blob: 40809f610e81e6d8b1af4a57bb97672796b163df [file] [log] [blame] [edit]
/*
* "Inventra" High-speed Dual-Role Controller (MUSB-HDRC), Mentor Graphics,
* USB2.0 OTG compliant core used in various chips.
*
* Copyright (C) 2008 Nokia Corporation
* Written by Andrzej Zaborowski <andrew@openedhand.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*
* Only host-mode and non-DMA accesses are currently supported.
*/
#include "qemu-common.h"
#include "qemu/timer.h"
#include "hw/usb.h"
#include "hw/irq.h"
#include "hw/hw.h"
/* Common USB registers */
#define MUSB_HDRC_FADDR 0x00 /* 8-bit */
#define MUSB_HDRC_POWER 0x01 /* 8-bit */
#define MUSB_HDRC_INTRTX 0x02 /* 16-bit */
#define MUSB_HDRC_INTRRX 0x04
#define MUSB_HDRC_INTRTXE 0x06
#define MUSB_HDRC_INTRRXE 0x08
#define MUSB_HDRC_INTRUSB 0x0a /* 8 bit */
#define MUSB_HDRC_INTRUSBE 0x0b /* 8 bit */
#define MUSB_HDRC_FRAME 0x0c /* 16-bit */
#define MUSB_HDRC_INDEX 0x0e /* 8 bit */
#define MUSB_HDRC_TESTMODE 0x0f /* 8 bit */
/* Per-EP registers in indexed mode */
#define MUSB_HDRC_EP_IDX 0x10 /* 8-bit */
/* EP FIFOs */
#define MUSB_HDRC_FIFO 0x20
/* Additional Control Registers */
#define MUSB_HDRC_DEVCTL 0x60 /* 8 bit */
/* These are indexed */
#define MUSB_HDRC_TXFIFOSZ 0x62 /* 8 bit (see masks) */
#define MUSB_HDRC_RXFIFOSZ 0x63 /* 8 bit (see masks) */
#define MUSB_HDRC_TXFIFOADDR 0x64 /* 16 bit offset shifted right 3 */
#define MUSB_HDRC_RXFIFOADDR 0x66 /* 16 bit offset shifted right 3 */
/* Some more registers */
#define MUSB_HDRC_VCTRL 0x68 /* 8 bit */
#define MUSB_HDRC_HWVERS 0x6c /* 8 bit */
/* Added in HDRC 1.9(?) & MHDRC 1.4 */
/* ULPI pass-through */
#define MUSB_HDRC_ULPI_VBUSCTL 0x70
#define MUSB_HDRC_ULPI_REGDATA 0x74
#define MUSB_HDRC_ULPI_REGADDR 0x75
#define MUSB_HDRC_ULPI_REGCTL 0x76
/* Extended config & PHY control */
#define MUSB_HDRC_ENDCOUNT 0x78 /* 8 bit */
#define MUSB_HDRC_DMARAMCFG 0x79 /* 8 bit */
#define MUSB_HDRC_PHYWAIT 0x7a /* 8 bit */
#define MUSB_HDRC_PHYVPLEN 0x7b /* 8 bit */
#define MUSB_HDRC_HS_EOF1 0x7c /* 8 bit, units of 546.1 us */
#define MUSB_HDRC_FS_EOF1 0x7d /* 8 bit, units of 533.3 ns */
#define MUSB_HDRC_LS_EOF1 0x7e /* 8 bit, units of 1.067 us */
/* Per-EP BUSCTL registers */
#define MUSB_HDRC_BUSCTL 0x80
/* Per-EP registers in flat mode */
#define MUSB_HDRC_EP 0x100
/* offsets to registers in flat model */
#define MUSB_HDRC_TXMAXP 0x00 /* 16 bit apparently */
#define MUSB_HDRC_TXCSR 0x02 /* 16 bit apparently */
#define MUSB_HDRC_CSR0 MUSB_HDRC_TXCSR /* re-used for EP0 */
#define MUSB_HDRC_RXMAXP 0x04 /* 16 bit apparently */
#define MUSB_HDRC_RXCSR 0x06 /* 16 bit apparently */
#define MUSB_HDRC_RXCOUNT 0x08 /* 16 bit apparently */
#define MUSB_HDRC_COUNT0 MUSB_HDRC_RXCOUNT /* re-used for EP0 */
#define MUSB_HDRC_TXTYPE 0x0a /* 8 bit apparently */
#define MUSB_HDRC_TYPE0 MUSB_HDRC_TXTYPE /* re-used for EP0 */
#define MUSB_HDRC_TXINTERVAL 0x0b /* 8 bit apparently */
#define MUSB_HDRC_NAKLIMIT0 MUSB_HDRC_TXINTERVAL /* re-used for EP0 */
#define MUSB_HDRC_RXTYPE 0x0c /* 8 bit apparently */
#define MUSB_HDRC_RXINTERVAL 0x0d /* 8 bit apparently */
#define MUSB_HDRC_FIFOSIZE 0x0f /* 8 bit apparently */
#define MUSB_HDRC_CONFIGDATA MGC_O_HDRC_FIFOSIZE /* re-used for EP0 */
/* "Bus control" registers */
#define MUSB_HDRC_TXFUNCADDR 0x00
#define MUSB_HDRC_TXHUBADDR 0x02
#define MUSB_HDRC_TXHUBPORT 0x03
#define MUSB_HDRC_RXFUNCADDR 0x04
#define MUSB_HDRC_RXHUBADDR 0x06
#define MUSB_HDRC_RXHUBPORT 0x07
/*
* MUSBHDRC Register bit masks
*/
/* POWER */
#define MGC_M_POWER_ISOUPDATE 0x80
#define MGC_M_POWER_SOFTCONN 0x40
#define MGC_M_POWER_HSENAB 0x20
#define MGC_M_POWER_HSMODE 0x10
#define MGC_M_POWER_RESET 0x08
#define MGC_M_POWER_RESUME 0x04
#define MGC_M_POWER_SUSPENDM 0x02
#define MGC_M_POWER_ENSUSPEND 0x01
/* INTRUSB */
#define MGC_M_INTR_SUSPEND 0x01
#define MGC_M_INTR_RESUME 0x02
#define MGC_M_INTR_RESET 0x04
#define MGC_M_INTR_BABBLE 0x04
#define MGC_M_INTR_SOF 0x08
#define MGC_M_INTR_CONNECT 0x10
#define MGC_M_INTR_DISCONNECT 0x20
#define MGC_M_INTR_SESSREQ 0x40
