque; |
| VFIODevice *vdev = quirk->vdev; |
| PCIDevice *pdev = &vdev->pdev; |
| uint64_t data = vfio_vga_read(&vdev->vga.region[QEMU_PCI_VGA_IO_HI], |
| addr + quirk->data.base_offset, size); |
| |
| if (quirk->data.flags == NV_3D0_READ && addr == quirk->data.data_offset) { |
| data = vfio_pci_read_config(pdev, quirk->data.address_val, size); |
| DPRINTF("%s(0x3d0, %d) = 0x%"PRIx64"\n", __func__, size, data); |
| } |
| |
| quirk->data.flags = NV_3D0_NONE; |
| |
| return data; |
| } |
| |
| static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIOQuirk *quirk = opaque; |
| VFIODevice *vdev = quirk->vdev; |
| PCIDevice *pdev = &vdev->pdev; |
| |
| switch (quirk->data.flags) { |
| case NV_3D0_NONE: |
| if (addr == quirk->data.address_offset && data == 0x338) { |
| quirk->data.flags = NV_3D0_SELECT; |
| } |
| break; |
| case NV_3D0_SELECT: |
| quirk->data.flags = NV_3D0_NONE; |
| if (addr == quirk->data.data_offset && |
| (data & ~quirk->data.address_mask) == quirk->data.address_match) { |
| quirk->data.flags = NV_3D0_WINDOW; |
| quirk->data.address_val = data & quirk->data.address_mask; |
| } |
| break; |
| case NV_3D0_WINDOW: |
| quirk->data.flags = NV_3D0_NONE; |
| if (addr == quirk->data.address_offset) { |
| if (data == 0x538) { |
| quirk->data.flags = NV_3D0_READ; |
| } else if (data == 0x738) { |
| quirk->data.flags = NV_3D0_WRITE; |
| } |
| } |
| break; |
| case NV_3D0_WRITE: |
| quirk->data.flags = NV_3D0_NONE; |
| if (addr == quirk->data.data_offset) { |
| vfio_pci_write_config(pdev, quirk->data.address_val, data, size); |
| DPRINTF("%s(0x3d0, 0x%"PRIx64", %d)\n", __func__, data, size); |
| return; |
| } |
| break; |
| } |
| |
| vfio_vga_write(&vdev->vga.region[QEMU_PCI_VGA_IO_HI], |
| addr + quirk->data.base_offset, data, size); |
| } |
| |
| static const MemoryRegionOps vfio_nvidia_3d0_quirk = { |
| .read = vfio_nvidia_3d0_quirk_read, |
| .write = vfio_nvidia_3d0_quirk_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static void vfio_vga_probe_nvidia_3d0_quirk(VFIODevice *vdev) |
| { |
| PCIDevice *pdev = &vdev->pdev; |
| VFIOQuirk *quirk; |
| |
| if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA || |
| !vdev->bars[1].size) { |
| return; |
| } |
| |
| quirk = g_malloc0(sizeof(*quirk)); |
| quirk->vdev = vdev; |
| quirk->data.base_offset = 0x10; |
| quirk->data.address_offset = 4; |
| quirk->data.address_size = 2; |
| quirk->data.address_match = 0x1800; |
| quirk->data.address_mask = PCI_CONFIG_SPACE_SIZE - 1; |
| quirk->data.data_offset = 0; |
| quirk->data.data_size = 4; |
| |
| memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_nvidia_3d0_quirk, |
| quirk, "vfio-nvidia-3d0-quirk", 6); |
| memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem, |
| quirk->data.base_offset, &quirk->mem); |
| |
| QLIST_INSERT_HEAD(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks, |
| quirk, next); |
| |
| DPRINTF("Enabled NVIDIA VGA 0x3d0 quirk for device %04x:%02x:%02x.%x\n", |
| vdev->host.domain, vdev->host.bus, vdev->host.slot, |
| vdev->host.function); |
| } |
| |
| /* |
| * The second quirk is documented in envytools. The I/O port BAR5 is just |
| * a set of address/data ports to the MMIO BARs. The BAR we care about is |
| * again BAR0. This backdoor is apparently a bit newer than the one above |
| * so we need to not only trap 256 bytes @0x1800, but all of PCI config |
| * space, including extended space is available at the 4k @0x88000. |
| */ |
| enum { |
| NV_BAR5_ADDRESS = 0x1, |
| NV_BAR5_ENABLE = 0x2, |
| NV_BAR5_MASTER = 0x4, |
| NV_BAR5_VALID = 0x7, |
| }; |
| |
| static void vfio_nvidia_bar5_window_quirk_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIOQuirk *quirk = opaque; |
