blob: b30dacbb9a2e77f62cea4fc567d769953063b845 [file] [log] [blame]
/*
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)tcp_input.c 8.5 (Berkeley) 4/10/94
* tcp_input.c,v 1.10 1994/10/13 18:36:32 wollman Exp
*/
/*
* Changes and additions relating to SLiRP
* Copyright (c) 1995 Danny Gasparovski.
*
* Please read the file COPYRIGHT for the
* terms and conditions of the copyright.
*/
#include <slirp.h>
#include "ip_icmp.h"
#define TCPREXMTTHRESH 3
#define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
/* for modulo comparisons of timestamps */
#define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
#define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
/*
* Insert segment ti into reassembly queue of tcp with
* control block tp. Return TH_FIN if reassembly now includes
* a segment with FIN. The macro form does the common case inline
* (segment is the next to be received on an established connection,
* and the queue is empty), avoiding linkage into and removal
* from the queue and repetition of various conversions.
* Set DELACK for segments received in order, but ack immediately
* when segments are out of order (so fast retransmit can work).
*/
#ifdef TCP_ACK_HACK
#define TCP_REASS(tp, ti, m, so, flags) {\
if ((ti)->ti_seq == (tp)->rcv_nxt && \
tcpfrag_list_empty(tp) && \
(tp)->t_state == TCPS_ESTABLISHED) {\
if (ti->ti_flags & TH_PUSH) \
tp->t_flags |= TF_ACKNOW; \
else \
tp->t_flags |= TF_DELACK; \
(tp)->rcv_nxt += (ti)->ti_len; \
flags = (ti)->ti_flags & TH_FIN; \
if (so->so_emu) { \
if (tcp_emu((so),(m))) sbappend((so), (m)); \
} else \
sbappend((so), (m)); \
} else {\
(flags) = tcp_reass((tp), (ti), (m)); \
tp->t_flags |= TF_ACKNOW; \
} \
}
#else
#define TCP_REASS(tp, ti, m, so, flags) { \
if ((ti)->ti_seq == (tp)->rcv_nxt && \
tcpfrag_list_empty(tp) && \
(tp)->t_state == TCPS_ESTABLISHED) { \
tp->t_flags |= TF_DELACK; \
(tp)->rcv_nxt += (ti)->ti_len; \
flags = (ti)->ti_flags & TH_FIN; \
if (so->so_emu) { \
if (tcp_emu((so),(m))) sbappend(so, (m)); \
} else \
sbappend((so), (m)); \
} else { \
(flags) = tcp_reass((tp), (ti), (m)); \
tp->t_flags |= TF_ACKNOW; \
} \
}
#endif
static void tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt,
struct tcpiphdr *ti);
static void tcp_xmit_timer(register struct tcpcb *tp, int rtt);
static int
tcp_reass(register struct tcpcb *tp, register struct tcpiphdr *ti,
struct mbuf *m)
{
register struct tcpiphdr *q;
struct socket *so = tp->t_socket;
int flags;
/*
* Call with ti==NULL after become established to
* force pre-ESTABLISHED data up to user socket.
*/
if (ti == NULL)
goto present;
/*
* Find a segment which begins after this one does.
*/
for (q = tcpfrag_list_first(tp); !tcpfrag_list_end(q, tp);
q = tcpiphdr_next(q))
if (SEQ_GT(q->ti_seq, ti->ti_seq))
break;
/*
* If there is a preceding segment, it may provide some of
* our data already. If so, drop the data from the incoming
* segment. If it provides all of our data, drop us.
*/
if (!tcpfrag_list_end(tcpiphdr_prev(q), tp)) {
register int i;
q = tcpiphdr_prev(q);
/* conversion to int (in i) handles seq wraparound */
i = q->ti_seq + q->ti_len - ti->ti_seq;
if (i > 0) {
if (i >= ti->ti_len) {
m_free(m);
/*
* Try to present any queued data
* at the left window edge to the user.
* This is needed after the 3-WHS
* completes.
*/
goto present; /* ??? */
}
m_adj(m, i);
ti->ti_len -= i;
ti->ti_seq += i;
}
q = tcpiphdr_next(q);
}
ti->ti_mbuf = m;
/*
* While we overlap succeeding segments trim them or,
* if they are completely covered, dequeue them.
*/
while (!tcpfrag_list_end(q, tp)) {
register int i = (ti->ti_seq + ti->ti_len) - q->ti_seq;
if (i <= 0)
break;
if (i < q->ti_len) {
q->ti_seq += i;
q->ti_len -= i;
m_adj(q->ti_mbuf, i);
break;
}
q = tcpiphdr_next(q);
m = tcpiphdr_prev(q)->ti_mbuf;
remque(tcpiphdr2qlink(tcpiphdr_prev(q)));
m_free(m);
}
/*
* Stick new segment in its place.
*/
insque(tcpiphdr2qlink(ti), tcpiphdr2qlink(tcpiphdr_prev(q)));
present:
/*
* Present data to user, advancing rcv_nxt through
* completed sequence space.
*/
if (!TCPS_HAVEESTABLISHED(tp->t_state))
return (0);
ti = tcpfrag_list_first(tp);
if (tcpfrag_list_end(ti, tp) || ti->ti_seq != tp->rcv_nxt)
return (0);
if (tp->t_state == TCPS_SYN_RECEIVED && ti->ti_len)
return (0);
do {
tp->rcv_nxt += ti->ti_len;
flags = ti->ti_flags & TH_FIN;
remque(tcpiphdr2qlink(ti));
m = ti->ti_mbuf;
ti = tcpiphdr_next(ti);
if (so->so_state & SS_FCANTSENDMORE)
m_free(m);
else {
if (so->so_emu) {
if (tcp_emu(so,m)) sbappend(so, m);
} else
sbappend(so, m);
}
} while (ti != (struct tcpiphdr *)tp && ti->ti_seq == tp->rcv_nxt);
return (flags);
}
/*
* TCP input routine, follows pages 65-76 of the
* protocol specification dated September, 1981 very closely.