#define MGC_M_INTR_VBUSERROR 0x80 /* FOR SESSION END */
#define MGC_M_INTR_EP0 0x01 /* FOR EP0 INTERRUPT */
/* DEVCTL */
#define MGC_M_DEVCTL_BDEVICE 0x80
#define MGC_M_DEVCTL_FSDEV 0x40
#define MGC_M_DEVCTL_LSDEV 0x20
#define MGC_M_DEVCTL_VBUS 0x18
#define MGC_S_DEVCTL_VBUS 3
#define MGC_M_DEVCTL_HM 0x04
#define MGC_M_DEVCTL_HR 0x02
#define MGC_M_DEVCTL_SESSION 0x01
/* TESTMODE */
#define MGC_M_TEST_FORCE_HOST 0x80
#define MGC_M_TEST_FIFO_ACCESS 0x40
#define MGC_M_TEST_FORCE_FS 0x20
#define MGC_M_TEST_FORCE_HS 0x10
#define MGC_M_TEST_PACKET 0x08
#define MGC_M_TEST_K 0x04
#define MGC_M_TEST_J 0x02
#define MGC_M_TEST_SE0_NAK 0x01
/* CSR0 */
#define MGC_M_CSR0_FLUSHFIFO 0x0100
#define MGC_M_CSR0_TXPKTRDY 0x0002
#define MGC_M_CSR0_RXPKTRDY 0x0001
/* CSR0 in Peripheral mode */
#define MGC_M_CSR0_P_SVDSETUPEND 0x0080
#define MGC_M_CSR0_P_SVDRXPKTRDY 0x0040
#define MGC_M_CSR0_P_SENDSTALL 0x0020
#define MGC_M_CSR0_P_SETUPEND 0x0010
#define MGC_M_CSR0_P_DATAEND 0x0008
#define MGC_M_CSR0_P_SENTSTALL 0x0004
/* CSR0 in Host mode */
#define MGC_M_CSR0_H_NO_PING 0x0800
#define MGC_M_CSR0_H_WR_DATATOGGLE 0x0400 /* set to allow setting: */
#define MGC_M_CSR0_H_DATATOGGLE 0x0200 /* data toggle control */
#define MGC_M_CSR0_H_NAKTIMEOUT 0x0080
#define MGC_M_CSR0_H_STATUSPKT 0x0040
#define MGC_M_CSR0_H_REQPKT 0x0020
#define MGC_M_CSR0_H_ERROR 0x0010
#define MGC_M_CSR0_H_SETUPPKT 0x0008
#define MGC_M_CSR0_H_RXSTALL 0x0004
/* CONFIGDATA */
#define MGC_M_CONFIGDATA_MPRXE 0x80 /* auto bulk pkt combining */
#define MGC_M_CONFIGDATA_MPTXE 0x40 /* auto bulk pkt splitting */
#define MGC_M_CONFIGDATA_BIGENDIAN 0x20
#define MGC_M_CONFIGDATA_HBRXE 0x10 /* HB-ISO for RX */
#define MGC_M_CONFIGDATA_HBTXE 0x08 /* HB-ISO for TX */
#define MGC_M_CONFIGDATA_DYNFIFO 0x04 /* dynamic FIFO sizing */
#define MGC_M_CONFIGDATA_SOFTCONE 0x02 /* SoftConnect */
#define MGC_M_CONFIGDATA_UTMIDW 0x01 /* Width, 0 => 8b, 1 => 16b */
/* TXCSR in Peripheral and Host mode */
#define MGC_M_TXCSR_AUTOSET 0x8000
#define MGC_M_TXCSR_ISO 0x4000
#define MGC_M_TXCSR_MODE 0x2000
#define MGC_M_TXCSR_DMAENAB 0x1000
#define MGC_M_TXCSR_FRCDATATOG 0x0800
#define MGC_M_TXCSR_DMAMODE 0x0400
#define MGC_M_TXCSR_CLRDATATOG 0x0040
#define MGC_M_TXCSR_FLUSHFIFO 0x0008
#define MGC_M_TXCSR_FIFONOTEMPTY 0x0002
#define MGC_M_TXCSR_TXPKTRDY 0x0001
/* TXCSR in Peripheral mode */
#define MGC_M_TXCSR_P_INCOMPTX 0x0080
#define MGC_M_TXCSR_P_SENTSTALL 0x0020
#define MGC_M_TXCSR_P_SENDSTALL 0x0010
#define MGC_M_TXCSR_P_UNDERRUN 0x0004
/* TXCSR in Host mode */
#define MGC_M_TXCSR_H_WR_DATATOGGLE 0x0200
#define MGC_M_TXCSR_H_DATATOGGLE 0x0100
#define MGC_M_TXCSR_H_NAKTIMEOUT 0x0080
#define MGC_M_TXCSR_H_RXSTALL 0x0020
#define MGC_M_TXCSR_H_ERROR 0x0004
/* RXCSR in Peripheral and Host mode */
#define MGC_M_RXCSR_AUTOCLEAR 0x8000
#define MGC_M_RXCSR_DMAENAB 0x2000
#define MGC_M_RXCSR_DISNYET 0x1000
#define MGC_M_RXCSR_DMAMODE 0x0800
#define MGC_M_RXCSR_INCOMPRX 0x0100
#define MGC_M_RXCSR_CLRDATATOG 0x0080
#define MGC_M_RXCSR_FLUSHFIFO 0x0010
#define MGC_M_RXCSR_DATAERROR 0x0008
#define MGC_M_RXCSR_FIFOFULL 0x0002
#define MGC_M_RXCSR_RXPKTRDY 0x0001
/* RXCSR in Peripheral mode */
#define MGC_M_RXCSR_P_ISO 0x4000
#define MGC_M_RXCSR_P_SENTSTALL 0x0040
#define MGC_M_RXCSR_P_SENDSTALL 0x0020
#define MGC_M_RXCSR_P_OVERRUN 0x0004
/* RXCSR in Host mode */
#define MGC_M_RXCSR_H_AUTOREQ 0x4000
#define MGC_M_RXCSR_H_WR_DATATOGGLE 0x0400
#define MGC_M_RXCSR_H_DATATOGGLE 0x0200
#define MGC_M_RXCSR_H_RXSTALL 0x0040
#define MGC_M_RXCSR_H_REQPKT 0x0020
#define MGC_M_RXCSR_H_ERROR 0x0004
/* HUBADDR */
#define MGC_M_HUBADDR_MULTI_TT 0x80
/* ULPI: Added in HDRC 1.9(?) & MHDRC 1.4 */
#define MGC_M_ULPI_VBCTL_USEEXTVBUSIND 0x02
#define MGC_M_ULPI_VBCTL_USEEXTVBUS 0x01
#define MGC_M_ULPI_REGCTL_INT_ENABLE 0x08
#define MGC_M_ULPI_REGCTL_READNOTWRITE 0x04
#define MGC_M_ULPI_REGCTL_COMPLETE 0x02
#define MGC_M_ULPI_REGCTL_REG 0x01
/* #define MUSB_DEBUG */
#ifdef MUSB_DEBUG
#define TRACE(fmt,...) fprintf(stderr, "%s@%d: " fmt "\n", __FUNCTION__, \
__LINE__, ##__VA_ARGS__)
#else
#define TRACE(...)