| |
| switch (addr) { |
| case 0x0: |
| if (data & 0x1) { |
| quirk->data.flags |= NV_BAR5_MASTER; |
| } else { |
| quirk->data.flags &= ~NV_BAR5_MASTER; |
| } |
| break; |
| case 0x4: |
| if (data & 0x1) { |
| quirk->data.flags |= NV_BAR5_ENABLE; |
| } else { |
| quirk->data.flags &= ~NV_BAR5_ENABLE; |
| } |
| break; |
| case 0x8: |
| if (quirk->data.flags & NV_BAR5_MASTER) { |
| if ((data & ~0xfff) == 0x88000) { |
| quirk->data.flags |= NV_BAR5_ADDRESS; |
| quirk->data.address_val = data & 0xfff; |
| } else if ((data & ~0xff) == 0x1800) { |
| quirk->data.flags |= NV_BAR5_ADDRESS; |
| quirk->data.address_val = data & 0xff; |
| } else { |
| quirk->data.flags &= ~NV_BAR5_ADDRESS; |
| } |
| } |
| break; |
| } |
| |
| vfio_generic_window_quirk_write(opaque, addr, data, size); |
| } |
| |
| static const MemoryRegionOps vfio_nvidia_bar5_window_quirk = { |
| .read = vfio_generic_window_quirk_read, |
| .write = vfio_nvidia_bar5_window_quirk_write, |
| .valid.min_access_size = 4, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static void vfio_probe_nvidia_bar5_window_quirk(VFIODevice *vdev, int nr) |
| { |
| PCIDevice *pdev = &vdev->pdev; |
| VFIOQuirk *quirk; |
| |
| if (!vdev->has_vga || nr != 5 || |
| pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) { |
| return; |
| } |
| |
| quirk = g_malloc0(sizeof(*quirk)); |
| quirk->vdev = vdev; |
| quirk->data.read_flags = quirk->data.write_flags = NV_BAR5_VALID; |
| quirk->data.address_offset = 0x8; |
| quirk->data.address_size = 0; /* actually 4, but avoids generic code */ |
| quirk->data.data_offset = 0xc; |
| quirk->data.data_size = 4; |
| quirk->data.bar = nr; |
| |
| memory_region_init_io(&quirk->mem, OBJECT(vdev), |
| &vfio_nvidia_bar5_window_quirk, quirk, |
| "vfio-nvidia-bar5-window-quirk", 16); |
| memory_region_add_subregion_overlap(&vdev->bars[nr].mem, 0, &quirk->mem, 1); |
| |
| QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); |
| |
| DPRINTF("Enabled NVIDIA BAR5 window quirk for device %04x:%02x:%02x.%x\n", |
| vdev->host.domain, vdev->host.bus, vdev->host.slot, |
| vdev->host.function); |
| } |
| |
| static void vfio_nvidia_88000_quirk_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| VFIOQuirk *quirk = opaque; |
| VFIODevice *vdev = quirk->vdev; |
| PCIDevice *pdev = &vdev->pdev; |
| hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK; |
| |
| vfio_generic_quirk_write(opaque, addr, data, size); |
| |
| /* |
| * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the |
| * MSI capability ID register. Both the ID and next register are |
| * read-only, so we allow writes covering either of those to real hw. |
| * NB - only fixed for the 0x88000 MMIO window. |
| */ |
| if ((pdev->cap_present & QEMU_PCI_CAP_MSI) && |
| vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) { |
| vfio_bar_write(&vdev->bars[quirk->data.bar], addr + base, data, size); |
| } |
| } |
| |
| static const MemoryRegionOps vfio_nvidia_88000_quirk = { |
| .read = vfio_generic_quirk_read, |
| .write = vfio_nvidia_88000_quirk_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| /* |
| * Finally, BAR0 itself. We want to redirect any accesses to either |
| * 0x1800 or 0x88000 through the PCI config space access functions. |
| * |
| * NB - quirk at a page granularity or else they don't seem to work when |
| * BARs are mmap'd |
| * |
| * Here's offset 0x88000... |
| */ |
| static void vfio_probe_nvidia_bar0_88000_quirk(VFIODevice *vdev, int nr) |
| { |
| PCIDevice *pdev = &vdev->pdev; |
| VFIOQuirk *quirk; |
| uint16_t vendor, class; |
| |
| vendor = pci_get_word(pdev->config + PCI_VENDOR_ID); |
| class = pci_get_word(pdev->config + PCI_CLASS_DEVICE); |