*/
void
tcp_input(struct mbuf *m, int iphlen, struct socket *inso)
{
struct ip save_ip, *ip;
register struct tcpiphdr *ti;
caddr_t optp = NULL;
int optlen = 0;
int len, tlen, off;
register struct tcpcb *tp = NULL;
register int tiflags;
struct socket *so = NULL;
int todrop, acked, ourfinisacked, needoutput = 0;
int iss = 0;
u_long tiwin;
int ret;
struct ex_list *ex_ptr;
Slirp *slirp;
DEBUG_CALL("tcp_input");
DEBUG_ARGS((dfd, " m = %8lx iphlen = %2d inso = %lx\n",
(long )m, iphlen, (long )inso ));
/*
* If called with m == 0, then we're continuing the connect
*/
if (m == NULL) {
so = inso;
slirp = so->slirp;
/* Re-set a few variables */
tp = sototcpcb(so);
m = so->so_m;
so->so_m = NULL;
ti = so->so_ti;
tiwin = ti->ti_win;
tiflags = ti->ti_flags;
goto cont_conn;
}
slirp = m->slirp;
/*
* Get IP and TCP header together in first mbuf.
* Note: IP leaves IP header in first mbuf.
*/
ti = mtod(m, struct tcpiphdr *);
if (iphlen > sizeof(struct ip )) {
ip_stripoptions(m, (struct mbuf *)0);
iphlen=sizeof(struct ip );
}
/* XXX Check if too short */
/*
* Save a copy of the IP header in case we want restore it
* for sending an ICMP error message in response.
*/
ip=mtod(m, struct ip *);
save_ip = *ip;
save_ip.ip_len+= iphlen;
/*
* Checksum extended TCP header and data.
*/
tlen = ((struct ip *)ti)->ip_len;
tcpiphdr2qlink(ti)->next = tcpiphdr2qlink(ti)->prev = NULL;
memset(&ti->ti_i.ih_mbuf, 0 , sizeof(struct mbuf_ptr));
ti->ti_x1 = 0;
ti->ti_len = htons((uint16_t)tlen);
len = sizeof(struct ip ) + tlen;
if(cksum(m, len)) {
goto drop;
}
/*
* Check that TCP offset makes sense,
* pull out TCP options and adjust length. XXX
*/
off = ti->ti_off << 2;
if (off < sizeof (struct tcphdr) || off > tlen) {
goto drop;
}
tlen -= off;
ti->ti_len = tlen;
if (off > sizeof (struct tcphdr)) {
optlen = off - sizeof (struct tcphdr);
optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
}
tiflags = ti->ti_flags;
/*
* Convert TCP protocol specific fields to host format.
*/
NTOHL(ti->ti_seq);
NTOHL(ti->ti_ack);
NTOHS(ti->ti_win);
NTOHS(ti->ti_urp);
/*
* Drop TCP, IP headers and TCP options.
*/
m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
/*
* Locate pcb for segment.
*/
findso:
so = slirp->tcp_last_so;
if (so->so_fport != ti->ti_dport ||
so->so_lport != ti->ti_sport ||
so->so_laddr.s_addr != ti->ti_src.s_addr ||
so->so_faddr.s_addr != ti->ti_dst.s_addr) {
so = solookup(&slirp->tcb, ti->ti_src, ti->ti_sport,
ti->ti_dst, ti->ti_dport);
if (so)
slirp->tcp_last_so = so;
}
/*
* If the state is CLOSED (i.e., TCB does not exist) then
* all data in the incoming segment is discarded.
* If the TCB exists but is in CLOSED state, it is embryonic,
* but should either do a listen or a connect soon.
*
* state == CLOSED means we've done socreate() but haven't
* attached it to a protocol yet...
*
* XXX If a TCB does not exist, and the TH_SYN flag is
* the only flag set, then create a session, mark it
* as if it was LISTENING, and continue...
*/
if (so == NULL) {
if (slirp->restricted) {
/* Any hostfwds will have an existing socket, so we only get here
* for non-hostfwd connections. These should be dropped, unless it
* happens to be a guestfwd.
*/
for (ex_ptr = slirp->exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) {
if (ex_ptr->ex_fport == ti->ti_dport &&
ti->ti_dst.s_addr == ex_ptr->ex_addr.s_addr) {
break;
}
}
if (!ex_ptr) {
goto dropwithreset;
}
}
if ((tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) != TH_SYN)
goto dropwithreset;
if ((so = socreate(slirp)) == NULL)
goto dropwithreset;
if (tcp_attach(so) < 0) {
free(so); /* Not sofree (if it failed, it's not insqued) */
goto dropwithreset;
}
sbreserve(&so->so_snd, TCP_SNDSPACE);
sbreserve(&so->so_rcv, TCP_RCVSPACE);
so->so_laddr = ti->ti_src;
so->so_lport = ti->ti_sport;
so->so_faddr = ti->ti_dst;
so->so_fport = ti->ti_dport;
if ((so->so_iptos = tcp_tos(so)) == 0)
so->so_iptos = ((struct ip *)ti)->ip_tos;
tp = sototcpcb(so);
tp->t_state = TCPS_LISTEN;
}
/*
* If this is a still-connecting socket, this probably
* a retransmit of the SYN. Whether it's a retransmit SYN
* or something else, we nuke it.
