blob: a79a69fb76c8dab7c18314efb5cd9e5090c56087 [file] [log] [blame]
/*
* ARM Android emulator 'ranchu' board.
*
* Copyright (c) 2014 Linaro Limited
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*
* Emulate a virtual board for use as part of the Android emulator.
* We create a device tree to pass to the kernel.
* The board has a mixture of virtio devices and some Android-specific
* devices inherited from the 32 bit 'goldfish' board.
*
* We only support 64-bit ARM CPUs.
*/
#include "hw/sysbus.h"
#include "hw/arm/arm.h"
#include "hw/arm/primecell.h"
#include "hw/devices.h"
#include "net/net.h"
#include "sysemu/device_tree.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "hw/boards.h"
#include "exec/address-spaces.h"
#include "qemu/bitops.h"
#include "qemu/error-report.h"
#include "qemu/config-file.h"
#include "sysemu/char.h"
#include "monitor/monitor.h"
#include "hw/misc/android_pipe.h"
/* Maximum number of emulators that can run at once (affects how
* far through the TCP port space from 5554 we will scan to find
* a pair of ports we can listen on)
*/
#define MAX_ANDROID_EMULATORS 64
#define ANDROID_CONSOLE_BASEPORT 5554
#define NUM_VIRTIO_TRANSPORTS 32
/* Number of external interrupt lines to configure the GIC with */
#define NUM_IRQS 128
#define GIC_FDT_IRQ_TYPE_SPI 0
#define GIC_FDT_IRQ_TYPE_PPI 1
#define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
#define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
#define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
#define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
#define GIC_FDT_IRQ_PPI_CPU_START 8
#define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
enum {
RANCHU_FLASH,
RANCHU_MEM,
RANCHU_CPUPERIPHS,
RANCHU_GIC_DIST,
RANCHU_GIC_CPU,
RANCHU_UART,
RANCHU_GF_FB,
RANCHU_GF_BATTERY,
RANCHU_GF_AUDIO,
RANCHU_GF_EVDEV,
RANCHU_ANDROID_PIPE,
RANCHU_MMIO,
};
typedef struct MemMapEntry {
hwaddr base;
hwaddr size;
} MemMapEntry;
typedef struct VirtBoardInfo {
struct arm_boot_info bootinfo;
const char *cpu_model;
const MemMapEntry *memmap;
const int *irqmap;
int smp_cpus;
void *fdt;
int fdt_size;
uint32_t clock_phandle;
} VirtBoardInfo;
/* Addresses and sizes of our components.
* 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
* 128MB..256MB is used for miscellaneous device I/O.
* 256MB..1GB is reserved for possible future PCI support (ie where the
* PCI memory window will go if we add a PCI host controller).
* 1GB and up is RAM (which may happily spill over into the
* high memory region beyond 4GB).
* This represents a compromise between how much RAM can be given to
* a 32 bit VM and leaving space for expansion and in particular for PCI.
* Note that generally devices should be placed at multiples of 0x10000
* to allow for the possibility of the guest using 64K pages.
*/
static const MemMapEntry memmap[] = {
/* Space up to 0x8000000 is reserved for a boot ROM */
[RANCHU_FLASH] = { 0, 0x8000000 },
[RANCHU_CPUPERIPHS] = { 0x8000000, 0x20000 },
/* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
[RANCHU_GIC_DIST] = { 0x8000000, 0x10000 },
[RANCHU_GIC_CPU] = { 0x8010000, 0x10000 },
[RANCHU_UART] = { 0x9000000, 0x1000 },
[RANCHU_GF_FB] = { 0x9010000, 0x100 },
[RANCHU_GF_BATTERY] = { 0x9020000, 0x1000 },
[RANCHU_GF_AUDIO] = { 0x9030000, 0x100 },
[RANCHU_GF_EVDEV] = { 0x9040000, 0x1000 },
[RANCHU_MMIO] = { 0xa000000, 0x200 },
[RANCHU_ANDROID_PIPE] = {0xa010000, 0x2000 },
/* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
/* 0x10000000 .. 0x40000000 reserved for PCI */
[RANCHU_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
};
static const int irqmap[] = {
[RANCHU_UART] = 1,
[RANCHU_GF_FB] = 2,
[RANCHU_GF_BATTERY] = 3,
[RANCHU_GF_AUDIO] = 4,
[RANCHU_GF_EVDEV] = 5,
[RANCHU_ANDROID_PIPE] = 6,
[RANCHU_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
};
static void create_fdt(VirtBoardInfo *vbi)
{
void *fdt = create_device_tree(&vbi->fdt_size);
if (!fdt) {
error_report("create_device_tree() failed");
exit(1);
}
vbi->fdt = fdt;
/* Header */
qemu_fdt_setprop_string(fdt, "/", "compatible", "ranchu");
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
/*
* /chosen and /memory nodes must exist for load_dtb
* to fill in necessary properties later
*/
qemu_fdt_add_subnode(fdt, "/chosen");
qemu_fdt_add_subnode(fdt, "/memory");
qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
/* Clock node, for the benefit of the UART. The kernel device tree
* binding documentation claims the PL011 node clock properties are
* optional but in practice if you omit them the kernel refuses to
* probe for the device.