| |
| if (nr != 0 || vendor != PCI_VENDOR_ID_NVIDIA || |
| class != PCI_CLASS_DISPLAY_VGA) { |
| return; |
| } |
| |
| quirk = g_malloc0(sizeof(*quirk)); |
| quirk->vdev = vdev; |
| quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1; |
| quirk->data.address_match = 0x88000; |
| quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1; |
| quirk->data.bar = nr; |
| |
| memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_nvidia_88000_quirk, |
| quirk, "vfio-nvidia-bar0-88000-quirk", |
| TARGET_PAGE_ALIGN(quirk->data.address_mask + 1)); |
| memory_region_add_subregion_overlap(&vdev->bars[nr].mem, |
| quirk->data.address_match & TARGET_PAGE_MASK, |
| &quirk->mem, 1); |
| |
| QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); |
| |
| DPRINTF("Enabled NVIDIA BAR0 0x88000 quirk for device %04x:%02x:%02x.%x\n", |
| vdev->host.domain, vdev->host.bus, vdev->host.slot, |
| vdev->host.function); |
| } |
| |
| /* |
| * And here's the same for BAR0 offset 0x1800... |
| */ |
| static void vfio_probe_nvidia_bar0_1800_quirk(VFIODevice *vdev, int nr) |
| { |
| PCIDevice *pdev = &vdev->pdev; |
| VFIOQuirk *quirk; |
| |
| if (!vdev->has_vga || nr != 0 || |
| pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) { |
| return; |
| } |
| |
| /* Log the chipset ID */ |
| DPRINTF("Nvidia NV%02x\n", |
| (unsigned int)(vfio_bar_read(&vdev->bars[0], 0, 4) >> 20) & 0xff); |
| |
| quirk = g_malloc0(sizeof(*quirk)); |
| quirk->vdev = vdev; |
| quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1; |
| quirk->data.address_match = 0x1800; |
| quirk->data.address_mask = PCI_CONFIG_SPACE_SIZE - 1; |
| quirk->data.bar = nr; |
| |
| memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_generic_quirk, quirk, |
| "vfio-nvidia-bar0-1800-quirk", |
| TARGET_PAGE_ALIGN(quirk->data.address_mask + 1)); |
| memory_region_add_subregion_overlap(&vdev->bars[nr].mem, |
| quirk->data.address_match & TARGET_PAGE_MASK, |
| &quirk->mem, 1); |
| |
| QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); |
| |
| DPRINTF("Enabled NVIDIA BAR0 0x1800 quirk for device %04x:%02x:%02x.%x\n", |
| vdev->host.domain, vdev->host.bus, vdev->host.slot, |
| vdev->host.function); |
| } |
| |
| /* |
| * TODO - Some Nvidia devices provide config access to their companion HDA |
| * device and even to their parent bridge via these config space mirrors. |
| * Add quirks for those regions. |
| */ |
| |
| /* |
| * Common quirk probe entry points. |
| */ |
| static void vfio_vga_quirk_setup(VFIODevice *vdev) |
| { |
| vfio_vga_probe_ati_3c3_quirk(vdev); |
| vfio_vga_probe_nvidia_3d0_quirk(vdev); |
| } |
| |
| static void vfio_vga_quirk_teardown(VFIODevice *vdev) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(vdev->vga.region); i++) { |
| while (!QLIST_EMPTY(&vdev->vga.region[i].quirks)) { |
| VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga.region[i].quirks); |
| memory_region_del_subregion(&vdev->vga.region[i].mem, &quirk->mem); |
| object_unparent(OBJECT(&quirk->mem)); |
| QLIST_REMOVE(quirk, next); |
| g_free(quirk); |
| } |
| } |
| } |
| |
| static void vfio_bar_quirk_setup(VFIODevice *vdev, int nr) |
| { |
| vfio_probe_ati_bar4_window_quirk(vdev, nr); |
| vfio_probe_ati_bar2_4000_quirk(vdev, nr); |
| vfio_probe_nvidia_bar5_window_quirk(vdev, nr); |
| vfio_probe_nvidia_bar0_88000_quirk(vdev, nr); |
| vfio_probe_nvidia_bar0_1800_quirk(vdev, nr); |
| vfio_probe_rtl8168_bar2_window_quirk(vdev, nr); |
| } |
| |
| static void vfio_bar_quirk_teardown(VFIODevice *vdev, int nr) |
| { |
| VFIOBAR *bar = &vdev->bars[nr]; |
| |
| while (!QLIST_EMPTY(&bar->quirks)) { |
| VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks); |
