| /* |
| * Simple interface for atomic operations. |
| * |
| * Copyright (C) 2013 Red Hat, Inc. |
| * |
| * Author: Paolo Bonzini <pbonzini@redhat.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| * See docs/atomics.txt for discussion about the guarantees each |
| * atomic primitive is meant to provide. |
| */ |
| |
| #ifndef QEMU_ATOMIC_H |
| #define QEMU_ATOMIC_H |
| |
| /* Compiler barrier */ |
| #define barrier() ({ asm volatile("" ::: "memory"); (void)0; }) |
| |
| /* The variable that receives the old value of an atomically-accessed |
| * variable must be non-qualified, because atomic builtins return values |
| * through a pointer-type argument as in __atomic_load(&var, &old, MODEL). |
| * |
| * This macro has to handle types smaller than int manually, because of |
| * implicit promotion. int and larger types, as well as pointers, can be |
| * converted to a non-qualified type just by applying a binary operator. |
| */ |
| #define typeof_strip_qual(expr) \ |
| typeof( \ |
| __builtin_choose_expr( \ |
| __builtin_types_compatible_p(typeof(expr), bool) || \ |
| __builtin_types_compatible_p(typeof(expr), const bool) || \ |
| __builtin_types_compatible_p(typeof(expr), volatile bool) || \ |
| __builtin_types_compatible_p(typeof(expr), const volatile bool), \ |
| (bool)1, \ |
| __builtin_choose_expr( \ |
| __builtin_types_compatible_p(typeof(expr), signed char) || \ |
| __builtin_types_compatible_p(typeof(expr), const signed char) || \ |
| __builtin_types_compatible_p(typeof(expr), volatile signed char) || \ |
| __builtin_types_compatible_p(typeof(expr), const volatile signed char), \ |
| (signed char)1, \ |
| __builtin_choose_expr( \ |
| __builtin_types_compatible_p(typeof(expr), unsigned char) || \ |
| __builtin_types_compatible_p(typeof(expr), const unsigned char) || \ |
| __builtin_types_compatible_p(typeof(expr), volatile unsigned char) || \ |
| __builtin_types_compatible_p(typeof(expr), const volatile unsigned char), \ |
| (unsigned char)1, \ |
| __builtin_choose_expr( \ |
| __builtin_types_compatible_p(typeof(expr), signed short) || \ |
| __builtin_types_compatible_p(typeof(expr), const signed short) || \ |
| __builtin_types_compatible_p(typeof(expr), volatile signed short) || \ |
| __builtin_types_compatible_p(typeof(expr), const volatile signed short), \ |
| (signed short)1, \ |
| __builtin_choose_expr( \ |
| __builtin_types_compatible_p(typeof(expr), unsigned short) || \ |
| __builtin_types_compatible_p(typeof(expr), const unsigned short) || \ |
| __builtin_types_compatible_p(typeof(expr), volatile unsigned short) || \ |
| __builtin_types_compatible_p(typeof(expr), const volatile unsigned short), \ |
| (unsigned short)1, \ |
| (expr)+0)))))) |
| |
| #ifdef __ATOMIC_RELAXED |
| /* For C11 atomic ops */ |
| |
| /* Manual memory barriers |
| * |
| *__atomic_thread_fence does not include a compiler barrier; instead, |
| * the barrier is part of __atomic_load/__atomic_store's "volatile-like" |
| * semantics. If smp_wmb() is a no-op, absence of the barrier means that |
| * the compiler is free to reorder stores on each side of the barrier. |
| * Add one here, and similarly in smp_rmb() and smp_read_barrier_depends(). |
| */ |
| |
| #define smp_mb() ({ barrier(); __atomic_thread_fence(__ATOMIC_SEQ_CST); barrier(); }) |
| #define smp_wmb() ({ barrier(); __atomic_thread_fence(__ATOMIC_RELEASE); barrier(); }) |
| #define smp_rmb() ({ barrier(); __atomic_thread_fence(__ATOMIC_ACQUIRE); barrier(); }) |
| |
| /* Most compilers currently treat consume and acquire the same, but really |
| * no processors except Alpha need a barrier here. Leave it in if |
| * using Thread Sanitizer to avoid warnings, otherwise optimize it away. |
| */ |
| #if defined(__SANITIZE_THREAD__) |
| #define smp_read_barrier_depends() ({ barrier(); __atomic_thread_fence(__ATOMIC_CONSUME); barrier(); }) |
| #elsif defined(__alpha__) |
| #define smp_read_barrier_depends() asm volatile("mb":::"memory") |
| #else |
| #define smp_read_barrier_depends() barrier() |
| #endif |
| |
| |