#endif
static void musb_attach(USBPort *port);
static void musb_detach(USBPort *port);
static void musb_child_detach(USBPort *port, USBDevice *child);
static void musb_schedule_cb(USBPort *port, USBPacket *p);
static void musb_async_cancel_device(MUSBState *s, USBDevice *dev);
static USBPortOps musb_port_ops = {
.attach = musb_attach,
.detach = musb_detach,
.child_detach = musb_child_detach,
.complete = musb_schedule_cb,
};
static USBBusOps musb_bus_ops = {
};
typedef struct MUSBPacket MUSBPacket;
typedef struct MUSBEndPoint MUSBEndPoint;
struct MUSBPacket {
USBPacket p;
MUSBEndPoint *ep;
int dir;
};
struct MUSBEndPoint {
uint16_t faddr[2];
uint8_t haddr[2];
uint8_t hport[2];
uint16_t csr[2];
uint16_t maxp[2];
uint16_t rxcount;
uint8_t type[2];
uint8_t interval[2];
uint8_t config;
uint8_t fifosize;
int timeout[2]; /* Always in microframes */
uint8_t *buf[2];
int fifolen[2];
int fifostart[2];
int fifoaddr[2];
MUSBPacket packey[2];
int status[2];
int ext_size[2];
/* For callbacks' use */
int epnum;
int interrupt[2];
MUSBState *musb;
USBCallback *delayed_cb[2];
QEMUTimer *intv_timer[2];
};
struct MUSBState {
qemu_irq irqs[musb_irq_max];
USBBus bus;
USBPort port;
int idx;
uint8_t devctl;
uint8_t power;
uint8_t faddr;
uint8_t intr;
uint8_t mask;
uint16_t tx_intr;
uint16_t tx_mask;
uint16_t rx_intr;
uint16_t rx_mask;
int setup_len;
int session;
uint8_t buf[0x8000];
/* Duplicating the world since 2008!... probably we should have 32
* logical, single endpoints instead. */
MUSBEndPoint ep[16];
};
void musb_reset(MUSBState *s)
{
int i;
s->faddr = 0x00;
s->devctl = 0;
s->power = MGC_M_POWER_HSENAB;
s->tx_intr = 0x0000;
s->rx_intr = 0x0000;
s->tx_mask = 0xffff;
s->rx_mask = 0xffff;
s->intr = 0x00;
s->mask = 0x06;
s->idx = 0;
s->setup_len = 0;
s->session = 0;
memset(s->buf, 0, sizeof(s->buf));
/* TODO: _DW */
s->ep[0].config = MGC_M_CONFIGDATA_SOFTCONE | MGC_M_CONFIGDATA_DYNFIFO;
for (i = 0; i < 16; i ++) {
s->ep[i].fifosize = 64;
s->ep[i].maxp[0] = 0x40;
s->ep[i].maxp[1] = 0x40;
s->ep[i].musb = s;
s->ep[i].epnum = i;
usb_packet_init(&s->ep[i].packey[0].p);
usb_packet_init(&s->ep[i].packey[1].p);
}
}
struct MUSBState *musb_init(DeviceState *parent_device, int gpio_base)
{
MUSBState *s = g_malloc0(sizeof(*s));
int i;
for (i = 0; i < musb_irq_max; i++) {
s->irqs[i] = qdev_get_gpio_in(parent_device, gpio_base + i);
}
musb_reset(s);
usb_bus_new(&s->bus, sizeof(s->bus), &musb_bus_ops, parent_device);
usb_register_port(&s->bus, &s->port, s, 0, &musb_port_ops,
USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL);
return s;
}
static void musb_vbus_set(MUSBState *s, int level)
{
if (level)
s->devctl |= 3 << MGC_S_DEVCTL_VBUS;
else
s->devctl &= ~MGC_M_DEVCTL_VBUS;
qemu_set_irq(s->irqs[musb_set_vbus], level);
}
static void musb_intr_set(MUSBState *s, int line, int level)
{
if (!level) {
s->intr &= ~(1 << line);
qemu_irq_lower(s->irqs[line]);
} else if (s->mask & (1 << line)) {
s->intr |= 1 << line;
qemu_irq_raise(s->irqs[line]);
}
}
static void musb_tx_intr_set(MUSBState *s, int line, int level)
{
if (!level) {
s->tx_intr &= ~(1 << line);
if (!s->tx_intr)
qemu_irq_lower(s->irqs[musb_irq_tx]);
} else if (s->tx_mask & (1 << line)) {
s->tx_intr |= 1 << line;
qemu_irq_raise(s->irqs[musb_irq_tx]);
}
}
static void musb_rx_intr_set(MUSBState *s, int line, int level)
{
if (line) {
if (!level) {
s->rx_intr &= ~(1 << line);
if (!s->rx_intr)
qemu_irq_lower(s->irqs[musb_irq_rx]);
} else if (s->rx_mask & (1 << line)) {
s->rx_intr |= 1 << line;
qemu_irq_raise(s->irqs[musb_irq_rx]);
}
} else
musb_tx_intr_set(s, line, level);
}
uint32_t musb_core_intr_get(MUSBState *s)
{
return (s->rx_intr << 15) | s->tx_intr;
}
void musb_core_intr_clear(MUSBState *s, uint32_t mask)
{
if (s->rx_intr) {
s->rx_intr &= mask >> 15;
if (!s->rx_intr)
qemu_irq_lower(s->irqs[musb_irq_rx]);
}
if (s->tx_intr) {
s->tx_intr &= mask & 0xffff;
if (!s->tx_intr)
qemu_irq_lower(s->irqs[musb_irq_tx]);
}
}
void musb_set_size(MUSBState *s, int epnum, int size, int is_tx)
{
s->ep[epnum].ext_size[!is_tx] = size;
s->ep[epnum].fifostart[0] = 0;
s->ep[epnum].fifostart[1] = 0;
s->ep[epnum].fifolen[0] = 0;
s->ep[epnum].fifolen[1] = 0;
}
static void musb_session_update(MUSBState *s, int prev_dev, int prev_sess)
{
int detect_prev = prev_dev && prev_sess;
int detect = !!s->port.dev && s->session;
if (detect && !detect_prev) {
/* Let's skip the ID pin sense and VBUS sense formalities and
* and signal a successful SRP directly. This should work at least
* for the Linux driver stack. */
musb_intr_set(s, musb_irq_connect, 1);
if (s->port.dev->speed == USB_SPEED_LOW) {
s->devctl &= ~MGC_M_DEVCTL_FSDEV;
s->devctl |= MGC_M_DEVCTL_LSDEV;
} else {
s->devctl |= MGC_M_DEVCTL_FSDEV;
s->devctl &= ~MGC_M_DEVCTL_LSDEV;
}
/* A-mode? */
s->devctl &= ~MGC_M_DEVCTL_BDEVICE;
/* Host-mode bit? */
s->devctl |= MGC_M_DEVCTL_HM;
#if 1
musb_vbus_set(s, 1);
#endif
} else if (!detect && detect_prev) {
#if 1
musb_vbus_set(s, 0);
#endif
}
}
/* Attach or detach a device on our only port. */
static void musb_attach(USBPort *port)
{
MUSBState *s = (MUSBState *) port->opaque;
musb_intr_set(s, musb_irq_vbus_request, 1);