*/
vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
qemu_fdt_add_subnode(fdt, "/apb-pclk");
qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
"clk24mhz");
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
/* No PSCI for TCG yet */
if (kvm_enabled()) {
qemu_fdt_add_subnode(fdt, "/psci");
qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend",
PSCI_FN_CPU_SUSPEND);
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", PSCI_FN_CPU_OFF);
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", PSCI_FN_CPU_ON);
qemu_fdt_setprop_cell(fdt, "/psci", "migrate", PSCI_FN_MIGRATE);
}
}
static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
{
/* Note that on A15 h/w these interrupts are level-triggered,
* but for the GIC implementation provided by both QEMU and KVM
* they are edge-triggered.
*/
uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
qemu_fdt_add_subnode(vbi->fdt, "/timer");
qemu_fdt_setprop_string(vbi->fdt, "/timer",
"compatible", "arm,armv7-timer");
qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
GIC_FDT_IRQ_TYPE_PPI, 13, irqflags,
GIC_FDT_IRQ_TYPE_PPI, 14, irqflags,
GIC_FDT_IRQ_TYPE_PPI, 11, irqflags,
GIC_FDT_IRQ_TYPE_PPI, 10, irqflags);
}
static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
{
int cpu;
qemu_fdt_add_subnode(vbi->fdt, "/cpus");
qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
qemu_fdt_add_subnode(vbi->fdt, nodename);
qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
armcpu->dtb_compatible);
if (vbi->smp_cpus > 1) {
qemu_fdt_setprop_string(vbi->fdt, nodename,
"enable-method", "psci");
}
qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu);
g_free(nodename);
}
}
static void fdt_add_gic_node(const VirtBoardInfo *vbi)
{
uint32_t gic_phandle;
gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle);
qemu_fdt_add_subnode(vbi->fdt, "/intc");
/* 'cortex-a15-gic' means 'GIC v2' */
qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
"arm,cortex-a15-gic");
qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
2, memmap[RANCHU_GIC_DIST].base,
2, memmap[RANCHU_GIC_DIST].size,
2, memmap[RANCHU_GIC_CPU].base,
2, memmap[RANCHU_GIC_CPU].size);
qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle);
}
static void create_gic(const VirtBoardInfo *vbi, qemu_irq *pic)
{
/* We create a standalone GIC v2 */
DeviceState *gicdev;
SysBusDevice *gicbusdev;
const char *gictype = "arm_gic";
int i;
if (kvm_irqchip_in_kernel()) {
gictype = "kvm-arm-gic";
}
gicdev = qdev_create(NULL, gictype);
qdev_prop_set_uint32(gicdev, "revision", 2);
qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
/* Note that the num-irq property counts both internal and external
* interrupts; there are always 32 of the former (mandated by GIC spec).
*/
qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
qdev_init_nofail(gicdev);
gicbusdev = SYS_BUS_DEVICE(gicdev);
sysbus_mmio_map(gicbusdev, 0, memmap[RANCHU_GIC_DIST].base);
sysbus_mmio_map(gicbusdev, 1, memmap[RANCHU_GIC_CPU].base);
/* Wire the outputs from each CPU's generic timer to the
* appropriate GIC PPI inputs, and the GIC's IRQ output to
* the CPU's IRQ input.
*/
for (i = 0; i < smp_cpus; i++) {
DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
int ppibase = NUM_IRQS + i * 32;
/* physical timer; we wire it up to the non-secure timer's ID,
* since a real A15 always has TrustZone but QEMU doesn't.
