| /* |
| * ColdFire Fast Ethernet Controller emulation. |
| * |
| * Copyright (c) 2007 CodeSourcery. |
| * |
| * This code is licensed under the GPL |
| */ |
| #include "qemu/osdep.h" |
| #include "hw/hw.h" |
| #include "net/net.h" |
| #include "hw/m68k/mcf.h" |
| #include "hw/net/mii.h" |
| /* For crc32 */ |
| #include <zlib.h> |
| #include "exec/address-spaces.h" |
| |
| //#define DEBUG_FEC 1 |
| |
| #ifdef DEBUG_FEC |
| #define DPRINTF(fmt, ...) \ |
| do { printf("mcf_fec: " fmt , ## __VA_ARGS__); } while (0) |
| #else |
| #define DPRINTF(fmt, ...) do {} while(0) |
| #endif |
| |
| #define FEC_MAX_FRAME_SIZE 2032 |
| |
| typedef struct { |
| MemoryRegion *sysmem; |
| MemoryRegion iomem; |
| qemu_irq *irq; |
| NICState *nic; |
| NICConf conf; |
| uint32_t irq_state; |
| uint32_t eir; |
| uint32_t eimr; |
| int rx_enabled; |
| uint32_t rx_descriptor; |
| uint32_t tx_descriptor; |
| uint32_t ecr; |
| uint32_t mmfr; |
| uint32_t mscr; |
| uint32_t rcr; |
| uint32_t tcr; |
| uint32_t tfwr; |
| uint32_t rfsr; |
| uint32_t erdsr; |
| uint32_t etdsr; |
| uint32_t emrbr; |
| } mcf_fec_state; |
| |
| #define FEC_INT_HB 0x80000000 |
| #define FEC_INT_BABR 0x40000000 |
| #define FEC_INT_BABT 0x20000000 |
| #define FEC_INT_GRA 0x10000000 |
| #define FEC_INT_TXF 0x08000000 |
| #define FEC_INT_TXB 0x04000000 |
| #define FEC_INT_RXF 0x02000000 |
| #define FEC_INT_RXB 0x01000000 |
| #define FEC_INT_MII 0x00800000 |
| #define FEC_INT_EB 0x00400000 |
| #define FEC_INT_LC 0x00200000 |
| #define FEC_INT_RL 0x00100000 |
| #define FEC_INT_UN 0x00080000 |
| |
| #define FEC_EN 2 |
| #define FEC_RESET 1 |
| |
| /* Map interrupt flags onto IRQ lines. */ |
| #define FEC_NUM_IRQ 13 |
| static const uint32_t mcf_fec_irq_map[FEC_NUM_IRQ] = { |
| FEC_INT_TXF, |
| FEC_INT_TXB, |
| FEC_INT_UN, |
| FEC_INT_RL, |
| FEC_INT_RXF, |
| FEC_INT_RXB, |
| FEC_INT_MII, |
| FEC_INT_LC, |
| FEC_INT_HB, |
| FEC_INT_GRA, |
| FEC_INT_EB, |
| FEC_INT_BABT, |
| FEC_INT_BABR |
| }; |
| |
| /* Buffer Descriptor. */ |
| typedef struct { |
| uint16_t flags; |
| uint16_t length; |
| uint32_t data; |
| } mcf_fec_bd; |
| |
| #define FEC_BD_R 0x8000 |
| #define FEC_BD_E 0x8000 |
| #define FEC_BD_O1 0x4000 |
| #define FEC_BD_W 0x2000 |
| #define FEC_BD_O2 0x1000 |
| #define FEC_BD_L 0x0800 |
| #define FEC_BD_TC 0x0400 |
| #define FEC_BD_ABC 0x0200 |
| #define FEC_BD_M 0x0100 |
| #define FEC_BD_BC 0x0080 |
| #define FEC_BD_MC 0x0040 |
| #define FEC_BD_LG 0x0020 |
| #define FEC_BD_NO 0x0010 |
| #define FEC_BD_CR 0x0004 |
| #define FEC_BD_OV 0x0002 |
| #define FEC_BD_TR 0x0001 |
| |
| static void mcf_fec_read_bd(mcf_fec_bd *bd, uint32_t addr) |
| { |
| cpu_physical_memory_read(addr, bd, sizeof(*bd)); |