musb_session_update(s, 0, s->session);
}
static void musb_detach(USBPort *port)
{
MUSBState *s = (MUSBState *) port->opaque;
musb_async_cancel_device(s, port->dev);
musb_intr_set(s, musb_irq_disconnect, 1);
musb_session_update(s, 1, s->session);
}
static void musb_child_detach(USBPort *port, USBDevice *child)
{
MUSBState *s = (MUSBState *) port->opaque;
musb_async_cancel_device(s, child);
}
static void musb_cb_tick0(void *opaque)
{
MUSBEndPoint *ep = (MUSBEndPoint *) opaque;
ep->delayed_cb[0](&ep->packey[0].p, opaque);
}
static void musb_cb_tick1(void *opaque)
{
MUSBEndPoint *ep = (MUSBEndPoint *) opaque;
ep->delayed_cb[1](&ep->packey[1].p, opaque);
}
#define musb_cb_tick (dir ? musb_cb_tick1 : musb_cb_tick0)
static void musb_schedule_cb(USBPort *port, USBPacket *packey)
{
MUSBPacket *p = container_of(packey, MUSBPacket, p);
MUSBEndPoint *ep = p->ep;
int dir = p->dir;
int timeout = 0;
if (ep->status[dir] == USB_RET_NAK)
timeout = ep->timeout[dir];
else if (ep->interrupt[dir])
timeout = 8;
else
return musb_cb_tick(ep);
if (!ep->intv_timer[dir])
ep->intv_timer[dir] = timer_new_ns(QEMU_CLOCK_VIRTUAL, musb_cb_tick, ep);
timer_mod(ep->intv_timer[dir], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
muldiv64(timeout, get_ticks_per_sec(), 8000));
}
static int musb_timeout(int ttype, int speed, int val)
{
#if 1
return val << 3;
#endif
switch (ttype) {
case USB_ENDPOINT_XFER_CONTROL:
if (val < 2)
return 0;
else if (speed == USB_SPEED_HIGH)
return 1 << (val - 1);
else
return 8 << (val - 1);
case USB_ENDPOINT_XFER_INT:
if (speed == USB_SPEED_HIGH)
if (val < 2)
return 0;
else
return 1 << (val - 1);
else
return val << 3;
case USB_ENDPOINT_XFER_BULK:
case USB_ENDPOINT_XFER_ISOC:
if (val < 2)
return 0;
else if (speed == USB_SPEED_HIGH)
return 1 << (val - 1);
else
return 8 << (val - 1);
/* TODO: what with low-speed Bulk and Isochronous? */
}
hw_error("bad interval\n");
}
static void musb_packet(MUSBState *s, MUSBEndPoint *ep,
int epnum, int pid, int len, USBCallback cb, int dir)
{
USBDevice *dev;
USBEndpoint *uep;
int idx = epnum && dir;
int id;
int ttype;
/* ep->type[0,1] contains:
* in bits 7:6 the speed (0 - invalid, 1 - high, 2 - full, 3 - slow)
* in bits 5:4 the transfer type (BULK / INT)
* in bits 3:0 the EP num
*/
ttype = epnum ? (ep->type[idx] >> 4) & 3 : 0;
ep->timeout[dir] = musb_timeout(ttype,
ep->type[idx] >> 6, ep->interval[idx]);
ep->interrupt[dir] = ttype == USB_ENDPOINT_XFER_INT;
ep->delayed_cb[dir] = cb;
/* A wild guess on the FADDR semantics... */
dev = usb_find_device(&s->port, ep->faddr[idx]);
uep = usb_ep_get(dev, pid, ep->type[idx] & 0xf);
id = pid;
if (uep) {
id |= (dev->addr << 16) | (uep->nr << 8);
}
usb_packet_setup(&ep->packey[dir].p, pid, uep, 0, id, false, true);
usb_packet_addbuf(&ep->packey[dir].p, ep->buf[idx], len);
ep->packey[dir].ep = ep;
ep->packey[dir].dir = dir;
usb_handle_packet(dev, &ep->packey[dir].p);
if (ep->packey[dir].p.status == USB_RET_ASYNC) {
usb_device_flush_ep_queue(dev, uep);
ep->status[dir] = len;
return;
}
if (ep->packey[dir].p.status == USB_RET_SUCCESS) {
ep->status[dir] = ep->packey[dir].p.actual_length;
} else {
ep->status[dir] = ep->packey[dir].p.status;
}
musb_schedule_cb(&s->port, &ep->packey[dir].p);
}
static void musb_tx_packet_complete(USBPacket *packey, void *opaque)
{
/* Unfortunately we can't use packey->devep because that's the remote
* endpoint number and may be different than our local. */
MUSBEndPoint *ep = (MUSBEndPoint *) opaque;
int epnum = ep->epnum;
MUSBState *s = ep->musb;
ep->fifostart[0] = 0;
ep->fifolen[0] = 0;
#ifdef CLEAR_NAK
if (ep->status[0] != USB_RET_NAK) {
#endif
if (epnum)
ep->csr[0] &= ~(MGC_M_TXCSR_FIFONOTEMPTY | MGC_M_TXCSR_TXPKTRDY);
else
ep->csr[0] &= ~MGC_M_CSR0_TXPKTRDY;
#ifdef CLEAR_NAK
}
#endif
/* Clear all of the error bits first */
if (epnum)
ep->csr[0] &= ~(MGC_M_TXCSR_H_ERROR | MGC_M_TXCSR_H_RXSTALL |
MGC_M_TXCSR_H_NAKTIMEOUT);
else
ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL |
MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING);
if (ep->status[0] == USB_RET_STALL) {
/* Command not supported by target! */
ep->status[0] = 0;
if (epnum)
ep->csr[0] |= MGC_M_TXCSR_H_RXSTALL;
else
ep->csr[0] |= MGC_M_CSR0_H_RXSTALL;
}
if (ep->status[0] == USB_RET_NAK) {
ep->status[0] = 0;
/* NAK timeouts are only generated in Bulk transfers and
* Data-errors in Isochronous. */
if (ep->interrupt[0]) {
return;
}
if (epnum)
ep->csr[0] |= MGC_M_TXCSR_H_NAKTIMEOUT;
else
ep->csr[0] |= MGC_M_CSR0_H_NAKTIMEOUT;
}
if (ep->status[0] < 0) {
if (ep->status[0] == USB_RET_BABBLE)
musb_intr_set(s, musb_irq_rst_babble, 1);
/* Pretend we've tried three times already and failed (in
* case of USB_TOKEN_SETUP). */
if (epnum)
ep->csr[0] |= MGC_M_TXCSR_H_ERROR;
else
ep->csr[0] |= MGC_M_CSR0_H_ERROR;
musb_tx_intr_set(s, epnum, 1);
return;
}
/* TODO: check len for over/underruns of an OUT packet? */
#ifdef SETUPLEN_HACK
if (!epnum && ep->packey[0].pid == USB_TOKEN_SETUP)
s->setup_len = ep->packey[0].data[6];
#endif
/* In DMA mode: if no error, assert DMA request for this EP,
* and skip the interrupt. */