*/
qdev_connect_gpio_out(cpudev, 0,
qdev_get_gpio_in(gicdev, ppibase + 30));
/* virtual timer */
qdev_connect_gpio_out(cpudev, 1,
qdev_get_gpio_in(gicdev, ppibase + 27));
sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
}
for (i = 0; i < NUM_IRQS; i++) {
pic[i] = qdev_get_gpio_in(gicdev, i);
}
fdt_add_gic_node(vbi);
}
/**
* create_simple_device:
* @vbi: VirtBoardInfo struct
* @pic: interrupt array
* @devid: the RANCHU_* index for this device
* @sysbus_name: QEMU's name for the device
* @compat: one or more NUL-separated DTB compat strings
* @num_compat_strings: number of NUL-separated strings in @compat
* @clocks: zero or more NUL-separated clock names
* @num_clocks: number of NUL-separated clock names in @clocks
*
* Create a simple device with one interrupt and an uncomplicated
* device tree node (one reg tuple, one interrupt, optional clocks).
*/
static void create_simple_device(const VirtBoardInfo *vbi, qemu_irq *pic,
int devid, const char *sysbus_name,
const char *compat, int num_compat_strings,
const char *clocks, int num_clocks)
{
int irq = irqmap[devid];
hwaddr base = memmap[devid].base;
hwaddr size = memmap[devid].size;
char *nodename;
int i;
int compat_sz = 0;
int clocks_sz = 0;
for (i = 0; i < num_compat_strings; i++) {
compat_sz += strlen(compat + compat_sz) + 1;
}
for (i = 0; i < num_clocks; i++) {
clocks_sz += strlen(clocks + clocks_sz) + 1;
}
sysbus_create_simple(sysbus_name, base, pic[irq]);
nodename = g_strdup_printf("/%s@%" PRIx64, sysbus_name, base);
qemu_fdt_add_subnode(vbi->fdt, nodename);
qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, compat_sz);
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 2, base, 2, size);
if (irq) {
qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, irq,
GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
}
if (num_clocks) {
qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
vbi->clock_phandle, vbi->clock_phandle);
qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
clocks, clocks_sz);
}
g_free(nodename);
}
static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
{
int i;
hwaddr size = memmap[RANCHU_MMIO].size;
/* Note that we have to create the transports in forwards order
* so that command line devices are inserted lowest address first,
* and then add dtb nodes in reverse order so that they appear in
* the finished device tree lowest address first.
*/
for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
int irq = irqmap[RANCHU_MMIO] + i;
hwaddr base = memmap[RANCHU_MMIO].base + i * size;
sysbus_create_simple("virtio-mmio", base, pic[irq]);
}
for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
char *nodename;
int irq = irqmap[RANCHU_MMIO] + i;
hwaddr base = memmap[RANCHU_MMIO].base + i * size;
nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
qemu_fdt_add_subnode(vbi->fdt, nodename);
qemu_fdt_setprop_string(vbi->fdt, nodename,
"compatible", "virtio,mmio");
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
2, base, 2, size);
qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, irq,
GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
g_free(nodename);
}
}
static void *ranchu_dtb(const struct arm_boot_info *binfo, int *fdt_size)
{
const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
*fdt_size = board->fdt_size;
return board->fdt;
}
static CharDriverState *try_to_create_console_chardev(int portno)
{
/* Try to create the chardev for the Android console on the specified port.
* This is equivalent to the command line options
* -chardev socket,id=monitor,host=127.0.0.1,port=NNN,server,nowait,telnet
* -mon chardev=monitor,mode=android-console
* Return true on success, false on failure (presumably port-in-use).
*/
Error *err = NULL;
CharDriverState *chr;
QemuOpts *opts;
const char *chardev_opts =
"socket,id=private-chardev-for-android-monitor,"
"host=127.0.0.1,server,nowait,telnet";
opts = qemu_opts_parse(qemu_find_opts("chardev"), chardev_opts, 1);
assert(opts);
qemu_opt_set_number(opts, "port", portno);
chr = qemu_chr_new_from_opts(opts, NULL, &err);
if (err) {
/* Assume this was port-in-use */
qemu_opts_del(opts);
error_free(err);
return NULL;
}
qemu_chr_fe_claim_no_fail(chr);
return chr;
}
static void initialize_console_and_adb(void)
{
/* Initialize the console and ADB, which must listen on two
* consecutive TCP ports starting from 5555 and working up until
* we manage to open both connections.