| /* Weak atomic operations prevent the compiler moving other |
| * loads/stores past the atomic operation load/store. However there is |
| * no explicit memory barrier for the processor. |
| */ |
| #define atomic_read(ptr) \ |
| ({ \ |
| QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \ |
| typeof_strip_qual(*ptr) _val; \ |
| __atomic_load(ptr, &_val, __ATOMIC_RELAXED); \ |
| _val; \ |
| }) |
| |
| #define atomic_set(ptr, i) do { \ |
| QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \ |
| typeof(*ptr) _val = (i); \ |
| __atomic_store(ptr, &_val, __ATOMIC_RELAXED); \ |
| } while(0) |
| |
| /* See above: most compilers currently treat consume and acquire the |
| * same, but this slows down atomic_rcu_read unnecessarily. |
| */ |
| #ifdef __SANITIZE_THREAD__ |
| #define atomic_rcu_read__nocheck(ptr, valptr) \ |
| __atomic_load(ptr, valptr, __ATOMIC_CONSUME); |
| #else |
| #define atomic_rcu_read__nocheck(ptr, valptr) \ |
| __atomic_load(ptr, valptr, __ATOMIC_RELAXED); \ |
| smp_read_barrier_depends(); |
| #endif |
| |
| #define atomic_rcu_read(ptr) \ |
| ({ \ |
| QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \ |
| typeof_strip_qual(*ptr) _val; \ |
| atomic_rcu_read__nocheck(ptr, &_val); \ |
| _val; \ |
| }) |
| |
| #define atomic_rcu_set(ptr, i) do { \ |
| QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \ |
| typeof(*ptr) _val = (i); \ |
| __atomic_store(ptr, &_val, __ATOMIC_RELEASE); \ |
| } while(0) |
| |
| /* atomic_mb_read/set semantics map Java volatile variables. They are |
| * less expensive on some platforms (notably POWER & ARMv7) than fully |
| * sequentially consistent operations. |
| * |
| * As long as they are used as paired operations they are safe to |
| * use. See docs/atomic.txt for more discussion. |
| */ |
| |
| #if defined(_ARCH_PPC) |
| #define atomic_mb_read(ptr) \ |
| ({ \ |
| QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \ |
| typeof_strip_qual(*ptr) _val; \ |
| __atomic_load(ptr, &_val, __ATOMIC_RELAXED); \ |
| smp_rmb(); \ |
| _val; \ |
| }) |
| |
| #define atomic_mb_set(ptr, i) do { \ |
| QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \ |
| typeof(*ptr) _val = (i); \ |
| smp_wmb(); \ |
| __atomic_store(ptr, &_val, __ATOMIC_RELAXED); \ |
| smp_mb(); \ |
| } while(0) |
| #else |
| #define atomic_mb_read(ptr) \ |
| ({ \ |
| QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \ |
| typeof_strip_qual(*ptr) _val; \ |
| __atomic_load(ptr, &_val, __ATOMIC_SEQ_CST); \ |
| _val; \ |
| }) |
| |
| #define atomic_mb_set(ptr, i) do { \ |
| QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \ |
| typeof(*ptr) _val = (i); \ |
| __atomic_store(ptr, &_val, __ATOMIC_SEQ_CST); \ |
| } while(0) |
| #endif |
| |
| |
| /* All the remaining operations are fully sequentially consistent */ |
| |
| #define atomic_xchg(ptr, i) ({ \ |
| QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \ |
| typeof_strip_qual(*ptr) _new = (i), _old; \ |
| __atomic_exchange(ptr, &_new, &_old, __ATOMIC_SEQ_CST); \ |
| _old; \ |
| }) |
| |
| /* Returns the eventual value, failed or not */ |
| #define atomic_cmpxchg(ptr, old, new) \ |
| ({ \ |
| QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \ |
| typeof_strip_qual(*ptr) _old = (old), _new = (new); \ |
| __atomic_compare_exchange(ptr, &_old, &_new, false, \ |
| __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); \ |
| _old; \ |
| }) |
| |
| /* Provide shorter names for GCC atomic builtins, return old value */ |
| #define atomic_fetch_inc(ptr) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST) |
| #define atomic_fetch_dec(ptr) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST) |
| #define atomic_fetch_add(ptr, n) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST) |
| #define atomic_fetch_sub(ptr, n) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST) |
| #define atomic_fetch_and(ptr, n) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST) |
| #define atomic_fetch_or(ptr, n) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST) |
| |
| /* And even shorter names that return void. */ |