| memory_region_del_subregion(&bar->mem, &quirk->mem); |
| object_unparent(OBJECT(&quirk->mem)); |
| QLIST_REMOVE(quirk, next); |
| g_free(quirk); |
| } |
| } |
| |
| /* |
| * PCI config space |
| */ |
| static uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len) |
| { |
| VFIODevice *vdev = DO_UPCAST(VFIODevice, pdev, pdev); |
| uint32_t emu_bits = 0, emu_val = 0, phys_val = 0, val; |
| |
| memcpy(&emu_bits, vdev->emulated_config_bits + addr, len); |
| emu_bits = le32_to_cpu(emu_bits); |
| |
| if (emu_bits) { |
| emu_val = pci_default_read_config(pdev, addr, len); |
| } |
| |
| if (~emu_bits & (0xffffffffU >> (32 - len * 8))) { |
| ssize_t ret; |
| |
| ret = pread(vdev->fd, &phys_val, len, vdev->config_offset + addr); |
| if (ret != len) { |
| error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x) failed: %m", |
| __func__, vdev->host.domain, vdev->host.bus, |
| vdev->host.slot, vdev->host.function, addr, len); |
| return -errno; |
| } |
| phys_val = le32_to_cpu(phys_val); |
| } |
| |
| val = (emu_val & emu_bits) | (phys_val & ~emu_bits); |
| |
| DPRINTF("%s(%04x:%02x:%02x.%x, @0x%x, len=0x%x) %x\n", __func__, |
| vdev->host.domain, vdev->host.bus, vdev->host.slot, |
| vdev->host.function, addr, len, val); |
| |
| return val; |
| } |
| |
| static void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr, |
| uint32_t val, int len) |
| { |
| VFIODevice *vdev = DO_UPCAST(VFIODevice, pdev, pdev); |
| uint32_t val_le = cpu_to_le32(val); |
| |
| DPRINTF("%s(%04x:%02x:%02x.%x, @0x%x, 0x%x, len=0x%x)\n", __func__, |
| vdev->host.domain, vdev->host.bus, vdev->host.slot, |
| vdev->host.function, addr, val, len); |
| |
| /* Write everything to VFIO, let it filter out what we can't write */ |
| if (pwrite(vdev->fd, &val_le, len, vdev->config_offset + addr) != len) { |
| error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x, 0x%x) failed: %m", |
| __func__, vdev->host.domain, vdev->host.bus, |
| vdev->host.slot, vdev->host.function, addr, val, len); |
| } |
| |
| /* MSI/MSI-X Enabling/Disabling */ |
| if (pdev->cap_present & QEMU_PCI_CAP_MSI && |
| ranges_overlap(addr, len, pdev->msi_cap, vdev->msi_cap_size)) { |
| int is_enabled, was_enabled = msi_enabled(pdev); |
| |
| pci_default_write_config(pdev, addr, val, len); |
| |
| is_enabled = msi_enabled(pdev); |
| |
| if (!was_enabled) { |
| if (is_enabled) { |
| vfio_enable_msi(vdev); |
| } |
| } else { |
| if (!is_enabled) { |
| vfio_disable_msi(vdev); |
| } else { |
| vfio_update_msi(vdev); |
| } |
| } |
| } else if (pdev->cap_present & QEMU_PCI_CAP_MSIX && |
| ranges_overlap(addr, len, pdev->msix_cap, MSIX_CAP_LENGTH)) { |
| int is_enabled, was_enabled = msix_enabled(pdev); |
| |
| pci_default_write_config(pdev, addr, val, len); |
| |
| is_enabled = msix_enabled(pdev); |
| |
| if (!was_enabled && is_enabled) { |
| vfio_enable_msix(vdev); |
| } else if (was_enabled && !is_enabled) { |
| vfio_disable_msix(vdev); |
| } |
| } else { |
| /* Write everything to QEMU to keep emulated bits correct */ |
| pci_default_write_config(pdev, addr, val, len); |
| } |
| } |
| |
| /* |
| * DMA - Mapping and unmapping for the "type1" IOMMU interface used on x86 |
| */ |
| static int vfio_dma_unmap(VFIOContainer *container, |
| hwaddr iova, ram_addr_t size) |
| { |
| struct vfio_iommu_type1_dma_unmap unmap = { |
| .argsz = sizeof(unmap), |
| .flags = 0, |
| .iova = iova, |
| .size = size, |
| }; |
| |
| if (ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, &unmap)) { |
| DPRINTF("VFIO_UNMAP_DMA: %d\n", -errno); |
| return -errno; |
| } |
| |
| return 0; |
| } |
| |
| static int vfio_dma_map(VFIOContainer *container, hwaddr iova, |