| be16_to_cpus(&bd->flags); |
| be16_to_cpus(&bd->length); |
| be32_to_cpus(&bd->data); |
| } |
| |
| static void mcf_fec_write_bd(mcf_fec_bd *bd, uint32_t addr) |
| { |
| mcf_fec_bd tmp; |
| tmp.flags = cpu_to_be16(bd->flags); |
| tmp.length = cpu_to_be16(bd->length); |
| tmp.data = cpu_to_be32(bd->data); |
| cpu_physical_memory_write(addr, &tmp, sizeof(tmp)); |
| } |
| |
| static void mcf_fec_update(mcf_fec_state *s) |
| { |
| uint32_t active; |
| uint32_t changed; |
| uint32_t mask; |
| int i; |
| |
| active = s->eir & s->eimr; |
| changed = active ^s->irq_state; |
| for (i = 0; i < FEC_NUM_IRQ; i++) { |
| mask = mcf_fec_irq_map[i]; |
| if (changed & mask) { |
| DPRINTF("IRQ %d = %d\n", i, (active & mask) != 0); |
| qemu_set_irq(s->irq[i], (active & mask) != 0); |
| } |
| } |
| s->irq_state = active; |
| } |
| |
| static void mcf_fec_do_tx(mcf_fec_state *s) |
| { |
| uint32_t addr; |
| mcf_fec_bd bd; |
| int frame_size; |
| int len; |
| uint8_t frame[FEC_MAX_FRAME_SIZE]; |
| uint8_t *ptr; |
| |
| DPRINTF("do_tx\n"); |
| ptr = frame; |
| frame_size = 0; |
| addr = s->tx_descriptor; |
| while (1) { |
| mcf_fec_read_bd(&bd, addr); |
| DPRINTF("tx_bd %x flags %04x len %d data %08x\n", |
| addr, bd.flags, bd.length, bd.data); |
| if ((bd.flags & FEC_BD_R) == 0) { |
| /* Run out of descriptors to transmit. */ |
| break; |
| } |
| len = bd.length; |
| if (frame_size + len > FEC_MAX_FRAME_SIZE) { |
| len = FEC_MAX_FRAME_SIZE - frame_size; |
| s->eir |= FEC_INT_BABT; |
| } |
| cpu_physical_memory_read(bd.data, ptr, len); |
| ptr += len; |
| frame_size += len; |
| if (bd.flags & FEC_BD_L) { |
| /* Last buffer in frame. */ |
| DPRINTF("Sending packet\n"); |
| qemu_send_packet(qemu_get_queue(s->nic), frame, len); |
| ptr = frame; |
| frame_size = 0; |
| s->eir |= FEC_INT_TXF; |
| } |
| s->eir |= FEC_INT_TXB; |
| bd.flags &= ~FEC_BD_R; |
| /* Write back the modified descriptor. */ |
| mcf_fec_write_bd(&bd, addr); |
| /* Advance to the next descriptor. */ |
| if ((bd.flags & FEC_BD_W) != 0) { |
| addr = s->etdsr; |
| } else { |
| addr += 8; |
| } |
| } |
| s->tx_descriptor = addr; |
| } |
| |
| static void mcf_fec_enable_rx(mcf_fec_state *s) |
| { |
| NetClientState *nc = qemu_get_queue(s->nic); |
| mcf_fec_bd bd; |
| |
| mcf_fec_read_bd(&bd, s->rx_descriptor); |
| s->rx_enabled = ((bd.flags & FEC_BD_E) != 0); |
| if (s->rx_enabled) { |
| qemu_flush_queued_packets(nc); |
| } |
| } |
| |
| static void mcf_fec_reset(mcf_fec_state *s) |
| { |
| s->eir = 0; |
| s->eimr = 0; |
| s->rx_enabled = 0; |
| s->ecr = 0; |
| s->mscr = 0; |
| s->rcr = 0x05ee0001; |
| s->tcr = 0; |
| s->tfwr = 0; |
| s->rfsr = 0x500; |
| } |
| |
| #define MMFR_WRITE_OP (1 << 28) |