| #define atomic_inc(ptr) ((void) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST)) |
| #define atomic_dec(ptr) ((void) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST)) |
| #define atomic_add(ptr, n) ((void) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST)) |
| #define atomic_sub(ptr, n) ((void) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST)) |
| #define atomic_and(ptr, n) ((void) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST)) |
| #define atomic_or(ptr, n) ((void) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST)) |
| |
| #else /* __ATOMIC_RELAXED */ |
| |
| /* |
| * We use GCC builtin if it's available, as that can use mfence on |
| * 32-bit as well, e.g. if built with -march=pentium-m. However, on |
| * i386 the spec is buggy, and the implementation followed it until |
| * 4.3 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=36793). |
| */ |
| #if defined(__i386__) || defined(__x86_64__) |
| #if !QEMU_GNUC_PREREQ(4, 4) |
| #if defined __x86_64__ |
| #define smp_mb() ({ asm volatile("mfence" ::: "memory"); (void)0; }) |
| #else |
| #define smp_mb() ({ asm volatile("lock; addl $0,0(%%esp) " ::: "memory"); (void)0; }) |
| #endif |
| #endif |
| #endif |
| |
| |
| #ifdef __alpha__ |
| #define smp_read_barrier_depends() asm volatile("mb":::"memory") |
| #endif |
| |
| #if defined(__i386__) || defined(__x86_64__) || defined(__s390x__) |
| |
| /* |
| * Because of the strongly ordered storage model, wmb() and rmb() are nops |
| * here (a compiler barrier only). QEMU doesn't do accesses to write-combining |
| * qemu memory or non-temporal load/stores from C code. |
| */ |
| #define smp_wmb() barrier() |
| #define smp_rmb() barrier() |
| |
| /* |
| * __sync_lock_test_and_set() is documented to be an acquire barrier only, |
| * but it is a full barrier at the hardware level. Add a compiler barrier |
| * to make it a full barrier also at the compiler level. |
| */ |
| #define atomic_xchg(ptr, i) (barrier(), __sync_lock_test_and_set(ptr, i)) |
| |
| /* |
| * Load/store with Java volatile semantics. |
| */ |
| #define atomic_mb_set(ptr, i) ((void)atomic_xchg(ptr, i)) |
| |
| #elif defined(_ARCH_PPC) |
| |
| /* |
| * We use an eieio() for wmb() on powerpc. This assumes we don't |
| * need to order cacheable and non-cacheable stores with respect to |
| * each other. |
| * |
| * smp_mb has the same problem as on x86 for not-very-new GCC |
| * (http://patchwork.ozlabs.org/patch/126184/, Nov 2011). |
| */ |
| #define smp_wmb() ({ asm volatile("eieio" ::: "memory"); (void)0; }) |
| #if defined(__powerpc64__) |
| #define smp_rmb() ({ asm volatile("lwsync" ::: "memory"); (void)0; }) |
| #else |
| #define smp_rmb() ({ asm volatile("sync" ::: "memory"); (void)0; }) |
| #endif |
| #define smp_mb() ({ asm volatile("sync" ::: "memory"); (void)0; }) |
| |
| #endif /* _ARCH_PPC */ |
| |
| /* |
| * For (host) platforms we don't have explicit barrier definitions |
| * for, we use the gcc __sync_synchronize() primitive to generate a |
| * full barrier. This should be safe on all platforms, though it may |
| * be overkill for smp_wmb() and smp_rmb(). |
| */ |
| #ifndef smp_mb |
| #define smp_mb() __sync_synchronize() |
| #endif |
| |
| #ifndef smp_wmb |
| #define smp_wmb() __sync_synchronize() |
| #endif |
| |
| #ifndef smp_rmb |
| #define smp_rmb() __sync_synchronize() |
| #endif |
| |
| #ifndef smp_read_barrier_depends |
| #define smp_read_barrier_depends() barrier() |
| #endif |
| |
| /* These will only be atomic if the processor does the fetch or store |
| * in a single issue memory operation |
| */ |
| #define atomic_read(ptr) (*(__typeof__(*ptr) volatile*) (ptr)) |
| #define atomic_set(ptr, i) ((*(__typeof__(*ptr) volatile*) (ptr)) = (i)) |
| |
| /** |
| * atomic_rcu_read - reads a RCU-protected pointer to a local variable |
| * into a RCU read-side critical section. The pointer can later be safely |
| * dereferenced within the critical section. |
| * |
| * This ensures that the pointer copy is invariant thorough the whole critical |
| * section. |