| ram_addr_t size, void *vaddr, bool readonly) |
| { |
| struct vfio_iommu_type1_dma_map map = { |
| .argsz = sizeof(map), |
| .flags = VFIO_DMA_MAP_FLAG_READ, |
| .vaddr = (__u64)(uintptr_t)vaddr, |
| .iova = iova, |
| .size = size, |
| }; |
| |
| if (!readonly) { |
| map.flags |= VFIO_DMA_MAP_FLAG_WRITE; |
| } |
| |
| /* |
| * Try the mapping, if it fails with EBUSY, unmap the region and try |
| * again. This shouldn't be necessary, but we sometimes see it in |
| * the the VGA ROM space. |
| */ |
| if (ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0 || |
| (errno == EBUSY && vfio_dma_unmap(container, iova, size) == 0 && |
| ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0)) { |
| return 0; |
| } |
| |
| DPRINTF("VFIO_MAP_DMA: %d\n", -errno); |
| return -errno; |
| } |
| |
| static bool vfio_listener_skipped_section(MemoryRegionSection *section) |
| { |
| return (!memory_region_is_ram(section->mr) && |
| !memory_region_is_iommu(section->mr)) || |
| /* |
| * Sizing an enabled 64-bit BAR can cause spurious mappings to |
| * addresses in the upper part of the 64-bit address space. These |
| * are never accessed by the CPU and beyond the address width of |
| * some IOMMU hardware. TODO: VFIO should tell us the IOMMU width. |
| */ |
| section->offset_within_address_space & (1ULL << 63); |
| } |
| |
| static void vfio_iommu_map_notify(Notifier *n, void *data) |
| { |
| VFIOGuestIOMMU *giommu = container_of(n, VFIOGuestIOMMU, n); |
| VFIOContainer *container = giommu->container; |
| IOMMUTLBEntry *iotlb = data; |
| MemoryRegion *mr; |
| hwaddr xlat; |
| hwaddr len = iotlb->addr_mask + 1; |
| void *vaddr; |
| int ret; |
| |
| DPRINTF("iommu map @ %"HWADDR_PRIx" - %"HWADDR_PRIx"\n", |
| iotlb->iova, iotlb->iova + iotlb->addr_mask); |
| |
| /* |
| * The IOMMU TLB entry we have just covers translation through |
| * this IOMMU to its immediate target. We need to translate |
| * it the rest of the way through to memory. |
| */ |
| mr = address_space_translate(&address_space_memory, |
| iotlb->translated_addr, |
| &xlat, &len, iotlb->perm & IOMMU_WO); |
| if (!memory_region_is_ram(mr)) { |
| DPRINTF("iommu map to non memory area %"HWADDR_PRIx"\n", |
| xlat); |
| return; |
| } |
| /* |
| * Translation truncates length to the IOMMU page size, |
| * check that it did not truncate too much. |
| */ |
| if (len & iotlb->addr_mask) { |
| DPRINTF("iommu has granularity incompatible with target AS\n"); |
| return; |
| } |
| |
| if ((iotlb->perm & IOMMU_RW) != IOMMU_NONE) { |
| vaddr = memory_region_get_ram_ptr(mr) + xlat; |
| |
| ret = vfio_dma_map(container, iotlb->iova, |
| iotlb->addr_mask + 1, vaddr, |
| !(iotlb->perm & IOMMU_WO) || mr->readonly); |
| if (ret) { |
| error_report("vfio_dma_map(%p, 0x%"HWADDR_PRIx", " |
| "0x%"HWADDR_PRIx", %p) = %d (%m)", |
| container, iotlb->iova, |
| iotlb->addr_mask + 1, vaddr, ret); |
| } |
| } else { |
| ret = vfio_dma_unmap(container, iotlb->iova, iotlb->addr_mask + 1); |
| if (ret) { |
| error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", " |
| "0x%"HWADDR_PRIx") = %d (%m)", |
| container, iotlb->iova, |
| iotlb->addr_mask + 1, ret); |
| } |
| } |
| } |
| |
| static void vfio_listener_region_add(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| VFIOContainer *container = container_of(listener, VFIOContainer, |
| iommu_data.type1.listener); |
| hwaddr iova, end; |
| Int128 llend; |
| void *vaddr; |
| int ret; |
| |
| if (vfio_listener_skipped_section(section)) { |
| DPRINTF("SKIPPING region_add %"HWADDR_PRIx" - %"PRIx64"\n", |
| section->offset_within_address_space, |
| section->offset_within_address_space + |
| int128_get64(int128_sub(section->size, int128_one()))); |