musb_tx_intr_set(s, epnum, 1);
}
static void musb_rx_packet_complete(USBPacket *packey, void *opaque)
{
/* Unfortunately we can't use packey->devep because that's the remote
* endpoint number and may be different than our local. */
MUSBEndPoint *ep = (MUSBEndPoint *) opaque;
int epnum = ep->epnum;
MUSBState *s = ep->musb;
ep->fifostart[1] = 0;
ep->fifolen[1] = 0;
#ifdef CLEAR_NAK
if (ep->status[1] != USB_RET_NAK) {
#endif
ep->csr[1] &= ~MGC_M_RXCSR_H_REQPKT;
if (!epnum)
ep->csr[0] &= ~MGC_M_CSR0_H_REQPKT;
#ifdef CLEAR_NAK
}
#endif
/* Clear all of the imaginable error bits first */
ep->csr[1] &= ~(MGC_M_RXCSR_H_ERROR | MGC_M_RXCSR_H_RXSTALL |
MGC_M_RXCSR_DATAERROR);
if (!epnum)
ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL |
MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING);
if (ep->status[1] == USB_RET_STALL) {
ep->status[1] = 0;
ep->csr[1] |= MGC_M_RXCSR_H_RXSTALL;
if (!epnum)
ep->csr[0] |= MGC_M_CSR0_H_RXSTALL;
}
if (ep->status[1] == USB_RET_NAK) {
ep->status[1] = 0;
/* NAK timeouts are only generated in Bulk transfers and
* Data-errors in Isochronous. */
if (ep->interrupt[1])
return musb_packet(s, ep, epnum, USB_TOKEN_IN,
packey->iov.size, musb_rx_packet_complete, 1);
ep->csr[1] |= MGC_M_RXCSR_DATAERROR;
if (!epnum)
ep->csr[0] |= MGC_M_CSR0_H_NAKTIMEOUT;
}
if (ep->status[1] < 0) {
if (ep->status[1] == USB_RET_BABBLE) {
musb_intr_set(s, musb_irq_rst_babble, 1);
return;
}
/* Pretend we've tried three times already and failed (in
* case of a control transfer). */
ep->csr[1] |= MGC_M_RXCSR_H_ERROR;
if (!epnum)
ep->csr[0] |= MGC_M_CSR0_H_ERROR;
musb_rx_intr_set(s, epnum, 1);
return;
}
/* TODO: check len for over/underruns of an OUT packet? */
/* TODO: perhaps make use of e->ext_size[1] here. */
if (!(ep->csr[1] & (MGC_M_RXCSR_H_RXSTALL | MGC_M_RXCSR_DATAERROR))) {
ep->csr[1] |= MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY;
if (!epnum)
ep->csr[0] |= MGC_M_CSR0_RXPKTRDY;
ep->rxcount = ep->status[1]; /* XXX: MIN(packey->len, ep->maxp[1]); */
/* In DMA mode: assert DMA request for this EP */
}
/* Only if DMA has not been asserted */
musb_rx_intr_set(s, epnum, 1);
}
static void musb_async_cancel_device(MUSBState *s, USBDevice *dev)
{
int ep, dir;
for (ep = 0; ep < 16; ep++) {
for (dir = 0; dir < 2; dir++) {
if (!usb_packet_is_inflight(&s->ep[ep].packey[dir].p) ||
s->ep[ep].packey[dir].p.ep->dev != dev) {
continue;
}
usb_cancel_packet(&s->ep[ep].packey[dir].p);
/* status updates needed here? */
}
}
}
static void musb_tx_rdy(MUSBState *s, int epnum)
{
MUSBEndPoint *ep = s->ep + epnum;
int pid;
int total, valid = 0;
TRACE("start %d, len %d", ep->fifostart[0], ep->fifolen[0] );
ep->fifostart[0] += ep->fifolen[0];
ep->fifolen[0] = 0;
/* XXX: how's the total size of the packet retrieved exactly in
* the generic case? */
total = ep->maxp[0] & 0x3ff;
if (ep->ext_size[0]) {
total = ep->ext_size[0];
ep->ext_size[0] = 0;
valid = 1;
}
/* If the packet is not fully ready yet, wait for a next segment. */
if (epnum && (ep->fifostart[0]) < total)
return;
if (!valid)
total = ep->fifostart[0];
pid = USB_TOKEN_OUT;
if (!epnum && (ep->csr[0] & MGC_M_CSR0_H_SETUPPKT)) {
pid = USB_TOKEN_SETUP;
if (total != 8) {
TRACE("illegal SETUPPKT length of %i bytes", total);
}
/* Controller should retry SETUP packets three times on errors
* but it doesn't make sense for us to do that. */
}
return musb_packet(s, ep, epnum, pid,
total, musb_tx_packet_complete, 0);
}
static void musb_rx_req(MUSBState *s, int epnum)
{
MUSBEndPoint *ep = s->ep + epnum;
int total;
/* If we already have a packet, which didn't fit into the
* 64 bytes of the FIFO, only move the FIFO start and return. (Obsolete) */
if (ep->packey[1].p.pid == USB_TOKEN_IN && ep->status[1] >= 0 &&
(ep->fifostart[1]) + ep->rxcount <
ep->packey[1].p.iov.size) {
TRACE("0x%08x, %d", ep->fifostart[1], ep->rxcount );
ep->fifostart[1] += ep->rxcount;
ep->fifolen[1] = 0;
ep->rxcount = MIN(ep->packey[0].p.iov.size - (ep->fifostart[1]),
ep->maxp[1]);
ep->csr[1] &= ~MGC_M_RXCSR_H_REQPKT;
if (!epnum)
ep->csr[0] &= ~MGC_M_CSR0_H_REQPKT;
/* Clear all of the error bits first */
ep->csr[1] &= ~(MGC_M_RXCSR_H_ERROR | MGC_M_RXCSR_H_RXSTALL |
MGC_M_RXCSR_DATAERROR);
if (!epnum)
ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL |
MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING);
ep->csr[1] |= MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY;
if (!epnum)
ep->csr[0] |= MGC_M_CSR0_RXPKTRDY;
musb_rx_intr_set(s, epnum, 1);
return;
}
/* The driver sets maxp[1] to 64 or less because it knows the hardware
* FIFO is this deep. Bigger packets get split in
* usb_generic_handle_packet but we can also do the splitting locally
* for performance. It turns out we can also have a bigger FIFO and
* ignore the limit set in ep->maxp[1]. The Linux MUSB driver deals
* OK with single packets of even 32KB and we avoid splitting, however
* usb_msd.c sometimes sends a packet bigger than what Linux expects
* (e.g. 8192 bytes instead of 4096) and we get an OVERRUN. Splitting
* hides this overrun from Linux. Up to 4096 everything is fine
* though. Currently this is disabled.