| #define MMFR_READ_OP (2 << 28) |
| #define MMFR_PHYADDR(v) (((v) >> 23) & 0x1f) |
| #define MMFR_REGNUM(v) (((v) >> 18) & 0x1f) |
| |
| static uint64_t mcf_fec_read_mdio(mcf_fec_state *s) |
| { |
| uint64_t v; |
| |
| if (s->mmfr & MMFR_WRITE_OP) |
| return s->mmfr; |
| if (MMFR_PHYADDR(s->mmfr) != 1) |
| return s->mmfr |= 0xffff; |
| |
| switch (MMFR_REGNUM(s->mmfr)) { |
| case MII_BMCR: |
| v = MII_BMCR_SPEED | MII_BMCR_AUTOEN | MII_BMCR_FD; |
| break; |
| case MII_BMSR: |
| v = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD | |
| MII_BMSR_10T_HD | MII_BMSR_MFPS | MII_BMSR_AN_COMP | |
| MII_BMSR_AUTONEG | MII_BMSR_LINK_ST; |
| break; |
| case MII_PHYID1: |
| v = DP83848_PHYID1; |
| break; |
| case MII_PHYID2: |
| v = DP83848_PHYID2; |
| break; |
| case MII_ANAR: |
| v = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD | |
| MII_ANAR_10 | MII_ANAR_CSMACD; |
| break; |
| case MII_ANLPAR: |
| v = MII_ANLPAR_ACK | MII_ANLPAR_TXFD | MII_ANLPAR_TX | |
| MII_ANLPAR_10FD | MII_ANLPAR_10 | MII_ANLPAR_CSMACD; |
| break; |
| default: |
| v = 0xffff; |
| break; |
| } |
| s->mmfr = (s->mmfr & ~0xffff) | v; |
| return s->mmfr; |
| } |
| |
| static uint64_t mcf_fec_read(void *opaque, hwaddr addr, |
| unsigned size) |
| { |
| mcf_fec_state *s = (mcf_fec_state *)opaque; |
| switch (addr & 0x3ff) { |
| case 0x004: return s->eir; |
| case 0x008: return s->eimr; |
| case 0x010: return s->rx_enabled ? (1 << 24) : 0; /* RDAR */ |
| case 0x014: return 0; /* TDAR */ |
| case 0x024: return s->ecr; |
| case 0x040: return mcf_fec_read_mdio(s); |
| case 0x044: return s->mscr; |
| case 0x064: return 0; /* MIBC */ |
| case 0x084: return s->rcr; |
| case 0x0c4: return s->tcr; |
| case 0x0e4: /* PALR */ |
| return (s->conf.macaddr.a[0] << 24) | (s->conf.macaddr.a[1] << 16) |
| | (s->conf.macaddr.a[2] << 8) | s->conf.macaddr.a[3]; |
| break; |
| case 0x0e8: /* PAUR */ |
| return (s->conf.macaddr.a[4] << 24) | (s->conf.macaddr.a[5] << 16) | 0x8808; |
| case 0x0ec: return 0x10000; /* OPD */ |
| case 0x118: return 0; |
| case 0x11c: return 0; |
| case 0x120: return 0; |
| case 0x124: return 0; |
| case 0x144: return s->tfwr; |
| case 0x14c: return 0x600; |
| case 0x150: return s->rfsr; |
| case 0x180: return s->erdsr; |
| case 0x184: return s->etdsr; |
| case 0x188: return s->emrbr; |
| default: |
| hw_error("mcf_fec_read: Bad address 0x%x\n", (int)addr); |
| return 0; |
| } |
| } |
| |
| static void mcf_fec_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size) |
| { |
| mcf_fec_state *s = (mcf_fec_state *)opaque; |
| switch (addr & 0x3ff) { |
| case 0x004: |
| s->eir &= ~value; |
| break; |
| case 0x008: |
| s->eimr = value; |
| break; |