*/
if (so->so_state & SS_ISFCONNECTING)
goto drop;
tp = sototcpcb(so);
/* XXX Should never fail */
if (tp == NULL)
goto dropwithreset;
if (tp->t_state == TCPS_CLOSED)
goto drop;
tiwin = ti->ti_win;
/*
* Segment received on connection.
* Reset idle time and keep-alive timer.
*/
tp->t_idle = 0;
if (SO_OPTIONS)
tp->t_timer[TCPT_KEEP] = TCPTV_KEEPINTVL;
else
tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_IDLE;
/*
* Process options if not in LISTEN state,
* else do it below (after getting remote address).
*/
if (optp && tp->t_state != TCPS_LISTEN)
tcp_dooptions(tp, (u_char *)optp, optlen, ti);
/*
* Header prediction: check for the two common cases
* of a uni-directional data xfer. If the packet has
* no control flags, is in-sequence, the window didn't
* change and we're not retransmitting, it's a
* candidate. If the length is zero and the ack moved
* forward, we're the sender side of the xfer. Just
* free the data acked & wake any higher level process
* that was blocked waiting for space. If the length
* is non-zero and the ack didn't move, we're the
* receiver side. If we're getting packets in-order
* (the reassembly queue is empty), add the data to
* the socket buffer and note that we need a delayed ack.
*
* XXX Some of these tests are not needed
* eg: the tiwin == tp->snd_wnd prevents many more
* predictions.. with no *real* advantage..
*/
if (tp->t_state == TCPS_ESTABLISHED &&
(tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
ti->ti_seq == tp->rcv_nxt &&
tiwin && tiwin == tp->snd_wnd &&
tp->snd_nxt == tp->snd_max) {
if (ti->ti_len == 0) {
if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
tp->snd_cwnd >= tp->snd_wnd) {
/*
* this is a pure ack for outstanding data.
*/
if (tp->t_rtt &&
SEQ_GT(ti->ti_ack, tp->t_rtseq))
tcp_xmit_timer(tp, tp->t_rtt);
acked = ti->ti_ack - tp->snd_una;
sbdrop(&so->so_snd, acked);
tp->snd_una = ti->ti_ack;
m_free(m);
/*
* If all outstanding data are acked, stop
* retransmit timer, otherwise restart timer
* using current (possibly backed-off) value.
* If process is waiting for space,
* wakeup/selwakeup/signal. If data
* are ready to send, let tcp_output
* decide between more output or persist.
*/
if (tp->snd_una == tp->snd_max)
tp->t_timer[TCPT_REXMT] = 0;
else if (tp->t_timer[TCPT_PERSIST] == 0)
tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
/*
* This is called because sowwakeup might have
* put data into so_snd. Since we don't so sowwakeup,
* we don't need this.. XXX???
*/
if (so->so_snd.sb_cc)
(void) tcp_output(tp);
return;
}
} else if (ti->ti_ack == tp->snd_una &&
tcpfrag_list_empty(tp) &&
ti->ti_len <= sbspace(&so->so_rcv)) {
/*
* this is a pure, in-sequence data packet
* with nothing on the reassembly queue and
* we have enough buffer space to take it.
*/
tp->rcv_nxt += ti->ti_len;
/*
* Add data to socket buffer.
*/
if (so->so_emu) {
if (tcp_emu(so,m)) sbappend(so, m);
} else
sbappend(so, m);
/*
* If this is a short packet, then ACK now - with Nagel
* congestion avoidance sender won't send more until
* he gets an ACK.
*
* It is better to not delay acks at all to maximize
* TCP throughput. See RFC 2581.
*/
tp->t_flags |= TF_ACKNOW;
tcp_output(tp);
return;
}
} /* header prediction */
/*
* Calculate amount of space in receive window,
* and then do TCP input processing.
* Receive window is amount of space in rcv queue,
* but not less than advertised window.
*/
{ int win;
win = sbspace(&so->so_rcv);
if (win < 0)
win = 0;
tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt));
}
switch (tp->t_state) {
/*
* If the state is LISTEN then ignore segment if it contains an RST.
* If the segment contains an ACK then it is bad and send a RST.
* If it does not contain a SYN then it is not interesting; drop it.
* Don't bother responding if the destination was a broadcast.
* Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
* tp->iss, and send a segment:
* <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
* Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
* Fill in remote peer address fields if not previously specified.
* Enter SYN_RECEIVED state, and process any other fields of this
* segment in this state.
*/
case TCPS_LISTEN: {
if (tiflags & TH_RST)
goto drop;
if (tiflags & TH_ACK)
goto dropwithreset;
if ((tiflags & TH_SYN) == 0)
goto drop;
/*
* This has way too many gotos...