*
* XXX: mind ep->fifosize. */
total = MIN(ep->maxp[1] & 0x3ff, sizeof(s->buf));
#ifdef SETUPLEN_HACK
/* Why should *we* do that instead of Linux? */
if (!epnum) {
if (ep->packey[0].p.devaddr == 2) {
total = MIN(s->setup_len, 8);
} else {
total = MIN(s->setup_len, 64);
}
s->setup_len -= total;
}
#endif
return musb_packet(s, ep, epnum, USB_TOKEN_IN,
total, musb_rx_packet_complete, 1);
}
static uint8_t musb_read_fifo(MUSBEndPoint *ep)
{
uint8_t value;
if (ep->fifolen[1] >= 64) {
/* We have a FIFO underrun */
TRACE("EP%d FIFO is now empty, stop reading", ep->epnum);
return 0x00000000;
}
/* In DMA mode clear RXPKTRDY and set REQPKT automatically
* (if AUTOREQ is set) */
ep->csr[1] &= ~MGC_M_RXCSR_FIFOFULL;
value=ep->buf[1][ep->fifostart[1] + ep->fifolen[1] ++];
TRACE("EP%d 0x%02x, %d", ep->epnum, value, ep->fifolen[1] );
return value;
}
static void musb_write_fifo(MUSBEndPoint *ep, uint8_t value)
{
TRACE("EP%d = %02x", ep->epnum, value);
if (ep->fifolen[0] >= 64) {
/* We have a FIFO overrun */
TRACE("EP%d FIFO exceeded 64 bytes, stop feeding data", ep->epnum);
return;
}
ep->buf[0][ep->fifostart[0] + ep->fifolen[0] ++] = value;
ep->csr[0] |= MGC_M_TXCSR_FIFONOTEMPTY;
}
static void musb_ep_frame_cancel(MUSBEndPoint *ep, int dir)
{
if (ep->intv_timer[dir])
timer_del(ep->intv_timer[dir]);
}
/* Bus control */
static uint8_t musb_busctl_readb(void *opaque, int ep, int addr)
{
MUSBState *s = (MUSBState *) opaque;
switch (addr) {
/* For USB2.0 HS hubs only */
case MUSB_HDRC_TXHUBADDR:
return s->ep[ep].haddr[0];
case MUSB_HDRC_TXHUBPORT:
return s->ep[ep].hport[0];
case MUSB_HDRC_RXHUBADDR:
return s->ep[ep].haddr[1];
case MUSB_HDRC_RXHUBPORT:
return s->ep[ep].hport[1];
default:
TRACE("unknown register 0x%02x", addr);
return 0x00;
};
}
static void musb_busctl_writeb(void *opaque, int ep, int addr, uint8_t value)
{
MUSBState *s = (MUSBState *) opaque;
switch (addr) {
case MUSB_HDRC_TXFUNCADDR:
s->ep[ep].faddr[0] = value;
break;
case MUSB_HDRC_RXFUNCADDR:
s->ep[ep].faddr[1] = value;
break;
case MUSB_HDRC_TXHUBADDR:
s->ep[ep].haddr[0] = value;
break;
case MUSB_HDRC_TXHUBPORT:
s->ep[ep].hport[0] = value;
break;
case MUSB_HDRC_RXHUBADDR:
s->ep[ep].haddr[1] = value;
break;
case MUSB_HDRC_RXHUBPORT:
s->ep[ep].hport[1] = value;
break;
default:
TRACE("unknown register 0x%02x", addr);
break;
};
}
static uint16_t musb_busctl_readh(void *opaque, int ep, int addr)
{
MUSBState *s = (MUSBState *) opaque;
switch (addr) {
case MUSB_HDRC_TXFUNCADDR:
return s->ep[ep].faddr[0];
case MUSB_HDRC_RXFUNCADDR:
return s->ep[ep].faddr[1];
default:
return musb_busctl_readb(s, ep, addr) |
(musb_busctl_readb(s, ep, addr | 1) << 8);
};
}
static void musb_busctl_writeh(void *opaque, int ep, int addr, uint16_t value)
{
MUSBState *s = (MUSBState *) opaque;
switch (addr) {
case MUSB_HDRC_TXFUNCADDR:
s->ep[ep].faddr[0] = value;
break;
case MUSB_HDRC_RXFUNCADDR:
s->ep[ep].faddr[1] = value;
break;
default:
musb_busctl_writeb(s, ep, addr, value & 0xff);
musb_busctl_writeb(s, ep, addr | 1, value >> 8);
};
}
/* Endpoint control */
static uint8_t musb_ep_readb(void *opaque, int ep, int addr)
{
MUSBState *s = (MUSBState *) opaque;
switch (addr) {
case MUSB_HDRC_TXTYPE:
return s->ep[ep].type[0];
case MUSB_HDRC_TXINTERVAL:
return s->ep[ep].interval[0];
case MUSB_HDRC_RXTYPE:
return s->ep[ep].type[1];
case MUSB_HDRC_RXINTERVAL:
return s->ep[ep].interval[1];
case (MUSB_HDRC_FIFOSIZE & ~1):
return 0x00;
case MUSB_HDRC_FIFOSIZE:
return ep ? s->ep[ep].fifosize : s->ep[ep].config;
case MUSB_HDRC_RXCOUNT:
return s->ep[ep].rxcount;
default:
TRACE("unknown register 0x%02x", addr);
return 0x00;
};
}
static void musb_ep_writeb(void *opaque, int ep, int addr, uint8_t value)
{
MUSBState *s = (MUSBState *) opaque;
switch (addr) {
case MUSB_HDRC_TXTYPE:
s->ep[ep].type[0] = value;
break;
case MUSB_HDRC_TXINTERVAL:
s->ep[ep].interval[0] = value;
musb_ep_frame_cancel(&s->ep[ep], 0);
break;
case MUSB_HDRC_RXTYPE:
s->ep[ep].type[1] = value;
break;
case MUSB_HDRC_RXINTERVAL:
s->ep[ep].interval[1] = value;
musb_ep_frame_cancel(&s->ep[ep], 1);
break;
case (MUSB_HDRC_FIFOSIZE & ~1):
break;
case MUSB_HDRC_FIFOSIZE:
TRACE("somebody messes with fifosize (now %i bytes)", value);
s->ep[ep].fifosize = value;
break;
default:
TRACE("unknown register 0x%02x", addr);
break;
};
}
static uint16_t musb_ep_readh(void *opaque, int ep, int addr)
{
MUSBState *s = (MUSBState *) opaque;
uint16_t ret;
switch (addr) {
case MUSB_HDRC_TXMAXP:
return s->ep[ep].maxp[0];
case MUSB_HDRC_TXCSR:
return s->ep[ep].csr[0];
case MUSB_HDRC_RXMAXP:
return s->ep[ep].maxp[1];
case MUSB_HDRC_RXCSR:
ret = s->ep[ep].csr[1];
/* TODO: This and other bits probably depend on
* ep->csr[1] & MGC_M_RXCSR_AUTOCLEAR. */
if (s->ep[ep].csr[1] & MGC_M_RXCSR_AUTOCLEAR)