| return; |
| } |
| |
| if (unlikely((section->offset_within_address_space & ~TARGET_PAGE_MASK) != |
| (section->offset_within_region & ~TARGET_PAGE_MASK))) { |
| error_report("%s received unaligned region", __func__); |
| return; |
| } |
| |
| iova = TARGET_PAGE_ALIGN(section->offset_within_address_space); |
| llend = int128_make64(section->offset_within_address_space); |
| llend = int128_add(llend, section->size); |
| llend = int128_and(llend, int128_exts64(TARGET_PAGE_MASK)); |
| |
| if (int128_ge(int128_make64(iova), llend)) { |
| return; |
| } |
| |
| memory_region_ref(section->mr); |
| |
| if (memory_region_is_iommu(section->mr)) { |
| VFIOGuestIOMMU *giommu; |
| |
| DPRINTF("region_add [iommu] %"HWADDR_PRIx" - %"HWADDR_PRIx"\n", |
| iova, int128_get64(int128_sub(llend, int128_one()))); |
| /* |
| * FIXME: We should do some checking to see if the |
| * capabilities of the host VFIO IOMMU are adequate to model |
| * the guest IOMMU |
| * |
| * FIXME: For VFIO iommu types which have KVM acceleration to |
| * avoid bouncing all map/unmaps through qemu this way, this |
| * would be the right place to wire that up (tell the KVM |
| * device emulation the VFIO iommu handles to use). |
| */ |
| /* |
| * This assumes that the guest IOMMU is empty of |
| * mappings at this point. |
| * |
| * One way of doing this is: |
| * 1. Avoid sharing IOMMUs between emulated devices or different |
| * IOMMU groups. |
| * 2. Implement VFIO_IOMMU_ENABLE in the host kernel to fail if |
| * there are some mappings in IOMMU. |
| * |
| * VFIO on SPAPR does that. Other IOMMU models may do that different, |
| * they must make sure there are no existing mappings or |
| * loop through existing mappings to map them into VFIO. |
| */ |
| giommu = g_malloc0(sizeof(*giommu)); |
| giommu->iommu = section->mr; |
| giommu->container = container; |
| giommu->n.notify = vfio_iommu_map_notify; |
| QLIST_INSERT_HEAD(&container->giommu_list, giommu, giommu_next); |
| memory_region_register_iommu_notifier(giommu->iommu, &giommu->n); |
| |
| return; |
| } |
| |
| /* Here we assume that memory_region_is_ram(section->mr)==true */ |
| |
| end = int128_get64(llend); |
| vaddr = memory_region_get_ram_ptr(section->mr) + |
| section->offset_within_region + |
| (iova - section->offset_within_address_space); |
| |
| DPRINTF("region_add [ram] %"HWADDR_PRIx" - %"HWADDR_PRIx" [%p]\n", |
| iova, end - 1, vaddr); |
| |
| ret = vfio_dma_map(container, iova, end - iova, vaddr, section->readonly); |
| if (ret) { |
| error_report("vfio_dma_map(%p, 0x%"HWADDR_PRIx", " |
| "0x%"HWADDR_PRIx", %p) = %d (%m)", |
| container, iova, end - iova, vaddr, ret); |
| |
| /* |
| * On the initfn path, store the first error in the container so we |
| * can gracefully fail. Runtime, there's not much we can do other |
| * than throw a hardware error. |
| */ |
| if (!container->iommu_data.type1.initialized) { |
| if (!container->iommu_data.type1.error) { |
| container->iommu_data.type1.error = ret; |
| } |
| } else { |
| hw_error("vfio: DMA mapping failed, unable to continue"); |
| } |
| } |
| } |
| |
| static void vfio_listener_region_del(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| VFIOContainer *container = container_of(listener, VFIOContainer, |
| iommu_data.type1.listener); |
| hwaddr iova, end; |
| int ret; |
| |
| if (vfio_listener_skipped_section(section)) { |
| DPRINTF("SKIPPING region_del %"HWADDR_PRIx" - %"PRIx64"\n", |
| section->offset_within_address_space, |
| section->offset_within_address_space + |
| int128_get64(int128_sub(section->size, int128_one()))); |
| return; |
| } |
| |
| if (unlikely((section->offset_within_address_space & ~TARGET_PAGE_MASK) != |