* But a bit of spaghetti code never hurt anybody :)
*/
/*
* If this is destined for the control address, then flag to
* tcp_ctl once connected, otherwise connect
*/
if ((so->so_faddr.s_addr & slirp->vnetwork_mask.s_addr) ==
slirp->vnetwork_addr.s_addr) {
if (so->so_faddr.s_addr != slirp->vhost_addr.s_addr &&
so->so_faddr.s_addr != slirp->vnameserver_addr.s_addr) {
/* May be an add exec */
for (ex_ptr = slirp->exec_list; ex_ptr;
ex_ptr = ex_ptr->ex_next) {
if(ex_ptr->ex_fport == so->so_fport &&
so->so_faddr.s_addr == ex_ptr->ex_addr.s_addr) {
so->so_state |= SS_CTL;
break;
}
}
if (so->so_state & SS_CTL) {
goto cont_input;
}
}
/* CTL_ALIAS: Do nothing, tcp_fconnect will be called on it */
}
if (so->so_emu & EMU_NOCONNECT) {
so->so_emu &= ~EMU_NOCONNECT;
goto cont_input;
}
if ((tcp_fconnect(so) == -1) &&
#if defined(_WIN32)
socket_error() != WSAEINPROGRESS && socket_error() != WSAEWOULDBLOCK
#else
(errno != EINPROGRESS) && (errno != EWOULDBLOCK)
#endif
) {
u_char code=ICMP_UNREACH_NET;
DEBUG_MISC((dfd, " tcp fconnect errno = %d-%s\n",
errno,strerror(errno)));
if(errno == ECONNREFUSED) {
/* ACK the SYN, send RST to refuse the connection */
tcp_respond(tp, ti, m, ti->ti_seq+1, (tcp_seq)0,
TH_RST|TH_ACK);
} else {
if(errno == EHOSTUNREACH) code=ICMP_UNREACH_HOST;
HTONL(ti->ti_seq); /* restore tcp header */
HTONL(ti->ti_ack);
HTONS(ti->ti_win);
HTONS(ti->ti_urp);
m->m_data -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
m->m_len += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
*ip=save_ip;
icmp_error(m, ICMP_UNREACH,code, 0,strerror(errno));
}
tcp_close(tp);
m_free(m);
} else {
/*
* Haven't connected yet, save the current mbuf
* and ti, and return
* XXX Some OS's don't tell us whether the connect()
* succeeded or not. So we must time it out.
*/
so->so_m = m;
so->so_ti = ti;
tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
tp->t_state = TCPS_SYN_RECEIVED;
tcp_template(tp);
}
return;
cont_conn:
/* m==NULL
* Check if the connect succeeded
*/
if (so->so_state & SS_NOFDREF) {
tp = tcp_close(tp);
goto dropwithreset;
}
cont_input:
tcp_template(tp);
if (optp)
tcp_dooptions(tp, (u_char *)optp, optlen, ti);
if (iss)
tp->iss = iss;
else
tp->iss = slirp->tcp_iss;
slirp->tcp_iss += TCP_ISSINCR/2;
tp->irs = ti->ti_seq;
tcp_sendseqinit(tp);
tcp_rcvseqinit(tp);
tp->t_flags |= TF_ACKNOW;
tp->t_state = TCPS_SYN_RECEIVED;
tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
goto trimthenstep6;
} /* case TCPS_LISTEN */
/*
* If the state is SYN_SENT:
* if seg contains an ACK, but not for our SYN, drop the input.
* if seg contains a RST, then drop the connection.
* if seg does not contain SYN, then drop it.
* Otherwise this is an acceptable SYN segment
* initialize tp->rcv_nxt and tp->irs
* if seg contains ack then advance tp->snd_una
* if SYN has been acked change to ESTABLISHED else SYN_RCVD state
* arrange for segment to be acked (eventually)
* continue processing rest of data/controls, beginning with URG
*/
case TCPS_SYN_SENT:
if ((tiflags & TH_ACK) &&
(SEQ_LEQ(ti->ti_ack, tp->iss) ||
SEQ_GT(ti->ti_ack, tp->snd_max)))
goto dropwithreset;
if (tiflags & TH_RST) {
if (tiflags & TH_ACK) {
tcp_drop(tp, 0); /* XXX Check t_softerror! */
}
goto drop;
}
if ((tiflags & TH_SYN) == 0)
goto drop;
if (tiflags & TH_ACK) {
tp->snd_una = ti->ti_ack;
if (SEQ_LT(tp->snd_nxt, tp->snd_una))
tp->snd_nxt = tp->snd_una;
}
tp->t_timer[TCPT_REXMT] = 0;
tp->irs = ti->ti_seq;
tcp_rcvseqinit(tp);
tp->t_flags |= TF_ACKNOW;
if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
soisfconnected(so);
tp->t_state = TCPS_ESTABLISHED;
(void) tcp_reass(tp, (struct tcpiphdr *)0,
(struct mbuf *)0);
/*
* if we didn't have to retransmit the SYN,
* use its rtt as our initial srtt & rtt var.
*/
if (tp->t_rtt)
tcp_xmit_timer(tp, tp->t_rtt);
} else
tp->t_state = TCPS_SYN_RECEIVED;
trimthenstep6:
/*
* Advance ti->ti_seq to correspond to first data byte.
* If data, trim to stay within window,
* dropping FIN if necessary.
*/
ti->ti_seq++;
if (ti->ti_len > tp->rcv_wnd) {
todrop = ti->ti_len - tp->rcv_wnd;
m_adj(m, -todrop);
ti->ti_len = tp->rcv_wnd;
tiflags &= ~TH_FIN;
}
tp->snd_wl1 = ti->ti_seq - 1;
tp->rcv_up = ti->ti_seq;
goto step6;
} /* switch tp->t_state */
/*
* States other than LISTEN or SYN_SENT.
* Check that at least some bytes of segment are within
* receive window. If segment begins before rcv_nxt,
* drop leading data (and SYN); if nothing left, just ack.
*/
todrop = tp->rcv_nxt - ti->ti_seq;
if (todrop > 0) {
if (tiflags & TH_SYN) {
tiflags &= ~TH_SYN;
ti->ti_seq++;
if (ti->ti_urp > 1)
ti->ti_urp--;
else
tiflags &= ~TH_URG;
todrop--;
}
/*
* Following if statement from Stevens, vol. 2, p. 960.