s->ep[ep].csr[1] &= ~MGC_M_RXCSR_RXPKTRDY;
return ret;
case MUSB_HDRC_RXCOUNT:
return s->ep[ep].rxcount;
default:
return musb_ep_readb(s, ep, addr) |
(musb_ep_readb(s, ep, addr | 1) << 8);
};
}
static void musb_ep_writeh(void *opaque, int ep, int addr, uint16_t value)
{
MUSBState *s = (MUSBState *) opaque;
switch (addr) {
case MUSB_HDRC_TXMAXP:
s->ep[ep].maxp[0] = value;
break;
case MUSB_HDRC_TXCSR:
if (ep) {
s->ep[ep].csr[0] &= value & 0xa6;
s->ep[ep].csr[0] |= value & 0xff59;
} else {
s->ep[ep].csr[0] &= value & 0x85;
s->ep[ep].csr[0] |= value & 0xf7a;
}
musb_ep_frame_cancel(&s->ep[ep], 0);
if ((ep && (value & MGC_M_TXCSR_FLUSHFIFO)) ||
(!ep && (value & MGC_M_CSR0_FLUSHFIFO))) {
s->ep[ep].fifolen[0] = 0;
s->ep[ep].fifostart[0] = 0;
if (ep)
s->ep[ep].csr[0] &=
~(MGC_M_TXCSR_FIFONOTEMPTY | MGC_M_TXCSR_TXPKTRDY);
else
s->ep[ep].csr[0] &=
~(MGC_M_CSR0_TXPKTRDY | MGC_M_CSR0_RXPKTRDY);
}
if (
(ep &&
#ifdef CLEAR_NAK
(value & MGC_M_TXCSR_TXPKTRDY) &&
!(value & MGC_M_TXCSR_H_NAKTIMEOUT)) ||
#else
(value & MGC_M_TXCSR_TXPKTRDY)) ||
#endif
(!ep &&
#ifdef CLEAR_NAK
(value & MGC_M_CSR0_TXPKTRDY) &&
!(value & MGC_M_CSR0_H_NAKTIMEOUT)))
#else
(value & MGC_M_CSR0_TXPKTRDY)))
#endif
musb_tx_rdy(s, ep);
if (!ep &&
(value & MGC_M_CSR0_H_REQPKT) &&
#ifdef CLEAR_NAK
!(value & (MGC_M_CSR0_H_NAKTIMEOUT |
MGC_M_CSR0_RXPKTRDY)))
#else
!(value & MGC_M_CSR0_RXPKTRDY))
#endif
musb_rx_req(s, ep);
break;
case MUSB_HDRC_RXMAXP:
s->ep[ep].maxp[1] = value;
break;
case MUSB_HDRC_RXCSR:
/* (DMA mode only) */
if (
(value & MGC_M_RXCSR_H_AUTOREQ) &&
!(value & MGC_M_RXCSR_RXPKTRDY) &&
(s->ep[ep].csr[1] & MGC_M_RXCSR_RXPKTRDY))
value |= MGC_M_RXCSR_H_REQPKT;
s->ep[ep].csr[1] &= 0x102 | (value & 0x4d);
s->ep[ep].csr[1] |= value & 0xfeb0;
musb_ep_frame_cancel(&s->ep[ep], 1);
if (value & MGC_M_RXCSR_FLUSHFIFO) {
s->ep[ep].fifolen[1] = 0;
s->ep[ep].fifostart[1] = 0;
s->ep[ep].csr[1] &= ~(MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY);
/* If double buffering and we have two packets ready, flush
* only the first one and set up the fifo at the second packet. */
}
#ifdef CLEAR_NAK
if ((value & MGC_M_RXCSR_H_REQPKT) && !(value & MGC_M_RXCSR_DATAERROR))
#else
if (value & MGC_M_RXCSR_H_REQPKT)
#endif
musb_rx_req(s, ep);
break;
case MUSB_HDRC_RXCOUNT:
s->ep[ep].rxcount = value;
break;
default:
musb_ep_writeb(s, ep, addr, value & 0xff);
musb_ep_writeb(s, ep, addr | 1, value >> 8);
};
}
/* Generic control */
static uint32_t musb_readb(void *opaque, hwaddr addr)
{
MUSBState *s = (MUSBState *) opaque;
int ep, i;
uint8_t ret;
switch (addr) {
case MUSB_HDRC_FADDR:
return s->faddr;
case MUSB_HDRC_POWER:
return s->power;
case MUSB_HDRC_INTRUSB:
ret = s->intr;
for (i = 0; i < sizeof(ret) * 8; i ++)
if (ret & (1 << i))
musb_intr_set(s, i, 0);
return ret;
case MUSB_HDRC_INTRUSBE:
return s->mask;
case MUSB_HDRC_INDEX:
return s->idx;
case MUSB_HDRC_TESTMODE:
return 0x00;
case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
return musb_ep_readb(s, s->idx, addr & 0xf);
case MUSB_HDRC_DEVCTL:
return s->devctl;
case MUSB_HDRC_TXFIFOSZ:
case MUSB_HDRC_RXFIFOSZ:
case MUSB_HDRC_VCTRL:
/* TODO */
return 0x00;
case MUSB_HDRC_HWVERS:
return (1 << 10) | 400;
case (MUSB_HDRC_VCTRL | 1):
case (MUSB_HDRC_HWVERS | 1):
case (MUSB_HDRC_DEVCTL | 1):
return 0x00;
case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
ep = (addr >> 3) & 0xf;
return musb_busctl_readb(s, ep, addr & 0x7);
case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
ep = (addr >> 4) & 0xf;
return musb_ep_readb(s, ep, addr & 0xf);
case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
return musb_read_fifo(s->ep + ep);
default:
TRACE("unknown register 0x%02x", (int) addr);
return 0x00;
};
}
static void musb_writeb(void *opaque, hwaddr addr, uint32_t value)
{
MUSBState *s = (MUSBState *) opaque;
int ep;
switch (addr) {
case MUSB_HDRC_FADDR:
s->faddr = value & 0x7f;
break;
case MUSB_HDRC_POWER:
s->power = (value & 0xef) | (s->power & 0x10);
/* MGC_M_POWER_RESET is also read-only in Peripheral Mode */
if ((value & MGC_M_POWER_RESET) && s->port.dev) {
usb_device_reset(s->port.dev);
/* Negotiate high-speed operation if MGC_M_POWER_HSENAB is set. */
if ((value & MGC_M_POWER_HSENAB) &&
s->port.dev->speed == USB_SPEED_HIGH)
s->power |= MGC_M_POWER_HSMODE; /* Success */
/* Restart frame counting. */
}
if (value & MGC_M_POWER_SUSPENDM) {
/* When all transfers finish, suspend and if MGC_M_POWER_ENSUSPEND
* is set, also go into low power mode. Frame counting stops. */
/* XXX: Cleared when the interrupt register is read */
}
if (value & MGC_M_POWER_RESUME) {
/* Wait 20ms and signal resuming on the bus. Frame counting
* restarts. */
}
break;
case MUSB_HDRC_INTRUSB:
break;
case MUSB_HDRC_INTRUSBE:
s->mask = value & 0xff;