| (section->offset_within_region & ~TARGET_PAGE_MASK))) { |
| error_report("%s received unaligned region", __func__); |
| return; |
| } |
| |
| if (memory_region_is_iommu(section->mr)) { |
| VFIOGuestIOMMU *giommu; |
| |
| QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) { |
| if (giommu->iommu == section->mr) { |
| memory_region_unregister_iommu_notifier(&giommu->n); |
| QLIST_REMOVE(giommu, giommu_next); |
| g_free(giommu); |
| break; |
| } |
| } |
| |
| /* |
| * FIXME: We assume the one big unmap below is adequate to |
| * remove any individual page mappings in the IOMMU which |
| * might have been copied into VFIO. This works for a page table |
| * based IOMMU where a big unmap flattens a large range of IO-PTEs. |
| * That may not be true for all IOMMU types. |
| */ |
| } |
| |
| iova = TARGET_PAGE_ALIGN(section->offset_within_address_space); |
| end = (section->offset_within_address_space + int128_get64(section->size)) & |
| TARGET_PAGE_MASK; |
| |
| if (iova >= end) { |
| return; |
| } |
| |
| DPRINTF("region_del %"HWADDR_PRIx" - %"HWADDR_PRIx"\n", |
| iova, end - 1); |
| |
| ret = vfio_dma_unmap(container, iova, end - iova); |
| memory_region_unref(section->mr); |
| if (ret) { |
| error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", " |
| "0x%"HWADDR_PRIx") = %d (%m)", |
| container, iova, end - iova, ret); |
| } |
| } |
| |
| static MemoryListener vfio_memory_listener = { |
| .region_add = vfio_listener_region_add, |
| .region_del = vfio_listener_region_del, |
| }; |
| |
| static void vfio_listener_release(VFIOContainer *container) |
| { |
| memory_listener_unregister(&container->iommu_data.type1.listener); |
| } |
| |
| /* |
| * Interrupt setup |
| */ |
| static void vfio_disable_interrupts(VFIODevice *vdev) |
| { |
| switch (vdev->interrupt) { |
| case VFIO_INT_INTx: |
| vfio_disable_intx(vdev); |
| break; |
| case VFIO_INT_MSI: |
| vfio_disable_msi(vdev); |
| break; |
| case VFIO_INT_MSIX: |
| vfio_disable_msix(vdev); |
| break; |
| } |
| } |
| |
| static int vfio_setup_msi(VFIODevice *vdev, int pos) |
| { |
| uint16_t ctrl; |
| bool msi_64bit, msi_maskbit; |
| int ret, entries; |
| |
| if (pread(vdev->fd, &ctrl, sizeof(ctrl), |
| vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) { |
| return -errno; |
| } |
| ctrl = le16_to_cpu(ctrl); |
| |
| msi_64bit = !!(ctrl & PCI_MSI_FLAGS_64BIT); |
| msi_maskbit = !!(ctrl & PCI_MSI_FLAGS_MASKBIT); |
| entries = 1 << ((ctrl & PCI_MSI_FLAGS_QMASK) >> 1); |
| |
| DPRINTF("%04x:%02x:%02x.%x PCI MSI CAP @0x%x\n", vdev->host.domain, |
| vdev->host.bus, vdev->host.slot, vdev->host.function, pos); |
| |
| ret = msi_init(&vdev->pdev, pos, entries, msi_64bit, msi_maskbit); |
| if (ret < 0) { |
| if (ret == -ENOTSUP) { |
| return 0; |
| } |
| error_report("vfio: msi_init failed"); |
| return ret; |
| } |
| vdev->msi_cap_size = 0xa + (msi_maskbit ? 0xa : 0) + (msi_64bit ? 0x4 : 0); |
| |
| return 0; |
| } |
| |
| /* |
| * We don't have any control over how pci_add_capability() inserts |
| * capabilities into the chain. In order to setup MSI-X we need a |
| * MemoryRegion for the BAR. In order to setup the BAR and not |
| * attempt to mmap the MSI-X table area, which VFIO won't allow, we |
| * need to first look for where the MSI-X table lives. So we |
| * unfortunately split MSI-X setup across two functions. |
| */ |
| static int vfio_early_setup_msix(VFIODevice *vdev) |
| { |
| uint8_t pos; |
| uint16_t ctrl; |
| uint32_t table, pba; |
| |
| pos = pci_find_capability(&vdev->pdev, PCI_CAP_ID_MSIX); |
| if (!pos) { |
| return 0; |
| } |
| |
| if (pread(vdev->fd, &ctrl, sizeof(ctrl), |
| vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) { |