*/
int baseport = ANDROID_CONSOLE_BASEPORT;
int tries = MAX_ANDROID_EMULATORS;
CharDriverState *chr;
for (; tries > 0; tries--, baseport += 2) {
chr = try_to_create_console_chardev(baseport);
if (!chr) {
continue;
}
if (!adb_server_init(baseport + 1)) {
qemu_chr_delete(chr);
chr = NULL;
continue;
}
/* Confirmed we have both ports, now we can create the console itself.
* This is equivalent to
* "-mon chardev=private-chardev,mode=android-console"
*/
monitor_init(chr, MONITOR_ANDROID_CONSOLE | MONITOR_USE_READLINE);
printf("console on port %d, ADB on port %d\n", baseport, baseport + 1);
return;
}
error_report("it seems too many emulator instances are running "
"on this machine. Aborting\n");
exit(1);
}
static void ranchu_init(QEMUMachineInitArgs *args)
{
qemu_irq pic[NUM_IRQS];
MemoryRegion *sysmem = get_system_memory();
int n;
MemoryRegion *ram = g_new(MemoryRegion, 1);
const char *cpu_model = args->cpu_model;
VirtBoardInfo *vbi;
if (!cpu_model) {
cpu_model = "cortex-a57";
}
vbi = g_new0(VirtBoardInfo, 1);
vbi->smp_cpus = smp_cpus;
if (args->ram_size > memmap[RANCHU_MEM].size) {
error_report("ranchu: cannot model more than 30GB RAM");
exit(1);
}
create_fdt(vbi);
fdt_add_timer_nodes(vbi);
for (n = 0; n < smp_cpus; n++) {
ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
Object *cpuobj;
if (!oc) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
cpuobj = object_new(object_class_get_name(oc));
/* Secondary CPUs start in PSCI powered-down state */
if (n > 0) {
object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
}
if (object_property_find(cpuobj, "reset-cbar", NULL)) {
object_property_set_int(cpuobj, memmap[RANCHU_CPUPERIPHS].base,
"reset-cbar", &error_abort);
}
object_property_set_bool(cpuobj, true, "realized", NULL);
}
fdt_add_cpu_nodes(vbi);
memory_region_init_ram(ram, NULL, "ranchu.ram", args->ram_size);
vmstate_register_ram_global(ram);
memory_region_add_subregion(sysmem, memmap[RANCHU_MEM].base, ram);
create_gic(vbi, pic);
create_simple_device(vbi, pic, RANCHU_UART, "pl011",
"arm,pl011\0arm,primecell", 2, "uartclk\0apb_pclk", 2);
create_simple_device(vbi, pic, RANCHU_GF_FB, "goldfish_fb",
"generic,goldfish-fb", 1, 0, 0);
create_simple_device(vbi, pic, RANCHU_GF_BATTERY, "goldfish_battery",
"generic,goldfish-battery", 1, 0, 0);
#if 0
/* Audio is not enabled for now as it is untested and reportedly
* the lionhead goldfish device is buggy.
*/
create_simple_device(vbi, pic, RANCHU_GF_AUDIO, "goldfish_audio",
"generic,goldfish-audio", 1, 0, 0);
#endif
create_simple_device(vbi, pic, RANCHU_GF_EVDEV, "goldfish-events",
"generic,goldfish-events-keypad", 1, 0, 0);
create_simple_device(vbi, pic, RANCHU_ANDROID_PIPE, "android_pipe",
"generic,android-pipe", 1, 0, 0);
/* Create mmio transports, so the user can create virtio backends
* (which will be automatically plugged in to the transports). If
* no backend is created the transport will just sit harmlessly idle.
*/
create_virtio_devices(vbi, pic);
/* Initialize the Android console and adb connection
* (must be done after the pipe has been realized).
*/
initialize_console_and_adb();
vbi->bootinfo.ram_size = args->ram_size;
vbi->bootinfo.kernel_filename = args->kernel_filename;
vbi->bootinfo.kernel_cmdline = args->kernel_cmdline;
vbi->bootinfo.initrd_filename = args->initrd_filename;
vbi->bootinfo.nb_cpus = smp_cpus;
vbi->bootinfo.board_id = -1;
vbi->bootinfo.loader_start = memmap[RANCHU_MEM].base;
vbi->bootinfo.get_dtb = ranchu_dtb;
arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
}
static QEMUMachine ranchu_machine = {
.name = "ranchu",
.desc = "Ranchu Virtual Machine for Android Emulator",
.init = ranchu_init,
.max_cpus = 1,
};
static void ranchu_machine_init(void)
{
qemu_register_machine(&ranchu_machine);
}
machine_init(ranchu_machine_init);