blob: 2a9465da11bbcb7efaf05bd0bbe8320d1b68c196 [file] [log] [blame] [edit]
/*
* Declarations for cpu physical memory functions
*
* Copyright 2011 Red Hat, Inc. and/or its affiliates
*
* Authors:
* Avi Kivity <avi@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or
* later. See the COPYING file in the top-level directory.
*
*/
/*
* This header is for use by exec.c and memory.c ONLY. Do not include it.
* The functions declared here will be removed soon.
*/
#ifndef RAM_ADDR_H
#define RAM_ADDR_H
#ifndef CONFIG_USER_ONLY
#include "hw/xen/xen.h"
struct RAMBlock {
struct rcu_head rcu;
struct MemoryRegion *mr;
uint8_t *host;
ram_addr_t offset;
ram_addr_t used_length;
ram_addr_t max_length;
void (*resized)(const char*, uint64_t length, void *host);
uint32_t flags;
/* Protected by iothread lock. */
char idstr[256];
/* RCU-enabled, writes protected by the ramlist lock */
QLIST_ENTRY(RAMBlock) next;
int fd;
};
static inline bool offset_in_ramblock(RAMBlock *b, ram_addr_t offset)
{
return (b && b->host && offset < b->used_length) ? true : false;
}
static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
{
assert(offset_in_ramblock(block, offset));
return (char *)block->host + offset;
}
/* The dirty memory bitmap is split into fixed-size blocks to allow growth
* under RCU. The bitmap for a block can be accessed as follows:
*
* rcu_read_lock();
*
* DirtyMemoryBlocks *blocks =
* atomic_rcu_read(&ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION]);
*
* ram_addr_t idx = (addr >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
* unsigned long *block = blocks.blocks[idx];
* ...access block bitmap...
*
* rcu_read_unlock();
*
* Remember to check for the end of the block when accessing a range of
* addresses. Move on to the next block if you reach the end.
*
* Organization into blocks allows dirty memory to grow (but not shrink) under
* RCU. When adding new RAMBlocks requires the dirty memory to grow, a new
* DirtyMemoryBlocks array is allocated with pointers to existing blocks kept
* the same. Other threads can safely access existing blocks while dirty
* memory is being grown. When no threads are using the old DirtyMemoryBlocks
* anymore it is freed by RCU (but the underlying blocks stay because they are
* pointed to from the new DirtyMemoryBlocks).
*/
#define DIRTY_MEMORY_BLOCK_SIZE ((ram_addr_t)256 * 1024 * 8)
typedef struct {
struct rcu_head rcu;
unsigned long *blocks[];
} DirtyMemoryBlocks;
typedef struct RAMList {
QemuMutex mutex;
RAMBlock *mru_block;
/* RCU-enabled, writes protected by the ramlist lock. */
QLIST_HEAD(, RAMBlock) blocks;
DirtyMemoryBlocks *dirty_memory[DIRTY_MEMORY_NUM];
uint32_t version;
} RAMList;
extern RAMList ram_list;
ram_addr_t last_ram_offset(void);
void qemu_mutex_lock_ramlist(void);
void qemu_mutex_unlock_ramlist(void);
RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
bool share, const char *mem_path,
Error **errp);
RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
MemoryRegion *mr, Error **errp);
RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp);
RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
void (*resized)(const char*,
uint64_t length,
void *host),
MemoryRegion *mr, Error **errp);
void qemu_ram_free(RAMBlock *block);
int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp);
#define DIRTY_CLIENTS_ALL ((1 << DIRTY_MEMORY_NUM) - 1)
#define DIRTY_CLIENTS_NOCODE (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
ram_addr_t length,
unsigned client)
{
DirtyMemoryBlocks *blocks;
unsigned long end, page;
unsigned long idx, offset, base;
bool dirty = false;
assert(client < DIRTY_MEMORY_NUM);
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
page = start >> TARGET_PAGE_BITS;
rcu_read_lock();
blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
idx = page / DIRTY_MEMORY_BLOCK_SIZE;
offset = page % DIRTY_MEMORY_BLOCK_SIZE;
base = page - offset;
while (page < end) {
unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
unsigned long num = next - base;
unsigned long found = find_next_bit(blocks->blocks[idx], num, offset);
if (found < num) {
dirty = true;
break;
}
page = next;
idx++;
offset = 0;
base += DIRTY_MEMORY_BLOCK_SIZE;
}
rcu_read_unlock();
return dirty;
}
static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
ram_addr_t length,
unsigned client)
{
DirtyMemoryBlocks *blocks;
unsigned long end, page;
unsigned long idx, offset, base;
bool dirty = true;
assert(client < DIRTY_MEMORY_NUM);
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
page = start >> TARGET_PAGE_BITS;
rcu_read_lock();
blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
idx = page / DIRTY_MEMORY_BLOCK_SIZE;
offset = page % DIRTY_MEMORY_BLOCK_SIZE;
base = page - offset;
while (page < end) {
unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
unsigned long num = next - base;
unsigned long found = find_next_zero_bit(blocks->blocks[idx], num, offset);
if (found < num) {
dirty = false;
break;
}
page = next;
idx++;
offset = 0;
base += DIRTY_MEMORY_BLOCK_SIZE;
}
rcu_read_unlock();
return dirty;
}
static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
unsigned client)
{
return cpu_physical_memory_get_dirty(addr, 1, client);
}
static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
{
bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
bool migration =
cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