| return -errno; |
| } |
| |
| if (pread(vdev->fd, &table, sizeof(table), |
| vdev->config_offset + pos + PCI_MSIX_TABLE) != sizeof(table)) { |
| return -errno; |
| } |
| |
| if (pread(vdev->fd, &pba, sizeof(pba), |
| vdev->config_offset + pos + PCI_MSIX_PBA) != sizeof(pba)) { |
| return -errno; |
| } |
| |
| ctrl = le16_to_cpu(ctrl); |
| table = le32_to_cpu(table); |
| pba = le32_to_cpu(pba); |
| |
| vdev->msix = g_malloc0(sizeof(*(vdev->msix))); |
| vdev->msix->table_bar = table & PCI_MSIX_FLAGS_BIRMASK; |
| vdev->msix->table_offset = table & ~PCI_MSIX_FLAGS_BIRMASK; |
| vdev->msix->pba_bar = pba & PCI_MSIX_FLAGS_BIRMASK; |
| vdev->msix->pba_offset = pba & ~PCI_MSIX_FLAGS_BIRMASK; |
| vdev->msix->entries = (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; |
| |
| DPRINTF("%04x:%02x:%02x.%x " |
| "PCI MSI-X CAP @0x%x, BAR %d, offset 0x%x, entries %d\n", |
| vdev->host.domain, vdev->host.bus, vdev->host.slot, |
| vdev->host.function, pos, vdev->msix->table_bar, |
| vdev->msix->table_offset, vdev->msix->entries); |
| |
| return 0; |
| } |
| |
| static int vfio_setup_msix(VFIODevice *vdev, int pos) |
| { |
| int ret; |
| |
| ret = msix_init(&vdev->pdev, vdev->msix->entries, |
| &vdev->bars[vdev->msix->table_bar].mem, |
| vdev->msix->table_bar, vdev->msix->table_offset, |
| &vdev->bars[vdev->msix->pba_bar].mem, |
| vdev->msix->pba_bar, vdev->msix->pba_offset, pos); |
| if (ret < 0) { |
| if (ret == -ENOTSUP) { |
| return 0; |
| } |
| error_report("vfio: msix_init failed"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void vfio_teardown_msi(VFIODevice *vdev) |
| { |
| msi_uninit(&vdev->pdev); |
| |
| if (vdev->msix) { |
| msix_uninit(&vdev->pdev, &vdev->bars[vdev->msix->table_bar].mem, |
| &vdev->bars[vdev->msix->pba_bar].mem); |
| } |
| } |
| |
| /* |
| * Resource setup |
| */ |
| static void vfio_mmap_set_enabled(VFIODevice *vdev, bool enabled) |
| { |
| int i; |
| |
| for (i = 0; i < PCI_ROM_SLOT; i++) { |
| VFIOBAR *bar = &vdev->bars[i]; |
| |
| if (!bar->size) { |
| continue; |
| } |
| |
| memory_region_set_enabled(&bar->mmap_mem, enabled); |
| if (vdev->msix && vdev->msix->table_bar == i) { |
| memory_region_set_enabled(&vdev->msix->mmap_mem, enabled); |
| } |
| } |
| } |
| |
| static void vfio_unmap_bar(VFIODevice *vdev, int nr) |
| { |
| VFIOBAR *bar = &vdev->bars[nr]; |
| |
| if (!bar->size) { |
| return; |
| } |
| |
| vfio_bar_quirk_teardown(vdev, nr); |
| |
| memory_region_del_subregion(&bar->mem, &bar->mmap_mem); |
| munmap(bar->mmap, memory_region_size(&bar->mmap_mem)); |
| |
| if (vdev->msix && vdev->msix->table_bar == nr) { |
| memory_region_del_subregion(&bar->mem, &vdev->msix->mmap_mem); |
| munmap(vdev->msix->mmap, memory_region_size(&vdev->msix->mmap_mem)); |
| } |
| } |
| |
| static int vfio_mmap_bar(VFIODevice *vdev, VFIOBAR *bar, |
| MemoryRegion *mem, MemoryRegion *submem, |
| void **map, size_t size, off_t offset, |
| const char *name) |
| { |
| int ret = 0; |
| |
| if (VFIO_ALLOW_MMAP && size && bar->flags & VFIO_REGION_INFO_FLAG_MMAP) { |
| int prot = 0; |
| |
| if (bar->flags & VFIO_REGION_INFO_FLAG_READ) { |
| prot |= PROT_READ; |
| } |
| |
| if (bar->flags & VFIO_REGION_INFO_FLAG_WRITE) { |
| prot |= PROT_WRITE; |
| } |
| |
| *map = mmap(NULL, size, prot, MAP_SHARED, |
| bar->fd, bar->fd_offset + offset); |
| if (*map == MAP_FAILED) { |
| *map = NULL; |
| ret = -errno; |
| goto empty_region; |
| } |
| |
| memory_region_init_ram_ptr(submem, OBJECT(vdev), name, size, *map); |
| memory_region_set_skip_dump(submem); |
| } else { |
| empty_region: |
| /* Create a zero sized sub-region to make cleanup easy. */ |
| memory_region_init(subme
|