| case 0x010: /* RDAR */ |
| if ((s->ecr & FEC_EN) && !s->rx_enabled) { |
| DPRINTF("RX enable\n"); |
| mcf_fec_enable_rx(s); |
| } |
| break; |
| case 0x014: /* TDAR */ |
| if (s->ecr & FEC_EN) { |
| mcf_fec_do_tx(s); |
| } |
| break; |
| case 0x024: |
| s->ecr = value; |
| if (value & FEC_RESET) { |
| DPRINTF("Reset\n"); |
| mcf_fec_reset(s); |
| } |
| if ((s->ecr & FEC_EN) == 0) { |
| s->rx_enabled = 0; |
| } |
| break; |
| case 0x040: |
| s->mmfr = value; |
| s->eir |= FEC_INT_MII; |
| break; |
| case 0x044: |
| s->mscr = value & 0xfe; |
| break; |
| case 0x064: |
| /* TODO: Implement MIB. */ |
| break; |
| case 0x084: |
| s->rcr = value & 0x07ff003f; |
| /* TODO: Implement LOOP mode. */ |
| break; |
| case 0x0c4: /* TCR */ |
| /* We transmit immediately, so raise GRA immediately. */ |
| s->tcr = value; |
| if (value & 1) |
| s->eir |= FEC_INT_GRA; |
| break; |
| case 0x0e4: /* PALR */ |
| s->conf.macaddr.a[0] = value >> 24; |
| s->conf.macaddr.a[1] = value >> 16; |
| s->conf.macaddr.a[2] = value >> 8; |
| s->conf.macaddr.a[3] = value; |
| break; |
| case 0x0e8: /* PAUR */ |
| s->conf.macaddr.a[4] = value >> 24; |
| s->conf.macaddr.a[5] = value >> 16; |
| break; |
| case 0x0ec: |
| /* OPD */ |
| break; |
| case 0x118: |
| case 0x11c: |
| case 0x120: |
| case 0x124: |
| /* TODO: implement MAC hash filtering. */ |
| break; |
| case 0x144: |
| s->tfwr = value & 3; |
| break; |
| case 0x14c: |
| /* FRBR writes ignored. */ |
| break; |
| case 0x150: |
| s->rfsr = (value & 0x3fc) | 0x400; |
| break; |
| case 0x180: |
| s->erdsr = value & ~3; |
| s->rx_descriptor = s->erdsr; |
| break; |
| case 0x184: |
| s->etdsr = value & ~3; |
| s->tx_descriptor = s->etdsr; |
| break; |
| case 0x188: |
| s->emrbr = value & 0x7f0; |
| break; |
| default: |
| hw_error("mcf_fec_write Bad address 0x%x\n", (int)addr); |
| } |
| mcf_fec_update(s); |
| } |
| |
| static int mcf_fec_have_receive_space(mcf_fec_state *s, size_t want) |
| { |
| mcf_fec_bd bd; |
| uint32_t addr; |
| |
| /* Walk descriptor list to determine if we have enough buffer */ |
| addr = s->rx_descriptor; |
| while (want > 0) { |
| mcf_fec_read_bd(&bd, addr); |
| if ((bd.flags & FEC_BD_E) == 0) { |
| return 0; |
| } |
| if (want < s->emrbr) { |
| return 1; |
| } |
| want -= s->emrbr; |
| /* Advance to the next descriptor. */ |
| if ((bd.flags & FEC_BD_W) != 0) { |
| addr = s->erdsr; |
| } else { |
| addr += 8; |
| } |
| } |
| return 0; |
| } |
| |
| static ssize_t mcf_fec_receive(NetClientState *nc, const uint8_t *buf, size_t size) |
| { |
| mcf_fec_state *s = qemu_get_nic_opaque(nc); |
| mcf_fec_bd bd; |
| uint32_t flags = 0; |
| uint32_t addr; |
| uint32_t crc; |
| uint32_t buf_addr; |
| uint8_t *crc_ptr; |