return !(vga && code && migration);
}
static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
ram_addr_t length,
uint8_t mask)
{
uint8_t ret = 0;
if (mask & (1 << DIRTY_MEMORY_VGA) &&
!cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) {
ret |= (1 << DIRTY_MEMORY_VGA);
}
if (mask & (1 << DIRTY_MEMORY_CODE) &&
!cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) {
ret |= (1 << DIRTY_MEMORY_CODE);
}
if (mask & (1 << DIRTY_MEMORY_MIGRATION) &&
!cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) {
ret |= (1 << DIRTY_MEMORY_MIGRATION);
}
return ret;
}
static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
unsigned client)
{
unsigned long page, idx, offset;
DirtyMemoryBlocks *blocks;
assert(client < DIRTY_MEMORY_NUM);
page = addr >> TARGET_PAGE_BITS;
idx = page / DIRTY_MEMORY_BLOCK_SIZE;
offset = page % DIRTY_MEMORY_BLOCK_SIZE;
rcu_read_lock();
blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
set_bit_atomic(offset, blocks->blocks[idx]);
rcu_read_unlock();
}
static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
ram_addr_t length,
uint8_t mask)
{
DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM];
unsigned long end, page;
unsigned long idx, offset, base;
int i;
if (!mask && !xen_enabled()) {
return;
}
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
page = start >> TARGET_PAGE_BITS;
rcu_read_lock();
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i]);
}
idx = page / DIRTY_MEMORY_BLOCK_SIZE;
offset = page % DIRTY_MEMORY_BLOCK_SIZE;
base = page - offset;
while (page < end) {
unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx],
offset, next - page);
}
if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx],
offset, next - page);
}
if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx],
offset, next - page);
}
page = next;
idx++;
offset = 0;
base += DIRTY_MEMORY_BLOCK_SIZE;
}
rcu_read_unlock();
xen_modified_memory(start, length);
}
#if !defined(_WIN32)
static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
ram_addr_t start,
ram_addr_t pages)
{
unsigned long i, j;
unsigned long page_number, c;
hwaddr addr;
ram_addr_t ram_addr;
unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
/* start address is aligned at the start of a word? */
if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
(hpratio == 1)) {
unsigned long **blocks[DIRTY_MEMORY_NUM];
unsigned long idx;
unsigned long offset;
long k;
long nr = BITS_TO_LONGS(pages);
idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
offset = BIT_WORD((start >> TARGET_PAGE_BITS) %
DIRTY_MEMORY_BLOCK_SIZE);
rcu_read_lock();
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i])->blocks;
}
for (k = 0; k < nr; k++) {
if (bitmap[k]) {
unsigned long temp = leul_to_cpu(bitmap[k]);
atomic_or(&blocks[DIRTY_MEMORY_MIGRATION][idx][offset], temp);
atomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp);
if (tcg_enabled()) {
atomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset], temp);
}
}
if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
offset = 0;
idx++;
}
}
rcu_read_unlock();
xen_modified_memory(start, pages << TARGET_PAGE_BITS);
} else {
uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
/*
* bitmap-traveling is faster than memory-traveling (for addr...)
* especially when most of the memory is not dirty.
*/
for (i = 0; i < len; i++) {
if (bitmap[i] != 0) {
c = leul_to_cpu(bitmap[i]);
do {
j = ctzl(c);
c &= ~(1ul << j);
page_number = (i * HOST_LONG_BITS + j) * hpratio;
addr = page_number * TARGET_PAGE_SIZE;
ram_addr = start + addr;
cpu_physical_memory_set_dirty_range(ram_addr,
TARGET_PAGE_SIZE * hpratio, clients);
} while (c != 0);
}
}
}
}
#endif /* not _WIN32 */
bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
ram_addr_t length,
unsigned client);
static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
ram_addr_t length)
{
cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION);
cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA);
cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE);
}
static inline
uint64_t cpu_physical_memory_sync_dirty_bitmap(unsigned long *dest,
ram_addr_t start,
ram_addr_t length)
{
ram_addr_t addr;
unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
uint64_t num_dirty = 0;
/* start address is aligned at the start of a word? */
if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
int k;
int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
unsigned long * const *src;
unsigned long idx = (page * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE;
unsigned long offset = BIT_WORD((page * BITS_PER_LONG) %
DIRTY_MEMORY_BLOCK_SIZE);
rcu_read_lock();
src = atomic_rcu_read(
&ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks;
for (k = page; k < page + nr; k++) {
if (src[idx][offset]) {
unsigned long bits = atomic_xchg(&src[idx][offset], 0);
unsigned long new_dirty;
new_dirty = ~dest[k];
dest[k] |= bits;
new_dirty &= bits;
num_dirty += ctpopl(new_dirty);
}
if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
offset = 0;
idx++;
}
}
rcu_read_unlock();
} else {
for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
if (cpu_physical_memory_test_and_clear_dirty(
start + addr,
TARGET_PAGE_SIZE,
DIRTY_MEMORY_MIGRATION)) {
long k = (start + addr) >> TARGET_PAGE_BITS;
if (!test_and_set_bit(k, dest)) {
num_dirty++;
}
}
}
}
return num_dirty;
}
void migration_bitmap_extend(ram_addr_t old, ram_addr_t new);
#endif
#endif