break;
case MUSB_HDRC_INDEX:
s->idx = value & 0xf;
break;
case MUSB_HDRC_TESTMODE:
break;
case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
musb_ep_writeb(s, s->idx, addr & 0xf, value);
break;
case MUSB_HDRC_DEVCTL:
s->session = !!(value & MGC_M_DEVCTL_SESSION);
musb_session_update(s,
!!s->port.dev,
!!(s->devctl & MGC_M_DEVCTL_SESSION));
/* It seems this is the only R/W bit in this register? */
s->devctl &= ~MGC_M_DEVCTL_SESSION;
s->devctl |= value & MGC_M_DEVCTL_SESSION;
break;
case MUSB_HDRC_TXFIFOSZ:
case MUSB_HDRC_RXFIFOSZ:
case MUSB_HDRC_VCTRL:
/* TODO */
break;
case (MUSB_HDRC_VCTRL | 1):
case (MUSB_HDRC_DEVCTL | 1):
break;
case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
ep = (addr >> 3) & 0xf;
musb_busctl_writeb(s, ep, addr & 0x7, value);
break;
case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
ep = (addr >> 4) & 0xf;
musb_ep_writeb(s, ep, addr & 0xf, value);
break;
case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
musb_write_fifo(s->ep + ep, value & 0xff);
break;
default:
TRACE("unknown register 0x%02x", (int) addr);
break;
};
}
static uint32_t musb_readh(void *opaque, hwaddr addr)
{
MUSBState *s = (MUSBState *) opaque;
int ep, i;
uint16_t ret;
switch (addr) {
case MUSB_HDRC_INTRTX:
ret = s->tx_intr;
/* Auto clear */
for (i = 0; i < sizeof(ret) * 8; i ++)
if (ret & (1 << i))
musb_tx_intr_set(s, i, 0);
return ret;
case MUSB_HDRC_INTRRX:
ret = s->rx_intr;
/* Auto clear */
for (i = 0; i < sizeof(ret) * 8; i ++)
if (ret & (1 << i))
musb_rx_intr_set(s, i, 0);
return ret;
case MUSB_HDRC_INTRTXE:
return s->tx_mask;
case MUSB_HDRC_INTRRXE:
return s->rx_mask;
case MUSB_HDRC_FRAME:
/* TODO */
return 0x0000;
case MUSB_HDRC_TXFIFOADDR:
return s->ep[s->idx].fifoaddr[0];
case MUSB_HDRC_RXFIFOADDR:
return s->ep[s->idx].fifoaddr[1];
case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
return musb_ep_readh(s, s->idx, addr & 0xf);
case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
ep = (addr >> 3) & 0xf;
return musb_busctl_readh(s, ep, addr & 0x7);
case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
ep = (addr >> 4) & 0xf;
return musb_ep_readh(s, ep, addr & 0xf);
case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
return (musb_read_fifo(s->ep + ep) | musb_read_fifo(s->ep + ep) << 8);
default:
return musb_readb(s, addr) | (musb_readb(s, addr | 1) << 8);
};
}
static void musb_writeh(void *opaque, hwaddr addr, uint32_t value)
{
MUSBState *s = (MUSBState *) opaque;
int ep;
switch (addr) {
case MUSB_HDRC_INTRTXE:
s->tx_mask = value;
/* XXX: the masks seem to apply on the raising edge like with
* edge-triggered interrupts, thus no need to update. I may be
* wrong though. */
break;
case MUSB_HDRC_INTRRXE:
s->rx_mask = value;
break;
case MUSB_HDRC_FRAME:
/* TODO */
break;
case MUSB_HDRC_TXFIFOADDR:
s->ep[s->idx].fifoaddr[0] = value;
s->ep[s->idx].buf[0] =
s->buf + ((value << 3) & 0x7ff );
break;
case MUSB_HDRC_RXFIFOADDR:
s->ep[s->idx].fifoaddr[1] = value;
s->ep[s->idx].buf[1] =
s->buf + ((value << 3) & 0x7ff);
break;
case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
musb_ep_writeh(s, s->idx, addr & 0xf, value);
break;
case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
ep = (addr >> 3) & 0xf;
musb_busctl_writeh(s, ep, addr & 0x7, value);
break;
case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
ep = (addr >> 4) & 0xf;
musb_ep_writeh(s, ep, addr & 0xf, value);
break;
case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
musb_write_fifo(s->ep + ep, value & 0xff);
musb_write_fifo(s->ep + ep, (value >> 8) & 0xff);
break;
default:
musb_writeb(s, addr, value & 0xff);
musb_writeb(s, addr | 1, value >> 8);
};
}
static uint32_t musb_readw(void *opaque, hwaddr addr)
{
MUSBState *s = (MUSBState *) opaque;
int ep;
switch (addr) {
case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
return ( musb_read_fifo(s->ep + ep) |
musb_read_fifo(s->ep + ep) << 8 |
musb_read_fifo(s->ep + ep) << 16 |
musb_read_fifo(s->ep + ep) << 24 );
default:
TRACE("unknown register 0x%02x", (int) addr);
return 0x00000000;
};
}
static void musb_writew(void *opaque, hwaddr addr, uint32_t value)
{
MUSBState *s = (MUSBState *) opaque;
int ep;
switch (addr) {
case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
ep = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
musb_write_fifo(s->ep + ep, value & 0xff);
musb_write_fifo(s->ep + ep, (value >> 8 ) & 0xff);
musb_write_fifo(s->ep + ep, (value >> 16) & 0xff);
musb_write_fifo(s->ep + ep, (value >> 24) & 0xff);
break;
default:
TRACE("unknown register 0x%02x", (int) addr);
break;
};
}
CPUReadMemoryFunc * const musb_read[] = {
musb_readb,
musb_readh,
musb_readw,
};
CPUWriteMemoryFunc * const musb_write[] = {
musb_writeb,
musb_writeh,
musb_writew,
};