| unsigned int buf_len; |
| size_t retsize; |
| |
| DPRINTF("do_rx len %d\n", size); |
| if (!s->rx_enabled) { |
| return -1; |
| } |
| /* 4 bytes for the CRC. */ |
| size += 4; |
| crc = cpu_to_be32(crc32(~0, buf, size)); |
| crc_ptr = (uint8_t *)&crc; |
| /* Huge frames are truncted. */ |
| if (size > FEC_MAX_FRAME_SIZE) { |
| size = FEC_MAX_FRAME_SIZE; |
| flags |= FEC_BD_TR | FEC_BD_LG; |
| } |
| /* Frames larger than the user limit just set error flags. */ |
| if (size > (s->rcr >> 16)) { |
| flags |= FEC_BD_LG; |
| } |
| /* Check if we have enough space in current descriptors */ |
| if (!mcf_fec_have_receive_space(s, size)) { |
| return 0; |
| } |
| addr = s->rx_descriptor; |
| retsize = size; |
| while (size > 0) { |
| mcf_fec_read_bd(&bd, addr); |
| buf_len = (size <= s->emrbr) ? size: s->emrbr; |
| bd.length = buf_len; |
| size -= buf_len; |
| DPRINTF("rx_bd %x length %d\n", addr, bd.length); |
| /* The last 4 bytes are the CRC. */ |
| if (size < 4) |
| buf_len += size - 4; |
| buf_addr = bd.data; |
| cpu_physical_memory_write(buf_addr, buf, buf_len); |
| buf += buf_len; |
| if (size < 4) { |
| cpu_physical_memory_write(buf_addr + buf_len, crc_ptr, 4 - size); |
| crc_ptr += 4 - size; |
| } |
| bd.flags &= ~FEC_BD_E; |
| if (size == 0) { |
| /* Last buffer in frame. */ |
| bd.flags |= flags | FEC_BD_L; |
| DPRINTF("rx frame flags %04x\n", bd.flags); |
| s->eir |= FEC_INT_RXF; |
| } else { |
| s->eir |= FEC_INT_RXB; |
| } |
| mcf_fec_write_bd(&bd, addr); |
| /* Advance to the next descriptor. */ |
| if ((bd.flags & FEC_BD_W) != 0) { |
| addr = s->erdsr; |
| } else { |
| addr += 8; |
| } |
| } |
| s->rx_descriptor = addr; |
| mcf_fec_enable_rx(s); |
| mcf_fec_update(s); |
| return retsize; |
| } |
| |
| static const MemoryRegionOps mcf_fec_ops = { |
| .read = mcf_fec_read, |
| .write = mcf_fec_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| }; |
| |
| static NetClientInfo net_mcf_fec_info = { |
| .type = NET_CLIENT_DRIVER_NIC, |
| .size = sizeof(NICState), |
| .receive = mcf_fec_receive, |
| }; |
| |
| void mcf_fec_init(MemoryRegion *sysmem, NICInfo *nd, |
| hwaddr base, qemu_irq *irq) |
| { |
| mcf_fec_state *s; |
| |
| qemu_check_nic_model(nd, "mcf_fec"); |
| |
| s = (mcf_fec_state *)g_malloc0(sizeof(mcf_fec_state)); |
| s->sysmem = sysmem; |
| s->irq = irq; |
| |
| memory_region_init_io(&s->iomem, NULL, &mcf_fec_ops, s, "fec", 0x400); |
| memory_region_add_subregion(sysmem, base, &s->iomem); |
| |
| s->conf.macaddr = nd->macaddr; |
| s->conf.peers.ncs[0] = nd->netdev; |
| |
| s->nic = qemu_new_nic(&net_mcf_fec_info, &s->conf, nd->model, nd->name, s); |
| |
| qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); |
| } |