*/
if (todrop > ti->ti_len
|| (todrop == ti->ti_len && (tiflags & TH_FIN) == 0)) {
/*
* Any valid FIN must be to the left of the window.
* At this point the FIN must be a duplicate or out
* of sequence; drop it.
*/
tiflags &= ~TH_FIN;
/*
* Send an ACK to resynchronize and drop any data.
* But keep on processing for RST or ACK.
*/
tp->t_flags |= TF_ACKNOW;
todrop = ti->ti_len;
}
m_adj(m, todrop);
ti->ti_seq += todrop;
ti->ti_len -= todrop;
if (ti->ti_urp > todrop)
ti->ti_urp -= todrop;
else {
tiflags &= ~TH_URG;
ti->ti_urp = 0;
}
}
/*
* If new data are received on a connection after the
* user processes are gone, then RST the other end.
*/
if ((so->so_state & SS_NOFDREF) &&
tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
tp = tcp_close(tp);
goto dropwithreset;
}
/*
* If segment ends after window, drop trailing data
* (and PUSH and FIN); if nothing left, just ACK.
*/
todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
if (todrop > 0) {
if (todrop >= ti->ti_len) {
/*
* If a new connection request is received
* while in TIME_WAIT, drop the old connection
* and start over if the sequence numbers
* are above the previous ones.
*/
if (tiflags & TH_SYN &&
tp->t_state == TCPS_TIME_WAIT &&
SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
iss = tp->rcv_nxt + TCP_ISSINCR;
tp = tcp_close(tp);
goto findso;
}
/*
* If window is closed can only take segments at
* window edge, and have to drop data and PUSH from
* incoming segments. Continue processing, but
* remember to ack. Otherwise, drop segment
* and ack.
*/
if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
tp->t_flags |= TF_ACKNOW;
} else {
goto dropafterack;
}
}
m_adj(m, -todrop);
ti->ti_len -= todrop;
tiflags &= ~(TH_PUSH|TH_FIN);
}
/*
* If the RST bit is set examine the state:
* SYN_RECEIVED STATE:
* If passive open, return to LISTEN state.
* If active open, inform user that connection was refused.
* ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
* Inform user that connection was reset, and close tcb.
* CLOSING, LAST_ACK, TIME_WAIT STATES
* Close the tcb.
*/
if (tiflags&TH_RST) switch (tp->t_state) {
case TCPS_SYN_RECEIVED:
case TCPS_ESTABLISHED:
case TCPS_FIN_WAIT_1:
case TCPS_FIN_WAIT_2:
case TCPS_CLOSE_WAIT:
tp->t_state = TCPS_CLOSED;
tcp_close(tp);
goto drop;
case TCPS_CLOSING:
case TCPS_LAST_ACK:
case TCPS_TIME_WAIT:
tcp_close(tp);
goto drop;
}
/*
* If a SYN is in the window, then this is an
* error and we send an RST and drop the connection.
*/
if (tiflags & TH_SYN) {
tp = tcp_drop(tp,0);
goto dropwithreset;
}
/*
* If the ACK bit is off we drop the segment and return.
*/
if ((tiflags & TH_ACK) == 0) goto drop;
/*
* Ack processing.
*/
switch (tp->t_state) {
/*
* In SYN_RECEIVED state if the ack ACKs our SYN then enter
* ESTABLISHED state and continue processing, otherwise
* send an RST. una<=ack<=max
*/
case TCPS_SYN_RECEIVED:
if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
SEQ_GT(ti->ti_ack, tp->snd_max))
goto dropwithreset;
tp->t_state = TCPS_ESTABLISHED;
/*
* The sent SYN is ack'ed with our sequence number +1
* The first data byte already in the buffer will get
* lost if no correction is made. This is only needed for
* SS_CTL since the buffer is empty otherwise.
* tp->snd_una++; or:
*/
tp->snd_una=ti->ti_ack;
if (so->so_state & SS_CTL) {
/* So tcp_ctl reports the right state */
ret = tcp_ctl(so);
if (ret == 1) {
soisfconnected(so);
so->so_state &= ~SS_CTL; /* success XXX */
} else if (ret == 2) {
so->so_state &= SS_PERSISTENT_MASK;
so->so_state |= SS_NOFDREF; /* CTL_CMD */
} else {
needoutput = 1;
tp->t_state = TCPS_FIN_WAIT_1;
}
} else {
soisfconnected(so);
}
(void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
tp->snd_wl1 = ti->ti_seq - 1;
/* Avoid ack processing; snd_una==ti_ack => dup ack */
goto synrx_to_est;
/* fall into ... */
/*
* In ESTABLISHED state: drop duplicate ACKs; ACK out of range
* ACKs. If the ack is in the range
* tp->snd_una < ti->ti_ack <= tp->snd_max
* then advance tp->snd_una to ti->ti_ack and drop
* data from the retransmission queue. If this ACK reflects
* more up to date window information we update our window information.
*/
case TCPS_ESTABLISHED:
case TCPS_FIN_WAIT_1:
case TCPS_FIN_WAIT_2:
case TCPS_CLOSE_WAIT:
case TCPS_CLOSING:
case TCPS_LAST_ACK:
case TCPS_TIME_WAIT:
if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
DEBUG_MISC((dfd, " dup ack m = %lx so = %lx\n",
(long )m, (long )so));
/*
* If we have outstanding data (other than
* a window probe), this is a completely
* duplicate ack (ie, window info didn't
* change), the ack is the biggest we've
* seen and we've seen exactly our rexmt
* threshold of them, assume a packet
* has been dropped and retransmit it.
* Kludge snd_nxt & the congestion
* window so we send only this one
* packet.