| * |
| * Inserts memory barriers on architectures that require them (currently only |
| * Alpha) and documents which pointers are protected by RCU. |
| * |
| * atomic_rcu_read also includes a compiler barrier to ensure that |
| * value-speculative optimizations (e.g. VSS: Value Speculation |
| * Scheduling) does not perform the data read before the pointer read |
| * by speculating the value of the pointer. |
| * |
| * Should match atomic_rcu_set(), atomic_xchg(), atomic_cmpxchg(). |
| */ |
| #define atomic_rcu_read(ptr) ({ \ |
| typeof(*ptr) _val = atomic_read(ptr); \ |
| smp_read_barrier_depends(); \ |
| _val; \ |
| }) |
| |
| /** |
| * atomic_rcu_set - assigns (publicizes) a pointer to a new data structure |
| * meant to be read by RCU read-side critical sections. |
| * |
| * Documents which pointers will be dereferenced by RCU read-side critical |
| * sections and adds the required memory barriers on architectures requiring |
| * them. It also makes sure the compiler does not reorder code initializing the |
| * data structure before its publication. |
| * |
| * Should match atomic_rcu_read(). |
| */ |
| #define atomic_rcu_set(ptr, i) do { \ |
| smp_wmb(); \ |
| atomic_set(ptr, i); \ |
| } while (0) |
| |
| /* These have the same semantics as Java volatile variables. |
| * See http://gee.cs.oswego.edu/dl/jmm/cookbook.html: |
| * "1. Issue a StoreStore barrier (wmb) before each volatile store." |
| * 2. Issue a StoreLoad barrier after each volatile store. |
| * Note that you could instead issue one before each volatile load, but |
| * this would be slower for typical programs using volatiles in which |
| * reads greatly outnumber writes. Alternatively, if available, you |
| * can implement volatile store as an atomic instruction (for example |
| * XCHG on x86) and omit the barrier. This may be more efficient if |
| * atomic instructions are cheaper than StoreLoad barriers. |
| * 3. Issue LoadLoad and LoadStore barriers after each volatile load." |
| * |
| * If you prefer to think in terms of "pairing" of memory barriers, |
| * an atomic_mb_read pairs with an atomic_mb_set. |
| * |
| * And for the few ia64 lovers that exist, an atomic_mb_read is a ld.acq, |
| * while an atomic_mb_set is a st.rel followed by a memory barrier. |
| * |
| * These are a bit weaker than __atomic_load/store with __ATOMIC_SEQ_CST |
| * (see docs/atomics.txt), and I'm not sure that __ATOMIC_ACQ_REL is enough. |
| * Just always use the barriers manually by the rules above. |
| */ |
| #define atomic_mb_read(ptr) ({ \ |
| typeof(*ptr) _val = atomic_read(ptr); \ |
| smp_rmb(); \ |
| _val; \ |
| }) |
| |
| #ifndef atomic_mb_set |
| #define atomic_mb_set(ptr, i) do { \ |
| smp_wmb(); \ |
| atomic_set(ptr, i); \ |
| smp_mb(); \ |
| } while (0) |
| #endif |
| |
| #ifndef atomic_xchg |
| #if defined(__clang__) |
| #define atomic_xchg(ptr, i) __sync_swap(ptr, i) |
| #else |
| /* __sync_lock_test_and_set() is documented to be an acquire barrier only. */ |
| #define atomic_xchg(ptr, i) (smp_mb(), __sync_lock_test_and_set(ptr, i)) |
| #endif |
| #endif |
| |
| /* Provide shorter names for GCC atomic builtins. */ |
| #define atomic_fetch_inc(ptr) __sync_fetch_and_add(ptr, 1) |
| #define atomic_fetch_dec(ptr) __sync_fetch_and_add(ptr, -1) |
| #define atomic_fetch_add __sync_fetch_and_add |
| #define atomic_fetch_sub __sync_fetch_and_sub |
| #define atomic_fetch_and __sync_fetch_and_and |
| #define atomic_fetch_or __sync_fetch_and_or |
| #define atomic_cmpxchg __sync_val_compare_and_swap |
| |
| /* And even shorter names that return void. */ |
| #define atomic_inc(ptr) ((void) __sync_fetch_and_add(ptr, 1)) |
| #define atomic_dec(ptr) ((void) __sync_fetch_and_add(ptr, -1)) |
| #define atomic_add(ptr, n) ((void) __sync_fetch_and_add(ptr, n)) |
| #define atomic_sub(ptr, n) ((void) __sync_fetch_and_sub(ptr, n)) |
| #define atomic_and(ptr, n) ((void) __sync_fetch_and_and(ptr, n)) |
| #define atomic_or(ptr, n) ((void) __sync_fetch_and_or(ptr, n)) |
| |
| #endif /* __ATOMIC_RELAXED */ |
| #endif /* QEMU_ATOMIC_H */ |