*
* We know we're losing at the current
* window size so do congestion avoidance
* (set ssthresh to half the current window
* and pull our congestion window back to
* the new ssthresh).
*
* Dup acks mean that packets have left the
* network (they're now cached at the receiver)
* so bump cwnd by the amount in the receiver
* to keep a constant cwnd packets in the
* network.
*/
if (tp->t_timer[TCPT_REXMT] == 0 ||
ti->ti_ack != tp->snd_una)
tp->t_dupacks = 0;
else if (++tp->t_dupacks == TCPREXMTTHRESH) {
tcp_seq onxt = tp->snd_nxt;
u_int win =
min(tp->snd_wnd, tp->snd_cwnd) / 2 /
tp->t_maxseg;
if (win < 2)
win = 2;
tp->snd_ssthresh = win * tp->t_maxseg;
tp->t_timer[TCPT_REXMT] = 0;
tp->t_rtt = 0;
tp->snd_nxt = ti->ti_ack;
tp->snd_cwnd = tp->t_maxseg;
(void) tcp_output(tp);
tp->snd_cwnd = tp->snd_ssthresh +
tp->t_maxseg * tp->t_dupacks;
if (SEQ_GT(onxt, tp->snd_nxt))
tp->snd_nxt = onxt;
goto drop;
} else if (tp->t_dupacks > TCPREXMTTHRESH) {
tp->snd_cwnd += tp->t_maxseg;
(void) tcp_output(tp);
goto drop;
}
} else
tp->t_dupacks = 0;
break;
}
synrx_to_est:
/*
* If the congestion window was inflated to account
* for the other side's cached packets, retract it.
*/
if (tp->t_dupacks > TCPREXMTTHRESH &&
tp->snd_cwnd > tp->snd_ssthresh)
tp->snd_cwnd = tp->snd_ssthresh;
tp->t_dupacks = 0;
if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
goto dropafterack;
}
acked = ti->ti_ack - tp->snd_una;
/*
* If transmit timer is running and timed sequence
* number was acked, update smoothed round trip time.
* Since we now have an rtt measurement, cancel the
* timer backoff (cf., Phil Karn's retransmit alg.).
* Recompute the initial retransmit timer.
*/
if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
tcp_xmit_timer(tp,tp->t_rtt);
/*
* If all outstanding data is acked, stop retransmit
* timer and remember to restart (more output or persist).
* If there is more data to be acked, restart retransmit
* timer, using current (possibly backed-off) value.
*/
if (ti->ti_ack == tp->snd_max) {
tp->t_timer[TCPT_REXMT] = 0;
needoutput = 1;
} else if (tp->t_timer[TCPT_PERSIST] == 0)
tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
/*
* When new data is acked, open the congestion window.
* If the window gives us less than ssthresh packets
* in flight, open exponentially (maxseg per packet).
* Otherwise open linearly: maxseg per window
* (maxseg^2 / cwnd per packet).
*/
{
register u_int cw = tp->snd_cwnd;
register u_int incr = tp->t_maxseg;
if (cw > tp->snd_ssthresh)
incr = incr * incr / cw;
tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
}
if (acked > so->so_snd.sb_cc) {
tp->snd_wnd -= so->so_snd.sb_cc;
sbdrop(&so->so_snd, (int )so->so_snd.sb_cc);
ourfinisacked = 1;
} else {
sbdrop(&so->so_snd, acked);
tp->snd_wnd -= acked;
ourfinisacked = 0;
}
tp->snd_una = ti->ti_ack;
if (SEQ_LT(tp->snd_nxt, tp->snd_una))
tp->snd_nxt = tp->snd_una;
switch (tp->t_state) {
/*
* In FIN_WAIT_1 STATE in addition to the processing
* for the ESTABLISHED state if our FIN is now acknowledged
* then enter FIN_WAIT_2.
*/
case TCPS_FIN_WAIT_1:
if (ourfinisacked) {
/*
* If we can't receive any more
* data, then closing user can proceed.
* Starting the timer is contrary to the
* specification, but if we don't get a FIN
* we'll hang forever.
*/
if (so->so_state & SS_FCANTRCVMORE) {
tp->t_timer[TCPT_2MSL] = TCP_MAXIDLE;
}
tp->t_state = TCPS_FIN_WAIT_2;
}
break;
/*
* In CLOSING STATE in addition to the processing for
* the ESTABLISHED state if the ACK acknowledges our FIN
* then enter the TIME-WAIT state, otherwise ignore
* the segment.
*/
case TCPS_CLOSING:
if (ourfinisacked) {
tp->t_state = TCPS_TIME_WAIT;
tcp_canceltimers(tp);
tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
}
break;
/*
* In LAST_ACK, we may still be waiting for data to drain
* and/or to be acked, as well as for the ack of our FIN.
* If our FIN is now acknowledged, delete the TCB,
* enter the closed state and return.
*/
case TCPS_LAST_ACK:
if (ourfinisacked) {
tcp_close(tp);
goto drop;
}
break;
/*
* In TIME_WAIT state the only thing that should arrive
* is a retransmission of the remote FIN. Acknowledge
* it and restart the finack timer.
*/
case TCPS_TIME_WAIT:
tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
goto dropafterack;
}
} /* switch(tp->t_state) */
step6:
/*
* Update window information.
* Don't look at window if no ACK: TAC's send garbage on first SYN.
*/
if ((tiflags & TH_ACK) &&
(SEQ_LT(tp->snd_wl1, ti->ti_seq) ||
(tp->snd_wl1 == ti->ti_seq && (SEQ_LT(tp->snd_wl2, ti->ti_ack) ||
(tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd))))) {
tp->snd_wnd = tiwin;
tp->snd_wl1 = ti->ti_seq;
tp->snd_wl2 = ti->ti_ack;
if (tp->snd_wnd > tp->max_sndwnd)
tp->max_sndwnd = tp->snd_wnd;
needoutput = 1;
}
/*
* Process segments with URG.
*/
if ((tiflags & TH_URG) && ti->ti_urp &&
TCPS_HAVERCVDFIN(tp->t_state) == 0) {
/*
* This is a kludge, but if we receive and accept
* random urgent pointers, we'll crash in
* soreceive. It's hard to imagine someone
* actually wanting to send this much urgent data.
*/
if (ti->ti_urp + so->so_rcv.sb_cc > so->so_rcv.sb_datalen) {
ti->ti_urp = 0;
tiflags &= ~TH_URG;
goto dodata;
}
/*
* If this segment advances the known urgent pointer,
* then mark the data stream. This should not happen
* in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
* a FIN has been received from the remote side.
* In these states we ignore the URG.
*
* According to RFC961 (Assigned Protocols),
* the urgent pointer points to the last octet
* of urgent data. We continue, however,
* to consider it to indicate the first octet
* of data past the urgent section as the original
* spec states (in one of two places).
*/
if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
tp->rcv_up = ti->ti_seq + ti->ti_urp;
so->so_urgc = so->so_rcv.sb_cc +
(tp->rcv_up - tp->rcv_nxt); /* -1; */
tp->rcv_up = ti->ti_seq + ti->ti_urp;
}
} else
/*
* If no out of band data is expected,
* pull receive urgent pointer along
* with the receive window.
*/
if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
tp->rcv_up = tp->rcv_nxt;
dodata:
/*
* If this is a small packet, then ACK now - with Nagel
* congestion avoidance sender won't send more until
* he gets an ACK.
*/
if (ti->ti_len && (unsigned)ti->ti_len <= 5 &&
((struct tcpiphdr_2 *)ti)->first_char == (char)27) {
tp->t_flags |= TF_ACKNOW;
}
/*
* Process the segment text, merging it into the TCP sequencing queue,
* and arranging for acknowledgment of receipt if necessary.
* This process logically involves adjusting tp->rcv_wnd as data
* is presented to the user (this happens in tcp_usrreq.c,
* case PRU_RCVD). If a FIN has already been received on this
* connection then we just ignore the text.
*/
if ((ti->ti_len || (tiflags&TH_FIN)) &&
TCPS_HAVERCVDFIN(tp->t_state) == 0) {
TCP_REASS(tp, ti, m, so, tiflags);
} else {
m_free(m);
tiflags &= ~TH_FIN;
}
/*
* If FIN is received ACK the FIN and let the user know
* that the connection is closing.
*/
if (tiflags & TH_FIN) {
if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
/*
* If we receive a FIN we can't send more data,
* set it SS_FDRAIN
* Shutdown the socket if there is no rx data in the
* buffer.
* soread() is called on completion of shutdown() and
* will got to TCPS_LAST_ACK, and use tcp_output()
* to send the FIN.
*/
sofwdrain(so);
tp->t_flags |= TF_ACKNOW;
tp->rcv_nxt++;
}
switch (tp->t_state) {
/*
* In SYN_RECEIVED and ESTABLISHED STATES
* enter the CLOSE_WAIT state.
*/
case TCPS_SYN_RECEIVED:
case TCPS_ESTABLISHED:
if(so->so_emu == EMU_CTL) /* no shutdown on socket */
tp->t_state = TCPS_LAST_ACK;
else
tp->t_state = TCPS_CLOSE_WAIT;
break;
/*
* If still in FIN_WAIT_1 STATE FIN has not been acked so
* enter the CLOSING state.
*/
case TCPS_FIN_WAIT_1:
tp->t_state = TCPS_CLOSING;
break;
/*
* In FIN_WAIT_2 state enter the TIME_WAIT state,
* starting the time-wait timer, turning off the other
* standard timers.
*/
case TCPS_FIN_WAIT_2:
tp->t_state = TCPS_TIME_WAIT;
tcp_canceltimers(tp);
tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
break;
/*
* In TIME_WAIT state restart the 2 MSL time_wait timer.
*/
case TCPS_TIME_WAIT:
tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
break;
}
}
/*
* Return any desired output.
*/
if (needoutput || (tp->t_flags & TF_ACKNOW)) {
(void) tcp_output(tp);
}
return;
dropafterack:
/*
* Generate an ACK dropping incoming segment if it occupies
* sequence space, where the ACK reflects our state.
*/
if (tiflags & TH_RST)
goto drop;
m_free(m);
tp->t_flags |= TF_ACKNOW;
(void) tcp_output(tp);
return;
dropwithreset:
/* reuses m if m!=NULL, m_free() unnecessary */
if (tiflags & TH_ACK)
tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
else {
if (tiflags & TH_SYN) ti->ti_len++;
tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
TH_RST|TH_ACK);
}
return;
drop:
/*
* Drop space held by incoming segment and return.
*/
m_free(m);
}
static void
tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcpiphdr *ti)
{
uint16_t mss;
int opt, optlen;
DEBUG_CALL("tcp_dooptions");
DEBUG_ARGS((dfd, " tp = %lx cnt=%i\n", (long)tp, cnt));
for (; cnt > 0; cnt -= optlen, cp += optlen) {
opt = cp[0];
if (opt == TCPOPT_EOL)
break;
if (opt == TCPOPT_NOP)
optlen = 1;
else {
optlen = cp[1];
if (optlen <= 0)
break;
}
switch (opt) {
default:
continue;
case TCPOPT_MAXSEG:
if (optlen != TCPOLEN_MAXSEG)
continue;
if (!(ti->ti_flags & TH_SYN))
continue;
memcpy((char *) &mss, (char *) cp + 2, sizeof(mss));
NTOHS(mss);
(void) tcp_mss(tp, mss); /* sets t_maxseg */
break;
}
}
}
/*
* Pull out of band byte out of a segment so
* it doesn't appear in the user's data queue.
* It is still reflected in the segment length for
* sequencing purposes.
*/
#ifdef notdef
void
tcp_pulloutofband(so, ti, m)
struct socket *so;
struct tcpiphdr *ti;
register struct mbuf *m;
{
int cnt = ti->ti_urp - 1;
while (cnt >= 0) {
if (m->m_len > cnt) {
char *cp = mtod(m, caddr_t) + cnt;
struct tcpcb *tp = sototcpcb(so);
tp->t_iobc = *cp;
tp->t_oobflags |= TCPOOB_HAVEDATA;
memcpy(sp, cp+1, (unsigned)(m->m_len - cnt - 1));
m->m_len--;
return;
}
cnt -= m->m_len;
m = m->m_next; /* XXX WRONG! Fix it! */
if (m == 0)
break;
}
panic("tcp_pulloutofband");
}
#endif /* notdef */
/*
* Collect new round-trip time estimate
* and update averages and current timeout.
*/
static void
tcp_xmit_timer(register struct tcpcb *tp, int rtt)
{
register short delta;
DEBUG_CALL("tcp_xmit_timer");
DEBUG_ARG("tp = %lx", (long)tp);
DEBUG_ARG("rtt = %d", rtt);
if (tp->t_srtt != 0) {
/*
* srtt is stored as fixed point with 3 bits after the
* binary point (i.e., scaled by 8). The following magic
* is equivalent to the smoothing algorithm in rfc793 with
* an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
* point). Adjust rtt to origin 0.
*/
delta = rtt - 1 - (tp->t_srtt >> TCP_RTT_SHIFT);
if ((tp->t_srtt += delta) <= 0)
tp->t_srtt = 1;
/*
* We accumulate a smoothed rtt variance (actually, a
* smoothed mean difference), then set the retransmit
* timer to smoothed rtt + 4 times the smoothed variance.
* rttvar is stored as fixed point with 2 bits after the
* binary point (scaled by 4). The following is
* equivalent to rfc793 smoothing with an alpha of .75
* (rttvar = rttvar*3/4 + |delta| / 4). This replaces
* rfc793's wired-in beta.
*/
if (delta < 0)
delta = -delta;
delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
if ((tp->t_rttvar += delta) <= 0)
tp->t_rttvar = 1;
} else {
/*
* No rtt measurement yet - use the unsmoothed rtt.
* Set the variance to half the rtt (so our first
* retransmit happens at 3*rtt).
*/
tp->t_srtt = rtt << TCP_RTT_SHIFT;
tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
}
tp->t_rtt = 0;
tp->t_rxtshift = 0;
/*
* the retransmit should happen at rtt + 4 * rttvar.
* Because of the way we do the smoothing, srtt and rttvar
* will each average +1/2 tick of bias. When we compute
* the retransmit timer, we want 1/2 tick of rounding and
* 1 extra tick because of +-1/2 tick uncertainty in the
* firing of the timer. The bias will give us exactly the
* 1.5 tick we need. But, because the bias is
* statistical, we have to test that we don't drop below
* the minimum feasible timer (which is 2 ticks).
*/
TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
(short)tp->t_rttmin, TCPTV_REXMTMAX); /* XXX */
/*
* We received an ack for a packet that wasn't retransmitted;
* it is probably safe to discard any error indications we've
* received recently. This isn't quite right, but close enough
* for now (a route might have failed after we sent a segment,
* and the return path might not be symmetrical).
*/
tp->t_softerror = 0;
}
/*
* Determine a reasonable value for maxseg size.
* If the route is known, check route for mtu.
* If none, use an mss that can be handled on the outgoing
* interface without forcing IP to fragment; if bigger than
* an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
* to utilize large mbufs. If no route is found, route has no mtu,
* or the destination isn't local, use a default, hopefully conservative
* size (usually 512 or the default IP max size, but no more than the mtu
* of the interface), as we can't discover anything about intervening
* gateways or networks. We also initialize the congestion/slow start
* window to be a single segment if the destination isn't local.
* While looking at the routing entry, we also initialize other path-dependent
* parameters from pre-set or cached values in the routing entry.
*/
int
tcp_mss(struct tcpcb *tp, u_int offer)
{
struct socket *so = tp->t_socket;
int mss;
DEBUG_CALL("tcp_mss");
DEBUG_ARG("tp = %lx", (long)tp);
DEBUG_ARG("offer = %d", offer);
mss = min(IF_MTU, IF_MRU) - sizeof(struct tcpiphdr);
if (offer)
mss = min(mss, offer);
mss = max(mss, 32);
if (mss < tp->t_maxseg || offer != 0)
tp->t_maxseg = mss;
tp->snd_cwnd = mss;
sbreserve(&so->so_snd, TCP_SNDSPACE + ((TCP_SNDSPACE % mss) ?
(mss - (TCP_SNDSPACE % mss)) :
0));
sbreserve(&so->so_rcv, TCP_RCVSPACE + ((TCP_RCVSPACE % mss) ?
(mss - (TCP_RCVSPACE % mss)) :
0));
DEBUG_MISC((dfd, " returning mss = %d\n", mss));
return mss;
}